草业学报 ›› 2021, Vol. 30 ›› Issue (2): 59-68.DOI: 10.11686/cyxb2020129
宋达成1,2,3(), 王理德1,2,3(), 吴昊1,3, 吴春荣1,2,3, 赵赫然1,2,3, 韩生慧1,2,3, 胥宝一1,2,3
收稿日期:
2020-03-24
修回日期:
2020-04-22
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
王理德
作者简介:
E-mail: wld69@tom.com基金资助:
Da-cheng SONG1,2,3(), Li-de WANG1,2,3(), Hao WU1,3, Chun-rong WU1,2,3, He-ran ZHAO1,2,3, Sheng-hui HAN1,2,3, Bao-yi XU1,2,3
Received:
2020-03-24
Revised:
2020-04-22
Online:
2021-02-20
Published:
2021-01-19
Contact:
Li-de WANG
摘要:
为探讨不同年限对退耕区次生草地土壤理化及土壤微生物特性的影响,以民勤绿洲退耕区不同退耕年限次生草地(1、2、8、13、20年)为研究对象,并将耕地作为对照,采用时空互代法测定和分析土壤理化性质(pH、含水率、砂粒含量、全氮、速效钾、速效磷)、土壤三大类微生物(细菌、放线菌、真菌)数量、土壤微生物生物量(碳、氮、磷)变化特征及其三者的相关性。结果表明:不同年限退耕地土壤微生物数量均以细菌最高,放线菌次之,真菌最低。随着退耕年限的增加,土壤砂粒含量、全氮、速效钾、土壤微生物量碳、土壤微生物量氮、土壤微生物量磷等指标均呈现先上升后下降趋势;土壤含水率、速效磷、细菌数量、放线菌数量均表现出不同程度的下降趋势;不同退耕年限对土壤pH值及真菌含量影响不显著。土壤理化性质与土壤微生物学特性间存在一定的相关性。土壤肥力质量综合评价结果表明退耕8年之前是民勤退耕区次生草地治理过程中的关键时期。
宋达成, 王理德, 吴昊, 吴春荣, 赵赫然, 韩生慧, 胥宝一. 民勤退耕区次生草地土壤特性研究[J]. 草业学报, 2021, 30(2): 59-68.
Da-cheng SONG, Li-de WANG, Hao WU, Chun-rong WU, He-ran ZHAO, Sheng-hui HAN, Bao-yi XU. A study of change in soil characteristics with recovery time in degraded grassland in Minqin[J]. Acta Prataculturae Sinica, 2021, 30(2): 59-68.
退耕年限Abandoned years (yr) | 海拔 Altitude (m) | 经纬度 Longitude/latitude | 群落优势种 Dominant plants species | 伴生种 Accompanying species |
---|---|---|---|---|
0 | 1304.0 | E 103°35′14.01″,N 39°03′52.00″ | 茴香Foeniculum vulgare | 藜Chenopodium album |
1 | 1305.9 | E 103°35′7.29″,N 39°03′57.53″ | 地肤K. scoparia, 中亚滨藜 Atriplex centralasiatica | 虎尾草Chloris virgata, 碱蓬S. glauca, 细叶骆驼蓬Naganum nigellastum, 田旋花Convolvulus arvensis, 稗子草Echinochloa crusgali |
2 | 1306.6 | E 103°35′9.84″,N 39°03′51.62″ | 白茎盐生草H. arachnoideus, 地肤K. scoparia, 中亚滨藜A. centralasiatica | 油蒿Artemisia ordosica, 针茅Stipa capillata, 狗娃花Heteropappus hispidus, 猪毛蒿Artemisia scoparia, 白草Pennisetum centrasiaticum |
8 | 1305.0 | E 103°36′8.92″,N 39°03′25.13″ | 小果白刺N. sibirica, 黑果枸杞Lycium ruthenicum | 中亚滨藜 A. centralasiatica, 地肤K. scoparia, 红砂R. songarica, 枸杞Lycium chinense, 芦苇Phragmites australis |
13 | 1306.4 | E 103°36′18.18″,N 39°02′30.29″ | 黑果枸杞L. ruthenicum | 腺独行菜Lepidium apetalum, 画眉草Eragrostis pilosa, 小叶碱蓬Suaeda microphylla,黄花补血草Limonium aureum |
20 | 1308.1 | E 103°37′1.85″, N 39°01′44.11″ | 黑果枸杞L. ruthenicum | 中亚滨藜A. centralasiatica, 黄花补血草L. aureum, 小叶碱蓬S. microphylla, 盐爪爪K. foliatum, 地锦Parthenocissus tricuspidata |
表1 不同退耕样地概况
Table 1 General situation of different abandoned land samples
退耕年限Abandoned years (yr) | 海拔 Altitude (m) | 经纬度 Longitude/latitude | 群落优势种 Dominant plants species | 伴生种 Accompanying species |
---|---|---|---|---|
0 | 1304.0 | E 103°35′14.01″,N 39°03′52.00″ | 茴香Foeniculum vulgare | 藜Chenopodium album |
1 | 1305.9 | E 103°35′7.29″,N 39°03′57.53″ | 地肤K. scoparia, 中亚滨藜 Atriplex centralasiatica | 虎尾草Chloris virgata, 碱蓬S. glauca, 细叶骆驼蓬Naganum nigellastum, 田旋花Convolvulus arvensis, 稗子草Echinochloa crusgali |
