[1] Sofi P, Wani S. Prospects of nitrogen fixation in rice. Asian Journal of Plant Sciences, 2007, 6(1): 203-213. [2] Kim M K, Lee Y H, Kang T H, et al. Influence of Chinese milk vetch (Astragalus sinicus) with no-tillage on soil biotic factors and rice yield. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(6): 899-909. [3] Haag A F, Arnold M F F, Myka K K, et al. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. Fems Microbiology Reviews, 2013, 37(3): 364-383. [4] Chalk P M, Craswell E T. An overview of the role and significance of 15N methodologies in quantifying biological N2 fixation (BNF) and BNF dynamics in agro-ecosystems. Symbiosis, 2018, 75(1): 1-16. [5] Cleveland C C, Townsend A R, Schimel D S, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999, 13(2): 623-646. [6] Asagi N, Ueno H. Nitrogen dynamics in paddy soil applied with various 15N-labelled green manures. Plant and Soil, 2009, 322(1/2): 251-262. [7] Tang W G, Tang H M, Luo Z Z, et al. Impacts of winter planting patterns on soil heavy metal content and grain quality in late rice in double cropping rice area. Acta Agronomica Sinca, 2011, 37(8): 1457-1464. 汤文光, 唐海明, 罗尊长, 等. 不同种植模式对稻田土壤重金属含量及晚稻稻米品质的影响. 作物学报, 2011, 37(8): 1457-1464. [8] Lin X J, Cao W D, Wu Y Q, et al. Advance in Astragalus sinicus research. Pratacultural Science, 2011, 28(1): 135-140. 林新坚, 曹卫东, 吴一群, 等. 紫云英研究进展. 草业科学, 2011, 28(1): 135-140. [9] Du W H, Cao Z Z. Regulating alfalfa (Medicago sativa) vegetative and reproductive growth. Acta Agrestia Sinica, 2005, 13(4): 354-355. 杜文华, 曹致中. 紫花苜蓿营养生长与生殖生长的调控. 草地学报, 2005, 13(4): 354-355. [10] Su W, Lu J W, Liu W, et al. Effect of N, P and K fertilizer combination and application rate on yield of Astragalus sinicus. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1094-1098. 苏伟, 鲁剑巍, 刘威, 等. 氮磷钾肥用量对紫云英产量效应的研究. 中国生态农业学报, 2009, 17(6): 1094-1098. [11] Zhou F H. Classification of soil types in Jiangsu Province and its practicalities. Chinese Journal of Soil Science, 1959, 2(5): 30-40. 周傳槐. 江苏省土壤类型的划分及其实用意义. 土壤通报, 1959, 2(5): 30-40. [12] Shao W J, Song Y X, Wang C, et al. Spatial-temporal variation and associated driving factors of pH values in soils in the past 30 years in the southern Jiangsu Province. Geological Journal of China Universities, 2016, 22(2): 264-273. 邵文静, 宋垠先, 王成, 等. 近30年来苏南耕地土壤pH时空变化特征及影响因素分析. 高校地质学报, 2016, 22(2): 264-273. [13] Liu W G, Shan L, Deng X P. Responses of plant to soil compaction. Plant Physiology Communications, 2001, 37(3): 254-260. 刘晚苟, 山仑, 邓西平. 植物对土壤紧实度的反应. 植物生理学通讯, 2001, 37(3): 254-260. [14] Jin J, Wang G H, Liu X B, et al. Root morphology and nodule traits of two soybean varieties on alfisol and mollisol. Chinese Journal of Applied Ecology, 2008, 19(8): 1747-1753. 金剑, 王光华, 刘晓冰, 等. 两个大豆品种在暗棕壤和黑土中的根系形态和根瘤性状. 应用生态学报, 2008, 19(8): 1747-1753. [15] Brewin N J. Development of the legume root nodule. Annual Review of Cell Biology, 1991, 7(1): 191. [16] Chen H G. Development of paddy soil characteristics and green manure farming system in paddy fields. Acta Pedologica Sinica, 1955, 3(2): 97-111. 陈华癸. 水稻土特性的发展和水稻田的绿肥耕作制. 