草业学报 ›› 2021, Vol. 30 ›› Issue (2): 46-58.DOI: 10.11686/cyxb2020105
孙华方1(), 李希来1,2(), 金立群1, 李成一1, 张静1,2
收稿日期:
2020-03-08
修回日期:
2020-05-07
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
李希来
作者简介:
E-mail: xilai-li@163.com基金资助:
Hua-fang SUN1(), Xi-lai LI1,2(), Li-qun JIN1, Cheng-yi LI1, Jing ZHANG1,2
Received:
2020-03-08
Revised:
2020-05-07
Online:
2021-02-20
Published:
2021-01-19
Contact:
Xi-lai LI
摘要:
本研究选择青海省玛沁县不同建植年限高寒人工草地(18,14,11,4和1年),通过调查人工草地表层(0~5 cm)土壤微生物分布特征,旨在探讨高寒地区人工草地不同建植年限对表层土壤微生物变化特征以及植被的影响。主要结果表明,随着人工草地建植年限的增长,表层(0~5 cm)土壤微生物OTUs数量逐渐增加,但原核微生物多样性指数(除Simpson指数外)均显著大于真核微生物(P<0.05)。各年限人工草地原核优势微生物种类相同,分别为变形菌门(Proteobacteria)和芽单胞菌属(Gemmatimonas);真核优势微生物种类也相同,分别为子囊菌门(Ascomycota)和Knufia属,且各建植年限间优势微生物丰度有较大差异。分析人工草地植被特征与微生物关系发现:原核微生物OTUs数量与植被多样性关系密切(P<0.01),真核微生物OTUs数量与植被总盖度、生物土壤结皮(BSCs)盖度极显著相关(P<0.01);真核优势微生物丰度与部分植被特征如植被多样性指数等有较好的相关性(P<0.05)。因此,人工草地的恢复演替有利于促进微生物多样性的恢复,但人工草地土壤微生物多样性的恢复需要的时间会更长。
孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58.
Hua-fang SUN, Xi-lai LI, Li-qun JIN, Cheng-yi LI, Jing ZHANG. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone[J]. Acta Prataculturae Sinica, 2021, 30(2): 46-58.
指标Indexes | 指标Item | 18年18 years | 14年14 years | 11年11 years | 4年4 years | 1年1 years |
---|---|---|---|---|---|---|
物种数 Species (No.) | 原核Prokaryotic | 2862±124Aa | 2790±47Aa | 2047±227Ab | 2840±174Aa | 3100±298Aa |
真核Eukaryotic | 483±77Ba | 533±47Ba | 462±155Ba | 541±66Ba | 504±102Ba | |
Shannon-Wiener指数 Shannon-Wiener’s index | 原核Prokaryotic | 10.24±0.11Aab | 10.25±0.20Aab | 9.65±0.96Ab | 10.25±0.38Aab | 10.56±0.30Aa |
真核Eukaryotic | 5.77±0.89Ba | 6.45±0.36Ba | 5.93±0.82Ba | 5.85±1.11Ba | 6.13±0.92Ba | |
Simpson指数 Simpson’s index | 原核Prokaryotic | 1.00±0.00Aa | 1.00±0.10Aa | 1.00±0.01Aa | 1.00±0.01Aa | 1.00±0.00Aa |
真核Eukaryotic | 0.92±0.05Aa | 0.96±0.01Aa | 0.92±0.10Ba | 0.89±0.10Aa | 0.95±0.04Aa | |
Chao1指数 Chao1’s index | 原核Prokaryotic | 4816.50±253.06Aa | 4646.11±519.55Aa | 3131.53±1724.49Ab | 4644.84±367.37Aa | 5204.25±683.27Aa |
真核Eukaryotic | 673.48±131.88Ba | 750.52±68.41Ba | 603.61±241.24Bb | 726.60±118.82Ba | 673.27±124.21Ba |
表1 不同恢复年限人工草地微生物多样性特征
Table 1 Microbial diversity within different years in artificial grassland
指标Indexes | 指标Item | 18年18 years | 14年14 years | 11年11 years | 4年4 years | 1年1 years |
---|---|---|---|---|---|---|
物种数 Species (No.) | 原核Prokaryotic | 2862±124Aa | 2790±47Aa | 2047±227Ab | 2840±174Aa | 3100±298Aa |
真核Eukaryotic | 483±77Ba | 533±47Ba | 462±155Ba | 541±66Ba | 504±102Ba | |
Shannon-Wiener指数 Shannon-Wiener’s index | 原核Prokaryotic | 10.24±0.11Aab | 10.25±0.20Aab | 9.65±0.96Ab | 10.25±0.38Aab | 10.56±0.30Aa |
真核Eukaryotic | 5.77±0.89Ba | 6.45±0.36Ba | 5.93±0.82Ba | 5.85±1.11Ba | 6.13±0.92Ba | |
Simpson指数 Simpson’s index | 原核Prokaryotic | 1.00±0.00Aa | 1.00±0.10Aa | 1.00±0.01Aa | 1.00±0.01Aa | 1.00±0.00Aa |
真核Eukaryotic | 0.92±0.05Aa | 0.96±0.01Aa | 0.92±0.10Ba | 0.89±0.10Aa | 0.95±0.04Aa | |
Chao1指数 Chao1’s index | 原核Prokaryotic | 4816.50±253.06Aa | 4646.11±519.55Aa | 3131.53±1724.49Ab | 4644.84±367.37Aa | 5204.25±683.27Aa |