2 | 1306.6 | E 103°35′9.84″,N 39°03′51.62″ | 白茎盐生草H. arachnoideus, 地肤K. scoparia, 中亚滨藜A. centralasiatica | 油蒿Artemisia ordosica, 针茅Stipa capillata, 狗娃花Heteropappus hispidus, 猪毛蒿Artemisia scoparia, 白草Pennisetum centrasiaticum |
8 | 1305.0 | E 103°36′8.92″,N 39°03′25.13″ | 小果白刺N. sibirica, 黑果枸杞Lycium ruthenicum | 中亚滨藜 A. centralasiatica, 地肤K. scoparia, 红砂R. songarica, 枸杞Lycium chinense, 芦苇Phragmites australis |
13 | 1306.4 | E 103°36′18.18″,N 39°02′30.29″ | 黑果枸杞L. ruthenicum | 腺独行菜Lepidium apetalum, 画眉草Eragrostis pilosa, 小叶碱蓬Suaeda microphylla,黄花补血草Limonium aureum |
20 | 1308.1 | E 103°37′1.85″, N 39°01′44.11″ | 黑果枸杞L. ruthenicum | 中亚滨藜A. centralasiatica, 黄花补血草L. aureum, 小叶碱蓬S. microphylla, 盐爪爪K. foliatum, 地锦Parthenocissus tricuspidata |
指标Index | 退耕年限Abandoned years (yr) | |||||
---|---|---|---|---|---|---|
CK | 1 | 2 | 8 | 13 | 20 | |
pH | 8.187±0.160a | 8.080±0.090ab | 7.980±0.147ab | 8.007±0.310ab | 7.983±0.144ab | 7.767±0.046b |
含水率Water content (%) | 0.110±0.010a | 0.078±0.007bc | 0.074±0.003bc | 0.059±0.005c | 0.126±0.031a | 0.103±0.011ab |
砂粒含量Sand content (%) | 72.827±2.473bc | 79.361±10.480ab | 86.090±10.037a | 62.687±2.320c | 62.778±0.395c | 60.927±0.850c |
全氮Total nitrogen (%) | 0.032±0.002ab | 0.024±0.004bc | 0.036±0.002a | 0.022±0.010c | 0.018±0.001c | 0.017±0.002c |
速效钾Available K (mg·kg-1) | 227.586±66.140b | 142.007±21.555b | 159.056±29.197b | 234.332±69.178b | 411.067±60.911a | 199.814±16.465b |
速效磷Available P (mg·kg-1) | 1.397±0.127a | 0.962±0.102bc | 1.036±0.217b | 1.482±0.080a | 0.760±0.139cd | 0.506±0.115d |
表2 不同退耕区土壤理化特征
Table 2 Physical and chemical characteristics of soil in different abandoned areas
指标Index | 退耕年限Abandoned years (yr) | |||||
---|---|---|---|---|---|---|
CK | 1 | 2 | 8 | 13 | 20 | |
pH | 8.187±0.160a | 8.080±0.090ab | 7.980±0.147ab | 8.007±0.310ab | 7.983±0.144ab | 7.767±0.046b |
含水率Water content (%) | 0.110±0.010a | 0.078±0.007bc | 0.074±0.003bc | 0.059±0.005c | 0.126±0.031a | 0.103±0.011ab |
砂粒含量Sand content (%) | 72.827±2.473bc | 79.361±10.480ab | 86.090±10.037a | 62.687±2.320c | 62.778±0.395c | 60.927±0.850c |
全氮Total nitrogen (%) | 0.032±0.002ab | 0.024±0.004bc | 0.036±0.002a | 0.022±0.010c | 0.018±0.001c | 0.017±0.002c |
速效钾Available K (mg·kg-1) | 227.586±66.140b | 142.007±21.555b | 159.056±29.197b | 234.332±69.178b | 411.067±60.911a | 199.814±16.465b |
速效磷Available P (mg·kg-1) | 1.397±0.127a | 0.962±0.102bc | 1.036±0.217b | 1.482±0.080a | 0.760±0.139cd | 0.506±0.115d |
指标 Index | 退耕年限Abandoned years (yr) | |||||
---|---|---|---|---|---|---|
CK | 1 | 2 | 8 | 13 | 20 | |
土壤微生物量碳Soil microbial biomass C | 124.172±18.595c | 290.156±10.027b | 346.704±62.316b | 300.301±42.133b | 459.287±66.774a | 67.245±1.335c |