土壤学报, 1955, 3(2): 97-111. [17] Li Y G, Zhou J C. Main factors affecting symbiotic nitrogen fixation efficiency of rhizobium and genetic transformation. Microbiology China, 2002, 29(6): 86-89. 李友国, 周俊初. 影响根瘤菌共生固氮效率的主要因素及遗传改造. 微生物学通报, 2002, 29(6): 86-89. [18] Yan J, Han X Z, Ding J, et al. Responses of growth, nodulation and yield of soybean to different nitrogen and phosphorus fertilization management. Journal of Plant Nutrition and Fertilize, 2014, 20(2): 318-325. 严君, 韩晓增, 丁娇, 等. 东北黑土区大豆生长、结瘤及产量对氮、磷的响应. 植物营养与肥料学报, 2014, 20(2): 318-325. [19] Ao Y, Wu Q, Xue P, et al. Research progresses on diversity of quality traits of landrace rice in Taihu Lake region. China Rice, 2016, 22(5): 27-30. 敖雁, 吴启, 薛萍, 等. 太湖地区水稻地方品种品质性状多样性研究进展. 中国稻米, 2016, 22(5): 27-30. [20] Zhu Y. The study of realtime flood forecasting regulation system in Taihu Basin. Nanjing: Hohai University, 2003. 朱琰. 太湖流域实时洪水预报调度系统研究. 南京: 河海大学, 2003. [21] Ma T H, Zhu X M, Pan Z R. Study on vulnerability assessment of shallow groundwater in the typical plain area in the Taihu Basin. Ground Water, 2014, 36(6): 53-56. 马天海, 朱晓明, 潘扎荣. 太湖流域典型平原地区浅层地下水脆弱性研究. 地下水, 2014, 36(6): 53-56. [22] Yuan M M, Liu Q, Zhang S L. Characteristics of nitrogen fixation of winter green manure in paddy soil in the Taihu Lake area. Chinese Journal of Soil Science, 2010, 41(5): 1115-1119. 袁嫚嫚, 刘勤, 张少磊. 太湖地区稻田土壤冬绿肥固氮特性研究. 土壤通报, 2010, 41(5): 1115-1119. [23] Chen P Q, Chen H Z. Relationship between site conditions and Pinus massoniana growth in low mountains and hilly areas of Ningzhen. Journal of Jiangsu Forestry Science and Technology, 1983, 10(2): 16-21. 陈佩钦, 陈厚照. 宁镇低山丘陵立地条件与马尾松生长的关系. 江苏林业科技, 1983, 10(2): 16-21. [24] Xu Y L, Li X C. Comprehensive development and utilization of forestry resources in low mountains and hills areas of Ning-zhen-Yang. Journal of Jiangsu Forestry Science and Technology, 1987, 14(2): 1-5. 徐宜良, 李晓储. 宁镇扬低山丘陵林业资源的综合开发利用. 江苏林业科技, 1987, 14(2): 1-5. [25] Bradstreet R B. Kjeldahl method for organic nitrogen. Analytical Chemistry, 1965, 26(1): 185-187. [26] Bao S D. Soil agricultural chemistry analysis (Third Edition). Beijing: China Agricultural Press, 2000: 44-49. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 44-49. [27] Stewart W D, Fitzgerald G P, Burris R H. In situ studies on N2 fixation using the acetylene reduction technique. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(5): 2071-2078. [28] Wang J, Xu X H. Effects of rhizobium, soybean variety, soil type on nitrogenase activity. Journal of Northeast Agricultural University, 2008, 39(9): 36-39. 王晶, 许修宏. 不同根瘤菌、大豆品种、土壤类型对固氮酶活性的影响. 东北农业大学学报, 2008, 39(9): 36-39. [29] Xie Z J, Zhou C H, He Y Q, et al. A review of Astragalus sinicus in paddy fields in south China since 2000s. Acta Prataculturae Sinica, 2018, 27(8): 185-196. 谢志坚, 周春火, 贺亚琴, 等. 21世纪我国稻区种植紫云英的研究现状及展望. 草业学报, 2018, 27(8): 185-196. [30] Liu X Y, Shi F L, Zhang L, et al. Studies on the plant growth and root nodule of different Medicago materials at branching stage. Chinese Journal of Grassland, 2015, 37(3): 116-120. 刘旭艳, 石凤翎, 张璐, 等. 不同苜蓿材料分枝期生长与结瘤的初步研究. 