真核Eukaryotic | 673.48±131.88Ba | 750.52±68.41Ba | 603.61±241.24Bb | 726.60±118.82Ba | 673.27±124.21Ba |
项目Item | 总盖度 Total coverage | 生物土壤结皮盖度BSCs coverage | BSCs 厚度BSCs thickness | 禾本科盖度Grass coverage | 莎草科盖度 Sedge coverage | 杂类草 盖度 Forb coverage | 物种数 Species | Simpson指数 Simpson’s index | Shannon- wiener指数 Shannon-Wiener’s index | Pielou均匀度指数 Pielou’s index |
---|---|---|---|---|---|---|---|---|---|---|
原核微生物 Prokaryotic microorganisms | 0.548* | 0.418 | -0.008 | 0.305 | 0.200 | 0.626** | 0.575* | 0.612** | 0.715** | 0.631** |
真核微生物 Eukaryotic microorganisms | 0.621** | 0.732** | -0.121 | 0.546* | 0.095 | 0.406 | 0.368 | 0.252 | 0.305 | 0.126 |
表2 不同年限人工草地植被特征与微生物OTUs数量特征相关性分析
Table 2 Correlation analysis between vegetation characteristics and OTUs
项目Item | 总盖度 Total coverage | 生物土壤结皮盖度BSCs coverage | BSCs 厚度BSCs thickness | 禾本科盖度Grass coverage | 莎草科盖度 Sedge coverage | 杂类草 盖度 Forb coverage | 物种数 Species | Simpson指数 Simpson’s index | Shannon- wiener指数 Shannon-Wiener’s index | Pielou均匀度指数 Pielou’s index |
---|---|---|---|---|---|---|---|---|---|---|
原核微生物 Prokaryotic microorganisms | 0.548* | 0.418 | -0.008 | 0.305 | 0.200 | 0.626** | 0.575* | 0.612** | 0.715** | 0.631** |
真核微生物 Eukaryotic microorganisms | 0.621** | 0.732** | -0.121 | 0.546* | 0.095 | 0.406 | 0.368 | 0.252 | 0.305 | 0.126 |
指标Indexes | 原核微生物Prokaryotic microorganisms | 真核微生物Eukaryotic microorganisms | ||||||
---|---|---|---|---|---|---|---|---|
Gp4 | 芽单胞菌 Gemmatimonas | Gp6 | 红杆菌 Solirubrobacter | Knufia | Davidiella | 潮霉菌 Hygrocybe | Preussia | |
总盖度 Total coverage | -0.012 | -0.131 | 0.105 | 0.099 | 0.503* | -0.279 | 0.174 | 0.095 |
BSCs盖度BSCs coverage | -0.319 | 0.133 | 0.105 | 0.116 | 0.494* | -0.258 | -0.109 | 0.563* |
BSCs厚度BSCs thickness | -0.330 | 0.447 | -0.036 | -0.197 | 0.036 | 0.401 | -0.291 | -0.147 |
禾本科盖度Grass coverage | -0.171 | -0.353 | 0.070 | 0.201 | 0.133 | -0.270 | 0.120 | 0.288 |
莎草科盖度Sedge coverage | -0.096 | 0.078 | -0.052 | 0.169 | -0.089 | -0.281 | 0.104 | 0.052 |
杂草盖度Forb coverage | 0.179 | 0.070 | 0.268 | 0.115 | 0.306 | -0.325 | 0.439 | -0.047 |
物种数Species | -0.329 | -0.258 | 0.297 | 0.351 | 0.345 | -0.326 | 0.017 | 0.271 |
Simpson指数Simpson’s index | -0.199 | -0.168 | 0.251 | 0.431 | 0.102 | -0.677** | 0.245 | 0.186 |
Shannon-Wiener指数 Shannon-Wiener’s index | -0.250 | -0.125 | 0.313 | 0.304 | 0.161 | -0.525* | 0.222 | 0.173 |
Pielou均匀度指数Pielou’s index | -0.047 | 0.007 | 0.271 | 0.156 | -0.072 | -0.582** | 0.322 | 0.049 |
表3 不同年限人工草地植被特征与主要微生物相对丰度相关性分析
Table 3 Correlation analysis between vegetation characteristics and main microorganisms
指标Indexes | 原核微生物Prokaryotic microorganisms | 真核微生物Eukaryotic microorganisms | ||||||
---|---|---|---|---|---|---|---|---|
Gp4 | 芽单胞菌 Gemmatimonas | Gp6 | 红杆菌 Solirubrobacter | Knufia | Davidiella | 潮霉菌 Hygrocybe | Preussia | |
总盖度 Total coverage | -0.012 | -0.131 | 0.105 | 0.099 | 0.503* | -0.279 | 0.174 | 0.095 |
BSCs盖度BSCs coverage | -0.319 | 0.133 | 0.105 | 0.116 | 0.494* | -0.258 | -0.109 | 0.563* |
BSCs厚度BSCs thickness | -0.330 | 0.447 | -0.036 | -0.197 | 0.036 | 0.401 | -0.291 | -0.147 |