土壤微生物量氮 Soil microbial biomass N | 21.335±1.744b | 46.688±3.618ab | 69.513±24.235a | 56.358±28.520ab | 27.824±7.384b | 54.327±23.444ab |
土壤微生物量磷 Soil microbial biomass P | 28.086±9.015b | 37.980±15.046ab | 49.471±6.944a | 8.505±1.057c | 37.231±6.792ab | 9.208±3.381c |
表3 不同退耕区土壤微生物生物量特性
Table 3 Soil microbial biomass characteristics in different abandoned areas (mg·kg-1)
指标 Index | 退耕年限Abandoned years (yr) | |||||
---|---|---|---|---|---|---|
CK | 1 | 2 | 8 | 13 | 20 | |
土壤微生物量碳Soil microbial biomass C | 124.172±18.595c | 290.156±10.027b | 346.704±62.316b | 300.301±42.133b | 459.287±66.774a | 67.245±1.335c |
土壤微生物量氮 Soil microbial biomass N | 21.335±1.744b | 46.688±3.618ab | 69.513±24.235a | 56.358±28.520ab | 27.824±7.384b | 54.327±23.444ab |
土壤微生物量磷 Soil microbial biomass P | 28.086±9.015b | 37.980±15.046ab | 49.471±6.944a | 8.505±1.057c | 37.231±6.792ab | 9.208±3.381c |
指标 Index | 细菌 Bacteria | 放线菌 Actinomycetes | 真菌 Fungi | 土壤微生物量碳 Soil microbial biomass C | 土壤微生物量氮 Soil microbial biomass N | 土壤微生物量磷 Soil microbial biomass P |
---|---|---|---|---|---|---|
pH | 0.727 | 0.835* | 0.785 | 0.155 | -0.517 | 0.375 |
含水率Water content | 0.077 | -0.483 | -0.385 | -0.060 | -0.755 | 0.106 |
砂粒含量Sand content | 0.156 | 0.497 | 0.139 | 0.171 | 0.311 | 0.793 |
全氮Total nitrogen | 0.565 | 0.583 | 0.332 | 0.000 | 0.168 | 0.588 |
速效钾Available K | -0.114 | -0.519 | -0.302 | 0.481 | -0.587 | -0.031 |
速效磷Available P | 0.721 | 0.817* | 0.873* | 0.053 | -0.110 | -0.063 |
表4 土壤理化性质与土壤微生物学特性的相关分析
Table 4 Correlation analysis between soil physical and chemical properties and soil microbiology characteristics
指标 Index | 细菌 Bacteria | 放线菌 Actinomycetes | 真菌 Fungi | 土壤微生物量碳 Soil microbial biomass C | 土壤微生物量氮 Soil microbial biomass N | 土壤微生物量磷 Soil microbial biomass P |
---|---|---|---|---|---|---|
pH | 0.727 | 0.835* | 0.785 | 0.155 | -0.517 | 0.375 |
含水率Water content | 0.077 | -0.483 | -0.385 | -0.060 | -0.755 | 0.106 |
砂粒含量Sand content | 0.156 | 0.497 | 0.139 | 0.171 | 0.311 | 0.793 |
全氮Total nitrogen | 0.565 | 0.583 | 0.332 | 0.000 | 0.168 | 0.588 |
速效钾Available K | -0.114 | -0.519 | -0.302 | 0.481 | -0.587 | -0.031 |
速效磷Available P | 0.721 | 0.817* | 0.873* | 0.053 | -0.110 | -0.063 |
退耕年限 Abandoned years (yr) | 因子得分 Factor score | 综合得分 General sores | 名次 Ranking | |||
---|---|---|---|---|---|---|
因子1 Factor1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 | |||
0 | 1.27819 | 0.38516 | 1.14979 | -0.97063 | 0.7571 | 1 |
1 | 0.20669 | 0.50839 | -0.46577 | 0.09878 | 0.1304 | 2 |
2 | -0.43713 | 1.48493 | -0.84288 | 0.23228 | 0.0281 | 4 |
8 | 0.95950 | -1.27734 | -1.03027 | 0.56685 | -0.0296 | 5 |
13 | -0.68958 | -0.27640 | 1.29532 | 1.39102 | 0.0322 | 3 |
20 | -1.31768 | -0.82473 | -0.10619 | -1.31830 | -0.9183 | 6 |
表5 不同退耕区土壤肥力预测评价结果
Table 5 Prediction and evaluation of soil fertility in different abandoned areas