中国草地学报, 2015, 37(3): 116-120. [31] Yin G L, Li Y J, Zhang Z F, et al. Characteristics of soil nutrients and bacterial community composition under different rotation patterns in grassland. Acta Ecologica Sinica, 2020, 40(5): 1-9. 尹国丽, 李亚娟, 张振粉, 等. 不同草田轮作模式下土壤养分及细菌群落组成特征. 生态学报, 2020, 40(5): 1-9. [32] Liu Y B. Effects of organic rice-Chinese milk vetch rotation on organic rice yield and soil fertility. Jiangsu Agricultural Sciences, 2014, 42(12): 72-74. 刘亚柏. 有机水稻-红花草轮作对有机稻产量及土壤肥力的影响. 江苏农业科学, 2014, 42(12): 72-74. [33] Zheng H M, Zhai N N, Mao Y L, et al. Comparison of nodulation competition ability between different strains of Rhizobia isolated from Astragalus sinicus. Jiangsu Agricultural Sciences, 2014, 42(11): 403-406. 郑会明, 翟娜娜, 毛怡玲, 等. 紫云英根瘤菌不同菌株间结瘤竞争能力的比较. 江苏农业科学, 2014, 42(11): 403-406. [34] Ferguson B J, Indrasumunar A, Hayashi S, et al. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology, 2010, 52(1): 61-76. [35] David J, Khan K S. Effect of nitrogen application on nodulation in inoculated chickpea (Cicer arietinum). Journal of Biological Sciences, 2001, 1(3): 87-89. [36] Cun Z X, Zhou Z G, He X H, et al. Regulation of nitrogen and phosphorus fertilizer dosage on nodulation and growth of soybean. Soybean Science, 2014, 33(2): 215-217. 寸植贤, 周志刚, 何霞红, 等. 氮、磷肥用量对大豆结瘤和生长的调节. 大豆科学, 2014, 33(2): 215-217. [37] Jeong S, Hong J K, Jho E H, et al. Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: Clay-induced change in long-term arsenic contaminated soils. Journal of Hazardous Materials, 2019, 378. doi: 10.1016/j.jhazmat.2019.06.006. [38] Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008, 40(9): 2407-2415. [39] Zhao T, Ma C H, Wang D, et al. Correlation between rhizobia distribution and the physical/chemical properties in soil of winter wheat intercropped with sweet clover. Acta Prataculturae Sinica, 2018, 27(4): 45-55. 赵涛, 马春晖, 王栋, 等. 冬小麦套种草木樨土壤中根瘤菌分布与土壤理化性质的相关性分析. 草业学报, 2018, 27(4): 45-55. [40] Yu T Y, Li X L, Lu Y, et al. Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut. Acta Agronomica Sinica, 2019, 45(6): 912-921. 于天一, 李晓亮, 路亚, 等. 磷对花生氮素吸收和利用的影响. 作物学报, 2019, 45(6): 912-921. [41] Fan J J, Liu X J, Li W Q. Effects of $NO_{3}^{-}$-N/$NH_4^+$-N ratios on root growth and nitrogen-fixation characteristics of alfalfa. Journal of Gansu Agricultural University, 2016, 51(1): 114-119. 范俊俊, 刘晓静, 李文卿. $NO_{3}^{-}$-N/N$NH_4^+$-N配比对紫花苜蓿根系生长及固氮特性的影响. 甘肃农业大学学报, 2016, 51(1): 114-119. [42] Ye F, Liu X J, Zhang J X. Effects of nitrogen forms on growth, nodulation and nitrogen-fixation of alfalfa at flowering stage. Grassland and Turf, 2014, 34(2): 1-6. 叶芳, 刘晓静, 张进霞. 氮素形态对紫花苜蓿盛花期生长及结瘤固氮的影响. 草原与草坪, 2014, 34(2): 1-6. [43] Li F L, Li Z P, Liu M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1113-1118. 栗方亮, 李忠佩, 刘明, 等. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响. 中国生态农业学报, 2012, 20(9): 1113-1118. [44] Chen H G, Zhou Q. Studies on nitrification and nitrifying microorganisms in paddy soil Ⅱ. nitrification in paddy soil. Acta Pedologica Sinica, 1961, 9(1/2): 56-64. 陈华癸, 周启. 水稻田土壤中的硝化作用和硝化微生物的研究Ⅱ.水稻田土壤中的硝化作用. 土壤学报, 1961, 9(1/2): 56-64. |