禾本科盖度Grass coverage | -0.171 | -0.353 | 0.070 | 0.201 | 0.133 | -0.270 | 0.120 | 0.288 |
莎草科盖度Sedge coverage | -0.096 | 0.078 | -0.052 | 0.169 | -0.089 | -0.281 | 0.104 | 0.052 |
杂草盖度Forb coverage | 0.179 | 0.070 | 0.268 | 0.115 | 0.306 | -0.325 | 0.439 | -0.047 |
物种数Species | -0.329 | -0.258 | 0.297 | 0.351 | 0.345 | -0.326 | 0.017 | 0.271 |
Simpson指数Simpson’s index | -0.199 | -0.168 | 0.251 | 0.431 | 0.102 | -0.677** | 0.245 | 0.186 |
Shannon-Wiener指数 Shannon-Wiener’s index | -0.250 | -0.125 | 0.313 | 0.304 | 0.161 | -0.525* | 0.222 | 0.173 |
Pielou均匀度指数Pielou’s index | -0.047 | 0.007 | 0.271 | 0.156 | -0.072 | -0.582** | 0.322 | 0.049 |
指标Indexes | 原核微生物Prokaryotic microorganisms | 真核微生物Eukaryotic microorganisms | ||||||
---|---|---|---|---|---|---|---|---|
物种数 Species | Shannon-Wiener指数Shannon-Wiener’s index | Simpson指数Simpson’s index | Chao1指数Chao1’s index | 物种数Species (No.) | Shannon-Wiener指数Shannon-Wiener’s index | Simpson指数Simpson’s index | Chao1指数Chao1’s index | |
总盖度Total coverage | -0.150 | -0.181 | -0.019 | -0.139 | 0.049 | 0.270 | 0.192 | 0.148 |
BSCs盖度BSCs coverage | -0.226 | -0.272 | -0.142 | -0.186 | -0.139 | 0.159 | 0.255 | -0.018 |
BSCs厚度BSCs thickness | 0.076 | 0.037 | 0.134 | 0.104 | 0.056 | -0.038 | -0.117 | 0.105 |
禾本科盖度Grass coverage | -0.242 | -0.260 | -0.231 | -0.212 | -0.223 | -0.195 | -0.146 | -0.183 |
莎草科盖度Sedge coverage | 0.187 | 0.191 | 0.165 | 0.175 | -0.002 | -0.418 | -0.496* | 0.035 |
杂草盖度Forb coverage | -0.106 | -0.069 | 0.058 | 0.143 | 0.430 | -0.182 | -0.440 | 0.437 |
物种数Species | -0.116 | -0.119 | -0.088 | -0.135 | 0.322 | -0.160 | -0.220 | 0.406 |
Simpson指数Simpson’s index | -0.009 | 0.003 | 0.013 | -0.040 | 0.522* | 0.061 | -0.203 | 0.534* |
Shannon-Wiener指数 Shannon-Wiener’s index | -0.009 | -0.023 | -0.009 | -0.039 | 0.423 | -0.095 | -0.294 | 0.496* |
Pielou均匀度指数Pielou’s index | 0.104 | 0.091 | 0.062 | 0.068 | 0.418 | 0.065 | -0.228 | 0.427 |
表4 不同年限人工草地植被特征与微生物多样性相关性分析
Table 4 Correlation analysis between vegetation characteristics and microbial diversity
指标Indexes | 原核微生物Prokaryotic microorganisms | 真核微生物Eukaryotic microorganisms | ||||||
---|---|---|---|---|---|---|---|---|
物种数 Species | Shannon-Wiener指数Shannon-Wiener’s index | Simpson指数Simpson’s index | Chao1指数Chao1’s index | 物种数Species (No.) | Shannon-Wiener指数Shannon-Wiener’s index | Simpson指数Simpson’s index | Chao1指数Chao1’s index | |
总盖度Total coverage | -0.150 | -0.181 | -0.019 | -0.139 | 0.049 | 0.270 | 0.192 | 0.148 |
BSCs盖度BSCs coverage | -0.226 | -0.272 | -0.142 | -0.186 | -0.139 | 0.159 | 0.255 | -0.018 |
BSCs厚度BSCs thickness | 0.076 | 0.037 | 0.134 | 0.104 | 0.056 | -0.038 | -0.117 | 0.105 |
禾本科盖度Grass coverage | -0.242 | -0.260 | -0.231 | -0.212 | -0.223 | -0.195 | -0.146 | -0.183 |
莎草科盖度Sedge coverage | 0.187 | 0.191 | 0.165 | 0.175 | -0.002 | -0.418 | -0.496* | 0.035 |
杂草盖度Forb coverage | -0.106 | -0.069 | 0.058 | 0.143 | 0.430 | -0.182 | -0.440 | 0.437 |
物种数Species | -0.116 | -0.119 | -0.088 | -0.135 | 0.322 | -0.160 | -0.220 | 0.406 |