退耕年限 Abandoned years (yr) | 因子得分 Factor score | 综合得分 General sores | 名次 Ranking | |||
---|---|---|---|---|---|---|
因子1 Factor1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 | |||
0 | 1.27819 | 0.38516 | 1.14979 | -0.97063 | 0.7571 | 1 |
1 | 0.20669 | 0.50839 | -0.46577 | 0.09878 | 0.1304 | 2 |
2 | -0.43713 | 1.48493 | -0.84288 | 0.23228 | 0.0281 | 4 |
8 | 0.95950 | -1.27734 | -1.03027 | 0.56685 | -0.0296 | 5 |
13 | -0.68958 | -0.27640 | 1.29532 | 1.39102 | 0.0322 | 3 |
20 | -1.31768 | -0.82473 | -0.10619 | -1.31830 | -0.9183 | 6 |
1 | Wang L D. Evolution of vegetation and soil system on secondary grassland of abandoned land area in Minqin. Lanzhou: Gansu Agricultural University, 2016. |
王理德. 民勤退耕区次生草地植被及土壤系统演变研究. 兰州: 甘肃农业大学, 2016. | |
2 | Ma J M, Wang L D, Guo C X. Dynamic change of soil microbial biomass carbon, nitrogen and phosphorus in natural recovery process of abandoned farmland in Minqin Oasis. Chinese Agricultural Science Bulletin, 2015, 31(32): 132-136. |
马俊梅, 王理德, 郭春秀. 民勤绿洲退耕地自然恢复过程中土壤微生物量碳、氮、磷的动态变化. 中国农学通报, 2015, 31(32): 132-136. | |
3 | Qu W, Li Z T, Tan Y M, et al. Water saving strategy in inland river basin of Hexi Corridor in Gansu Province: Conjunctive management of surface water and groundwater. Journal of Glaciology and Geocryology, 2018, 40(1): 145-155. |
曲玮, 李振涛, 谭艳美, 等. 甘肃河西走廊内陆河流域节水战略选择——地表水与地下水联合管理. 冰川冻土, 2018, 40(1): 145-155. | |
4 | Chang G Y, Wang L, Zhang W X. Perceptions of peasants in Minqin County for the water conservation polices of Shiyang river basin and their effects. Journal of Arid Land Resources and Environment, 2016, 30(2): 13-19. |
常跟应, 王鹭, 张文侠. 民勤县农民对石羊河流域节水政策及节水效果认知. 干旱区资源与环境, 2016, 30(2): 13-19. | |
5 | Zhang Y H, Liu S Z, Ji Y F, et al. Spatial distribution pattern and spatial association of phragmites australis in the middle reaches of Shiyang River. Journal of Desert Research, 2016, 36(2): 342-348. |
张莹花, 刘世增, 纪永福, 等. 石羊河中游河岸芦苇群落空间格局. 中国沙漠, 2016, 36(2): 342-348. | |
6 | Zhao Y, Lv X C, Shang H Y. Effects of groundwater irrigation on livelihood of small farmers——A case study of Minqin County in Shiyang River Basin. Resource Development & Market, 2020, 36(1): 33-38, 94. |
赵越, 吕现昌, 尚海洋. 地下水灌溉对小农生计的影响——以石羊河流域民勤县为例. 资源开发与市场, 2020, 36(1): 33-38, 94. | |
7 | Chen L, Yao T, Chai X H, et al. Study on the winter dynamics of soil inorganic nitrogen, enzyme activity and microbial biomass of secondary grassland in abandoned farmland with different restoration years in Shiyang River Area. Acta Agrestia Sinica, 2016, 24(2): 330-336. |
陈龙, 姚拓, 柴晓虹, 等. 石羊河中下游不同退耕年限次生草地土壤无机氮、酶及微生物量冬季动态研究. 草地学报, 2016, 24(2): 330-336. | |
8 | Zhang S R, Li Y M. Review on the effects of straw mulching on soil nutrient content in wheat-maize rotation system. Modern Agricultural Science and Technology, 2020(7): 189-192. |
张苏芮, 李一鸣. 小麦—玉米轮作体系下长期秸秆还田对土壤养分含量的影响综述. 现代农业科技, 2020(7): 189-192. | |
9 | Wang F L, Wei X H, Wang L D, et al. Woodland soil nutrient changes and correlation analysis of different fixed numbers of abandoned lands in Minqin Oasis. Agricultural Research in the Arid Areas, 2016, 34(2): 119-124. |
王方琳, 魏小红, 王理德, 等. 民勤绿洲不同年限退耕地土壤养分变化及其相关性分析. 干旱地区农业研究, 2016, 34(2): 119-124. | |
10 | Jenkinson D S, Ladd J M. Microbial biomass in soil: Measurement and turnover. New York: Soil Biochemistry, 1981: 415-471. |
11 | Lin Y B, Ye Y M, Yang J H, et al. The effect of land consolidation on soil microbial diversity. Acta Scientiae Circumstantiae, 2019, 39(8): 2644-2653. |
林耀奔, 叶艳妹, 杨建辉, 等. 土地整治对土壤微生物多样性的影响分析. 环境科学学报, 2019, 39(8): 2644-2653. | |
12 | Li D, Zhang B, Dai S P, et al. Comparison of soil fertility and physical properties of farmland, wasteland and returning farmland to forest in Minqin Oasis. Soils, 2011, 43(3): 398-405. |
李丹, 张勃, 戴声佩, 等. 民勤绿洲耕地荒地退耕还林地土壤肥力及物理特性比较研究. 土壤, 2011, 43(3): 398-405. | |
13 | Jiang C M. Analysis of saline-alkali land status and genesis in shiyang river basin. Scienfic & Technical Information of Gansu, 2019, 48(9): 21-23. |
蒋长明. 石羊河流域盐碱地现状及成因分析. 甘肃科技纵横, 2019, 48(9): 21-23. | |
14 | Chang Z F, Zhu S J, Du J, et al. Environmental factors causing the formation of sand-accumulation belt along the oasis fringe in Minqin. Arid Land Geography, 2019, 42(6): 1330-1336. |
常兆丰, 朱淑娟, 杜娟, 等. 民勤绿洲边缘积沙带形成的环境条件. 干旱区地理, 2019, 42(6): 1330-1336. | |
15 | Zhang H, Chen L. Evaluation of desertification control effect in the Minqin Oasis in Gansu, China, based on LSMM. Journal of Desert Research, 2019, 39(3): 145-154. |
张华, 陈蕾. 基于线性光谱混合模型(LSMM)的民勤绿洲荒漠化治理效果评价. 中国沙漠, 2019, 39(3): 145-154. | |
16 | Li S X. Study on countermeasures of desertification control in Minqin County. Rural Science and Technology, 2018(5): 91-93. |
李淑霞. 民勤县荒漠化防治对策研究. 乡村科技, 2018(5): 91-93. | |
17 | Zhang Y. Dynamics of vegetation cover and desertification in Shiyang River Basin. Lanzhou: Gansu Agricultural University, 2018. |
张永. 石羊河流域植被覆盖与荒漠化动态研究. 兰州: 甘肃农业大学, 2018. | |
18 | Xu S W, Chen X Q, Sun G R. Study on the relationship between forestry construction and desert planting industry development in sand area of Minqin County. Gansu Nongye, 2019(6): 61-63. |
许守卫, 陈雪青, 孙桂仁. 民勤县沙区林业建设与沙漠种植产业发展的关系研究. 甘肃农业, 2019(6): 61-63. | |
19 | Wang T, Lv G, Wei Z P, et al. Evolution of soil physicochemical characteristic in regeneration site with Pinus sylvestris var. Mongolica in the south edge of Horqin sandy land. Chinese Journal of Soil Science, 2016, 47(6): 1332-1338. |
王婷, 吕刚, 魏忠平, 等. 科尔沁沙地南缘樟子松固沙林更新迹地土壤理化特性演变研究. 土壤通报, 2016, 47(6): 1332-1338. | |
20 | Hao X Y, Ma X Z, Zhou B K. Variation characteristics of soybean yield and soil physicochemical properties after long-term organic fertilizer application in black soil. Soils and Crops, 2018, 7(2): 222-228. |