Simpson指数Simpson’s index | -0.009 | 0.003 | 0.013 | -0.040 | 0.522* | 0.061 | -0.203 | 0.534* |
Shannon-Wiener指数 Shannon-Wiener’s index | -0.009 | -0.023 | -0.009 | -0.039 | 0.423 | -0.095 | -0.294 | 0.496* |
Pielou均匀度指数Pielou’s index | 0.104 | 0.091 | 0.062 | 0.068 | 0.418 | 0.065 | -0.228 | 0.427 |
1 | Allison S D, Goulden M L. Consequences of drought tolerance traits for microbial decomposition in the DEMENT model. Soil Biology and Biochemistry, 2017, 107: 104-113. |
2 | Takriti M, Wild B, Schnecker J, et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 2018, 121: 212-220. |
3 | Bardgett R D, Putten W H V D. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515 (7528): 505-511. |
4 | Allison S D, Lu Y, Wei H, et al. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, 2013, 94: 714-725. |
5 | Peng X Q, Wang W. Stoichometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biological Biochemistry, 2016, 98: 74-84. |
6 | Lü X Y, Zhang Z S. Recovery of soil microbe quantities dependent on fine particle contents after establishment of sand-fixing revegetation in desert region. Journal of Desert Research, 2019, 39(5): 71-79. |
吕星宇, 张志山. 固沙植被区土壤质地与土壤微生物数量的关系. 中国沙漠, 2019, 39(5): 71-79. | |
7 | Zhang B, Yao S H, Hu F, et al. Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. European Journal of Soil Science, 2010, 58(6): 1482-1492. |
8 | Chen D D, Li Q, Chen X, et al. Response of soil microbial biomass C and N, C metabolism characteristics of microbes to grass-legume mixtures of annual artificial grassland in Sanjiangyuan Region. Acta Agrestia Sinica, 2018, 26(5): 1064-1070. |
陈懂懂, 李奇, 陈昕, 等. 三江源农牧交错区土壤微生物碳、氮以及群落碳代谢特征对一年生禾豆混播的响应. 草地学报, 2018, 26(5): 1064-1070. | |
9 | Zhou L X, Ding M M. Soil microbial characteristics as bioindicators of soil health. Biodiversity Science, 2007, 15(2): 162-171. |
周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用. 生物多样性, 2007, 15(2): 162-171. | |
10 | Che R X, Wang S P, Wang Y F, et al. Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry, 2019, 139: 1-10. |
11 | Olff H, Hoorens B, Goedeb R G M D, et al. Small-scale shifting mosaics of two dominant grassland species: The possible role of soil-borne pathogens. Oecologia, 2000, 125(1): 45-54. |
12 | Yao B H, Wang C, Zhang Q, et al. Dynamic characteristics of soil physicochemical properties and microbial quantity during the degradation of Gannan Alpine Meadow. Journal of Soil and Water Conservation, 2019, 33(3): 138-145. |
姚宝辉, 王缠, 张倩, 等. 甘南高寒草甸退化过程中土壤理化性质和微生物数量动态变化. 水土保持学报, 2019, 33(3): 138-145. | |
13 | Ma Y, Li L Z, Zhang D G, et al. Distribution characteristics of nutrients and microbial biomass in rhizosphere and non-rhizosphere soils of dominant plants in Degraded Alpine Meadow. Acta Agrestia Sinica, 2019, 27(4): 797-804. |
马源, 李林芝, 张德罡, 等. 退化高寒草甸优势植物根际与非根际土壤养分及微生物量的分布特征. 草地学报, 2019, 27(4): 797-804. | |
14 | Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590. |
15 | Guo Y, Chen X, Wu Y, et al. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Science of The Total Environment, 2018, 635: 598-606. |
16 | Liang Z, Olesen J E, Jensen J L, et al. Nutrient availability affects carbon turnover and microbial physiology differently in topsoil and subsoil under a temperate grassland. Geoderma, 2019, 336: 22-30. |
17 | Tibbett M, Gil-Martínez M, Fraser T, et al. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena, 2019, 180: 401-415. |
18 | Janet H, Chambers L G. Altered soil microbial community composition and function in two shrub-encroached marshes with different physicochemical gradients. Soil Biology and Biochemistry, 2019, 130: 122-131. |
19 | Zheng H F, Liu Y, Chen Y, et al. Short-term warming shifts microbial nutrient limitation with OTUs changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma, 2020, 360: 113985. |
20 | Li Y B, Martijn B T, Yang J J, et al. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry, 2019, 130: 33-42. |
21 | Sun H F, Li X L, Jin L Q, et al. Analysis of degradation response factors of a 17-year-old pasture in the source area of the Yellow River. Pratacultural Science, 2019, 36(5): 1240-1248. |
孙华方, 李希来, 金立群, 等. 黄河源区建植17年栽培草地退化响应因子分析. 草业科学, 2019, 36(5): 1240-1248. | |
22 | Ma Y S, Shi J J, Dong Q M, et al. Effect of artificial control measure on Elymus natus sown grassland vegetation in “Black-Soil-Type”degraded grassland. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2006(2): 1-3. |
马玉寿, 施建军, 董全民, 等. 人工调控措施对“黑土型”退化草地垂穗披碱草人工植被的影响. 青海畜牧兽医杂志, 2006(2): 1-3. | |
23 | Jing Z C, Wang Q J, Shi H L, et al. The poison effect experiment of Botulin model D for plateau pikas (Ochotona curionial). Pratacultural Science, 2006, 23(3): 89-91. |
景增春, 王启基, 史惠兰, 等. D型肉毒杀鼠素防治高原鼠兔灭效试验. 草业科学, 2006, 23(3): 89-91. | |
24 | Sun H F, Li X L, Jin L Q, et al. Effects of biological soil crusts on the physical and chemical properties of soil and vegetation of artificial grassland in the Yellow River Source Zone. Acta Agrestia Sinica, 2020, 28(2): 509-520. |
孙华方, 李希来, 金立群, 等. 生物土壤结皮对黄河源区人工草地植被与土壤理化性质的影响. 草地学报, 2020, 28(2): 509-520. | |
25 | Long J, Zhao C, Zhang M J, et al. Effect of itter decomposition on soil microbes on different slopes. Acta Ecologica Sinica, 2019, 39(8): 2696-2704. |
龙健, 赵畅, 张明江, 等. 不同坡向凋落物分解对土壤微生物群落的影响. 生态学报, 2019, 39(8): 2696-2704. | |
26 | Shu W H, Jiang Q, Wang Z J, et al. Effect of vegetation restoration on soil microorganism. Journal of Agricultural Science, 2012, 33(1): 73-78. |
舒维花, 蒋齐, 王占军, 等. 植被恢复对土壤微生物的影响. 农业科学研究, 2012, 33(1): 73-78. | |
27 | Xia B C. Effect of vegetation on soil microbial community structure. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300. |
夏北成. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9(3): 296-300. | |
28 | Pu Q, Hu Y F, He J F, et al. Effect of vegetation restoration pattern on the soil microbial biomass and enzyme activity in desertification grassland of Northwest Sichuan. Journal of Soil and Water Conservation, 2016, 30(4): 323-328. |
蒲琴, 胡玉福, 何剑锋, 等. 植被恢复模式对川西北沙化草地土壤微生物量及酶活性研究. 水土保持学报, 2016, 30(4): 323-328. | |
29 | Xue K, Zhang B, Zhou S T, et al. Soil microbial community and its influencing factors in Alpine Grassland of Qinghai Tibet Plateau. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