郝小雨, 马星竹, 周宝库. 长期单施有机肥黑土大豆产量和土壤理化性质演变特征. 土壤与作物, 2018, 7(2): 222-228. | |
21 | Wang Q J, Jiao F, Liu F, et al. Evolution characteristics of soil chemical properties in different types of paddy fields in Sanjiang Plain. Journal of Anhui Agricultural Sciences, 2018, 46(16): 118-122. |
王秋菊, 焦峰, 刘峰, 等. 三江平原不同稻田土壤化学性质演变特征. 安徽农业科学, 2018, 46(16): 118-122. | |
22 | Wang L D, Chai X H, Yao T, et al. Studuying on vegetation restoration and soil microbial characteristics on secondary grassland in the downstream of Shiyang River. Grassland and Turf, 2015, 35(6): 14-21. |
王理德, 柴晓虹, 姚拓, 等. 石羊河下游绿洲边缘次生草地自然恢复过程及微生物特性的研究. 草原与草坪, 2015, 35(6): 14-21. | |
23 | Xu G H, Zheng H Y. Soil microbial analysis method of manual. Beijing: Agricultural Press, 1986: 102-109. |
许光辉, 郑洪元. 土壤微生物分析方法手册. 北京: 农业出版社, 1986: 102-109. | |
24 | Yao H Y, Huang C Y. Soil microbial ecology and experimental techniques. Beijing: Science Press, 2006. |
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006. | |
25 | Yan L, Ji X N, Meng Q F, et al. Soil fertility quality evaluation of slope farmland under no-tillage in black soil area. Journal of Northeast Agricultural University, 2019, 50(5): 43-54. |
闫雷, 纪晓楠, 孟庆峰, 等. 免耕措施下黑土区坡耕地土壤肥力质量评价. 东北农业大学学报, 2019, 50(5): 43-54. | |
26 | Yang X L, Ding W K, Hu J G, et al. Variation characteristics and influencing factors of sunshine duration in Shiyang River Basin. Chinese Agricultural Science Bulletin, 2015, 31(13): 273-278. |
杨晓玲, 丁文魁, 胡津革, 等. 石羊河流域日照时数的变化特征及影响因子分析. 中国农学通报, 2015, 31(13): 273-278. | |
27 | Yuan Y X, Wang R D, Chang C P, et al. Protective effect of cropland conversion with different years on soil in Bashang district, North China. Journal of Arid Land Resources and Environment, 2018, 32(9): 84-89. |
苑依笑, 王仁德, 常春平, 等. 坝上地区不同年限退耕工程对土壤的保护作用. 干旱区资源与环境, 2018, 32(9): 84-89. | |
28 | Hou X Q, Li R, Han Q F, et al. Effects of alternate tillage on soil physicochemical properties and yield of dryland wheat in arid areas of South Ningxia. Acta Pedologica Sinica, 2012, 49(3): 592-600. |
侯贤清, 李荣, 韩清芳, 等. 轮耕对宁南旱区土壤理化性状和旱地小麦产量的影响. 土壤学报, 2012, 49(3): 592-600. | |
29 | Liang C H, Wei L P, Luo L. Advance in research on mechanisms of potassium releasing and fixing in soils. Advance in Earth Sciences, 2002, 17(5): 679-684. |
梁成华, 魏丽萍, 罗磊. 土壤固钾与释钾机制研究进展. 地球科学进展, 2002, 17(5): 679-684. | |
30 | Liang Z C, Li J, Wu J, et al. Effects of grain for green project on slope phosphorus in Loess Plateau. Journal of Southern Agriculture, 2018, 49(4): 688-694. |
梁振春, 李静, 吴靖, 等. 退耕还林还草对黄土高原坡地磷素的影响. 南方农业学报, 2018, 49(4): 688-694. | |
31 | Li H Y, Yao T, Zhang J G, et al. Spatial-temporal variation of soil microorganism quantity in different perturbed alpine meadows. Journal of Soil and Water Conservation, 2018, 32(4): 177-183. |