30 | Hou X L, Han H, Tigabu M, et al. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China. Ecological Engineering, 2019, 138: 171-179. |
31 | Cui Y X, Bing H J, Fang C L, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338: 118-127. |
32 | Zheng Q, Hua Y T, Zhang S S, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136: 107521. |
33 | Keiblinger K, Hall E, Wanek W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 2010, 73: 430-440. |
34 | Córdova S C, Olk D C, Dietzel R N, et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biology and Biochemistry, 2018, 125: 115-124. |
35 | Wen X, Lu X M, Xu F W, et al. Linking microbial community structure to carbon substrate chemistry in soils following aboveground and belowground litter additions. Applied Soil Ecology, 2019, 141: 18-25. |
36 | Adessi A, Ricardo C D C, De Philippis R, et al. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 2018, 116: 67-69. |
37 | Yang Y, Bu C, Mu X, et al. Interactive effects of moss-dominated crusts and crtemisia ordosica on wind erosion and soil moisture in Mu Us Sandland, China. The Scientific World Journal, 2014, 2014(4): 649-816. |
38 | Bu C F, Zhang P, Ye J, et al. Spatial characteristics of moss-dominated soil crust and its impact factors in small watershed in wind-water erosion crisscross region, Northern Shaanxi Province, China. Journal of Natural Resources, 2014, 29(3): 490-499. |
39 | Yan D R, Xue Y Y, Zhao C G. Humus feature in soil bio-crust in desert area. Chinese Journal of Ecology, 2007, 26(12): 2017-2020. |
闫德仁, 薛英英, 赵春光. 沙漠地区生物土壤结皮层腐殖质特征. 生态学杂志, 2007, 26(12): 2017-2020. | |
40 | Li F X, Zhang T, Luo Y Z, et al. Soil microbial diversity in surface crust and non-crust of artificial grassland in Black Soil Region of the Yellow River Source Region. Acta Agrestia Sinica, 2018, 26(1): 45-52. |
李发祥, 张涛, 罗玉珠, 等. 黄河源区黑土滩人工草地地表结皮与未结皮区土壤微生物多样性. 草地学报, 2018, 26(1): 45-52. | |
41 | Yang S, Yu B Q, Hu X Y, et al. Response of microbial community to vegetation succession in soda Saline-alkali Soil in Northeast China. Chinese Journal of Soil Science, 2019, 50(3): 632-640. |
杨赛, 俞冰倩, 胡信玉, 等. 东北苏打盐碱土壤微生物群落对植被进展演替的响应. 土壤通报, 2019, 50(3): 632-640. | |
42 | Guo C. Effect of microorganism on soil fertility. Jilin Nongye, 2018(12): 69. |
郭晨. 浅析微生物对土壤肥力的影响. 吉林农业, 2018(12): 69. | |
43 | Peng Y L, Cai X B, Yu B Z. Distribution and change of soil microorganism in Alpine Meadow under different states. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1241-1245. |
彭岳林, 蔡晓布, 于宝政. 不同状态高寒草甸土壤微生物分布及其变化. 西南农业学报, 2018, 31(6): 1241-1245. | |
44 | Zhao H, Zhao M Q, Cheng Y Y, et al. Review of studies on factors affecting soil microorganism. Acta Agriculture Jiangxi, 2009, 21(12): 52-56. |
赵辉, 赵铭钦, 程玉渊, 等. 土壤微生物影响因子研究综述. 江西农业学报, 2009, 21(12): 52-56. | |
45 | Zhang Y J, Guo S L. Effect of environmental factors on variation characteristics of soil microbial respiration and its temperature sensitivity. Environmental Science, 2019, 40(3): 1446-1456. |