李海云, 姚拓, 张建贵, 等. 不同扰动高寒草地土壤微生物数量时空变化特征. 水土保持学报, 2018, 32(4): 177-183. | |
32 | Wang Y W, Chai Q, Ouyang X Z, et al. Evolution of soil nutrition and biological prosperities under sand-fixing plants in fringe area of Minqin Oasis. Journal of Soil and Water Conservation, 2016, 30(1): 141-146, 177. |
王彦武, 柴强, 欧阳雪芝, 等. 民勤绿洲边缘固沙植物土壤养分及土壤生物学性质演变规律. 水土保持学报, 2016, 30(1): 141-146, 177. | |
33 | Zhang X B, Xu M, Shi F. Impact of typical agricultural land use on the characteristics of soil microbial communities in the Nyingchi Region of Southeastern Tibet. Journal of Agro-Environment Science, 2020, 39(2): 331-342. |
张旭博, 徐梦, 史飞. 藏东南林芝地区典型农业土地利用方式对土壤微生物群落特征的影响. 农业环境科学学报, 2020, 39(2): 331-342. | |
34 | Tao L, Chu G X, Liu T, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecologica Sinica, 2014, 34(21): 6137-6146. |
陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响. 生态学报, 2014, 34(21): 6137-6146. | |
35 | Xi J Q, Yang Z H, Guo S J, et al. The correlation between soil physical and chemical properties and soil microbes in different types of Nitraria dune. Acta Prataculturae Sinica, 2015, 24(6): 64-74. |
席军强, 杨自辉, 郭树江, 等. 不同类型白刺沙丘土壤理化性状与微生物相关性研究. 草业学报, 2015, 24(6): 64-74. | |
36 | Huang G Q, Yang B J, Wang S B, et al. Effects of 8 years of conservational tillage on rice yield and soil physical, chemical and biological properties. Acta Ecologica Sinica, 2015, 35(4): 1225-1234. |
黄国勤, 杨滨娟, 王淑彬, 等. 稻田实行保护性耕作对水稻产量、土壤理化及生物学性状的影响. 生态学报, 2015, 35(4): 1225-1234. |
[1] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[2] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[3] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[4] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[5] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[6] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[7] | 侯蒙京, 高金龙, 葛静, 李元春, 刘洁, 殷建鹏, 冯琦胜, 梁天刚. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究[J]. 草业学报, 2020, 29(1): 13-27. |
[8] | 帅林林, 周青平, 陈有军, 苟小林, 周蓉. 高寒半湿润沙地草本修复期土壤微生物变化研究[J]. 草业学报, 2019, 28(9): 11-22. |
[9] | 王丽娜, 罗久富, 杨梅香, 张利, 刘学敏, 邓东周, 周金星. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7): 38-48. |
[10] | 谢奎忠, 胡新元, 张彤彤, 邱慧珍. 不同杀菌剂对旱地连作马铃薯土壤水分效应、微生物和产量的影响[J]. 草业学报, 2019, 28(7): 103-111. |
[11] | 刘洁, 孟宝平, 葛静, 高金龙, 殷建鹏, 侯蒙京, 冯琦胜, 梁天刚. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J]. 草业学报, 2019, 28(6): 19-32. |
[12] | 尹国丽, 蔡卓山, 陶茸, 吴芳, 陈建纲, 师尚礼. 不同草田轮作方式对土壤肥力、微生物数量及自毒物质含量的影响[J]. 草业学报, 2019, 28(3): 42-50. |
[13] | 林栋, 张德罡, McCulleyRebeccaL.. 蔬菜-牧草轮作5年草地土壤微生物量变化及其群落结构分异[J]. 草业学报, 2019, 28(11): 22-31. |
[14] | 金媛媛, BOWATTESaman, 贾倩民, 侯扶江, 李春杰. 内生真菌侵染对野大麦根际土壤化学特性和微生物群落的影响[J]. 草业学报, 2019, 28(10): 66-77. |
[15] | 高海宁, 李彩霞, 孙小妹, 陈年来, 张勇. 黑河上游冰沟流域土壤养分与微生物空间异质性研究[J]. 草业学报, 2018, 27(6): 23-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||