张彦军, 郭胜利. 环境因子对土壤微生物呼吸及其温度敏感性变化特征的影响. 环境科学, 2019, 40(3): 1446-1456. | |
46 | Zhao Q Z, Wang Y F, Cui X Y, et al. Research progress of the influence factors of soil microbial diversity in grassland. Ecological Science, 2018, 37(3): 204-212. |
赵轻舟, 王艳芬, 崔骁勇, 等. 草地土壤微生物多样性影响因素研究进展. 生态科学, 2018, 37(3): 204-212. | |
47 | Liu W W. Soil microbial composition in different stages of karst vegetation restoration and response of soil enzymes to habitat. Guiyang: Guizhou University, 2019. |
刘雯雯. 喀斯特植被恢复不同阶段土壤微生物组成及氮磷土壤酶对生境响应. 贵阳: 贵州大学, 2019. | |
48 | Sun H Z, Ma D L, Zang S Y, et al. Characteristics of soil microbial community structure under different forest types of permafrost regions in the Greater Khingan Mountains. Journal of Glaciology and Geocryology, 2018, 40(5): 1028-1036. |
孙弘哲, 马大龙, 臧淑英, 等. 大兴安岭多年冻土区不同林型土壤微生物群落特征. 冰川冻土, 2018, 40(5): 1028-1036. | |
49 | Li N, Han X Z, You M Y, et al. Research review on soil aggregates and microbes. Ecology and Environment Sciences, 2013, 22(9): 1625-1632. |
李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632. | |
50 | Zhong L, Bowatte S, Newton P, et al. An increased ratio of fungi to bacteria indicates greater potential for N2O production in a grazed grassland exposed to elevated CO2. Agriculture Ecosystems & Environment, 2018, 254(9): 111-116. |
51 | Liu H. Effects of rotation and continuous cropping of typical crops on soil microbial community structure in black soil region. Beijing:University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2019. |
刘杭. 黑土区典型作物轮作和连作对土壤微生物群落结构的影响. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019. | |
52 | Wang J, Li X, Zhang J, et al. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecology, 2013, 213: 1883-1892. |
53 | Shao Y Q, Ao X L, Song G B, et al. Soil microbial biomass in degenerated and recovered grasslands of Huangfuchuan watershed. Chinese Journal of Ecology, 2005, 24(5): 113-115, 119. |
邵玉琴, 敖晓兰, 宋国宝, 等. 皇甫川流域退化草地和恢复草地土壤微生物生物量的研究. 生态学杂志, 2005, 24(5): 113-115, 119. | |
54 | Yang X Z, Wang C T, Zi H B, et al. Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China. Chinese Journal of Applied & Environmental Biology, 2015, 21(2): 341-349. |
杨希智, 王长庭, 字洪标, 等. 三江源区不同建植年限人工草地土壤微生物群落结构特征. 应用与环境生物学报, 2015, 21(2): 341-349. | |
55 | Xia Y, He X, Feng Z, et al. A comprehensive analysis of the microbial diversity in natural and engineered ecosystems based on high-throughput sequencing of 16S rRNA gene. International Biodeterioration & Biodegradation, 2019, 140: 160-168. |
56 | Yang Z Y, Hollebone B P, Shah K, et al. Biodegradation potential assessment by using autochthonous microorganisms from the sediments from Lac Mégantic (Quebec, Canada) contaminated with light residual oil. Chemosphere, 2020, 239: 124796. |
57 | Yang F, Wu J, Zhang D, et al. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of Southern China. Applied Soil Ecology, 2018, 128: 43-53. |
58 | Sun H F, Li X L, Jin L Q, et al. Variation of vegetation community and soil nutrients of artificial grassland in source area of Yellow River. Bulletin of Soil and Water Conservation, 2019, 39(3): 25-30, 38. |
孙华方, 李希来, 金立群, 等. 黄河源区人工草地植被群落和土壤养分变化. 水土保持通报, 2019, 39(3): 25-30, 38. | |
59 | Qin F W, Kang B Y, Jiang F Y, et al. Effects of biological soil crust succession on vegetation structure and soil nutrients in Alpine Steppe. Ecology and Environment Sciences, 2019, 28(6): 1100-1107. |
秦福雯, 康濒月, 姜凤岩, 等. 生物土壤结皮演替对高寒草原植被结构和土壤养分的影响. 生态环境学报, 2019, 28(6): 1100-1107. | |
60 | Zhong F, Chai X H, Wang G J, et al. Soil physical-chemistry and microbial caracteristics under different vegetation restoration modes in the Loess Hilly Region. Journal of Desert Research, 2014, 34(4): 1064-1072. |
钟芳, 柴晓虹, 王国基, 等. 植被恢复方式对黄土丘陵区土壤理化性质及微生物特性的影响. 中国沙漠, 2014, 34(4): 1064-1072. | |
61 | Sun H F, Zhao Z Z, Jin L Q, et al. Responses of alpine meadow vegetation characteristics and soil total nutrient to the disturbance of grazing and Ochotona curzoniae. Journal of Qinghai University (Natural Science), 2019, 37(2): 1-8. |
孙华方, 赵之重, 金立群, 等. 高寒草甸植被特征与土壤全效养分对放牧与高原鼠兔扰动的响应. 青海大学学报(自然科学学报), 2019, 37(2): 1-8. | |
62 | Wu J, Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology & Biochemistry, 2005, 37(3): 507-515. |
63 | Zhang Q Y, Wang Q, Ouyang H L, et al. Pyrosequencing reveals significant changes in microbial communities along the ecological succession of biological soil crusts in the Tengger Desert of China. Pedosphere, 2018, 28(2): 186-198. |
64 | Zhao Y, Zhang Z, Hu Y, et al. The seasonal and successional variations of carbon release from biological soil crust-covered soil. Journal of Arid Environments, 2016, 127: 148-153. |
65 | Wang X X, Dong S K, Li Y Y, et al. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river Headwater. Journal of Soil and Water Conservation, 2012, 26(4): 115-119, 124. |
王学霞, 董世魁, 李媛媛, 等. 三江源区草地退化与人工恢复对土壤理化性状的影响. 水土保持学报, 2012, 26(4): 115-119, 124. |
[1] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[2] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[3] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[4] | 宋达成, 王理德, 吴昊, 吴春荣, 赵赫然, 韩生慧, 胥宝一. 民勤退耕区次生草地土壤特性研究[J]. 草业学报, 2021, 30(2): 59-68. |
[5] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[6] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[7] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[8] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[9] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[10] | 帅林林, 周青平, 陈有军, 苟小林, 周蓉. 高寒半湿润沙地草本修复期土壤微生物变化研究[J]. 草业学报, 2019, 28(9): 11-22. |
[11] | 官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响[J]. 草业学报, 2019, 28(9): 192-201. |
[12] | 王丽娜, 罗久富, 杨梅香, 张利, 刘学敏, 邓东周, 周金星. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7): 38-48. |
[13] | 谢奎忠, 胡新元, 张彤彤, 邱慧珍. 不同杀菌剂对旱地连作马铃薯土壤水分效应、微生物和产量的影响[J]. 草业学报, 2019, 28(7): 103-111. |
[14] | 杨鑫光, 李希来, 金立群, 孙华方. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2019, 28(3): 1-11. |
[15] | 伍文宪, 张蕾, 黄小琴, 杨潇湘, 薛龙海, 刘勇. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报, 2019, 28(3): 29-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||