草业学报 ›› 2020, Vol. 29 ›› Issue (12): 27-37.DOI: 10.11686/cyxb2020034
强娇娇(), 颜哲豪, 谌芸(), 何丙辉, 唐菡, 刘枭宏
收稿日期:
2020-01-20
修回日期:
2020-04-20
出版日期:
2020-12-28
发布日期:
2020-12-28
通讯作者:
谌芸
作者简介:
Corresponding author. E-mail: sy22478@126.com基金资助:
Jiao-jiao QIANG(), Zhe-hao YAN, Yun CHEN(), Bing-hui HE, Han TANG, Xiao-hong LIU
Received:
2020-01-20
Revised:
2020-04-20
Online:
2020-12-28
Published:
2020-12-28
Contact:
Yun CHEN
摘要:
为探索喀斯特区地埂草篱根-土复合体抗剪性能的差异、变化规律及影响因素,在重庆酉阳喀斯特顺层坡分上、中、下坡位分别布设二月兰、光叶苕子和沿阶草3种草篱,测定复合体抗剪强度、根区土壤基本理化性质和复合体内根系的形态指标和化学成分指标,计算复合体黏聚力和内摩擦角。结果表明:1)在抗剪强度方面,上/中坡复合体抗剪强度表现为沿阶草显著大于二月兰、光叶苕子(P<0.05),下坡三者之间则无显著差异;在不同坡位之间,仅沿阶草复合体抗剪强度存在显著差异,表现为中坡>上坡>下坡(P<0.05);2)各坡位复合体黏聚力和中坡内摩擦角均为沿阶草、光叶苕子显著大于二月兰(P<0.05);沿阶草复合体黏聚力、内摩擦角和光叶苕子复合体黏聚力均表现为中坡显著大于上、下坡(P<0.05),二月兰则各坡位间无显著差异;3)相关性分析表明,光叶苕子和沿阶草复合体黏聚力与其根区土壤有机质均呈极显著正相关,相关系数分别为0.91、0.83,二月兰则无显著相关关系;这3种草篱复合体黏聚力与根系形态指标呈显著或极显著正相关,相关系数最高达0.99。综上所述,沿阶草抗剪性能最好,最优坡位为中坡。二月兰、光叶苕子和沿阶草草篱主要通过影响复合体黏聚力来影响其抗剪性能。
强娇娇, 颜哲豪, 谌芸, 何丙辉, 唐菡, 刘枭宏. 喀斯特区3种草篱根-土复合体抗剪性能及其影响因素[J]. 草业学报, 2020, 29(12): 27-37.
Jiao-jiao QIANG, Zhe-hao YAN, Yun CHEN, Bing-hui HE, Han TANG, Xiao-hong LIU. Factors affecting the shear strength of root-soil complexes from three types of grass hedgerows in a karst area[J]. Acta Prataculturae Sinica, 2020, 29(12): 27-37.
草类 Types of grass | 种植方式 Method of placement | 篱带规格 Hedgerow specification | 播种(移栽)密度 Seeding (transplanting) density | 移栽时情况 Status of transplanting | 出苗/成活率 Emergence (survival) rate (%) | 播种(移栽)时间Seeding (transplanting) time | 采样时间Sampling time | |
---|---|---|---|---|---|---|---|---|
长Length (m) | 宽Width (cm) | |||||||
二月兰 O. violaceus | 撒播Broadcast sowing | 200 | 20 | 0.003 kg·m-2 | - | ≈66 | 2018-10 | 2019-01 |
光叶苕子 V. rothvar | 撒播Broadcast sowing | 200 | 20 | 0.004 kg·m-2 | - | ≈75 | 2018-10 | 2019-01 |
沿阶草 O. bodinieri | 移栽Transplant | 200 | 30 | 4行,每株间距约10 cm。 Four rows, about 10 cm each. | 株高约为5 cm,地径约0.8 cm,冠幅约为7 cm。 The plant height is about 5 cm, the ground diameter is about 0.8 cm, the crown width about 7 cm. | ≈90 | 2018-07 | 2019-01 |
表1 草篱布设基本情况
Table 1 Basic information on hedgerow placement
草类 Types of grass | 种植方式 Method of placement | 篱带规格 Hedgerow specification | 播种(移栽)密度 Seeding (transplanting) density | 移栽时情况 Status of transplanting | 出苗/成活率 Emergence (survival) rate (%) | 播种(移栽)时间Seeding (transplanting) time | 采样时间Sampling time | |
---|---|---|---|---|---|---|---|---|
长Length (m) | 宽Width (cm) | |||||||
二月兰 O. violaceus | 撒播Broadcast sowing | 200 | 20 | 0.003 kg·m-2 | - | ≈66 | 2018-10 | 2019-01 |
光叶苕子 V. rothvar | 撒播Broadcast sowing | 200 | 20 | 0.004 kg·m-2 | - | ≈75 | 2018-10 | 2019-01 |
沿阶草 O. bodinieri | 移栽Transplant | 200 | 30 | 4行,每株间距约10 cm。 Four rows, about 10 cm each. | 株高约为5 cm,地径约0.8 cm,冠幅约为7 cm。 The plant height is about 5 cm, the ground diameter is about 0.8 cm, the crown width about 7 cm. | ≈90 | 2018-07 | 2019-01 |
图3 3种草篱根区土壤容重、自然含水率、毛管孔隙度和有机质含量
Fig.3 Soil bulk density, natural moisture content, capillary porosity and organic matter content in three kinds of hedgerow soil
草类 Types of grass | 坡位 Slope position | 根长 Root length (cm) | 根表面积 Root surface area(cm2) | 根体积 Root volume(cm3) | 纤维素 Cellulose (%) | 半纤维素 Hemicellulose (%) | 木质素 Lignin (%) | 木纤比 Wood fiber ratio |
---|---|---|---|---|---|---|---|---|
二月兰 O.violaceus | 上坡Up | 208.59±83.62Aa | 28.67±4.98Ab | 0.46±0.10Ab | 0.27±0.03Bc | 0.55±0.07Aa | 0.17±0.01Aa | 0.65±0.07Aa |
中坡Mid | 304.95±81.32Ab | 40.84±12.09Ab | 0.49±0.44Ab | 0.37±0.02Aa | 0.34±0.06Ba | 0.15±0.01Ab | 0.40±0.02Ba | |
下坡Down | 297.86±82.54Aa | 42.05±12.73Ab | 0.32±0.04Ab | 0.37±0.04Aab | 0.28±0.01Ba | 0.16±0.01Aa | 0.39±0.09Ba | |
光叶苕子 V. rothvar | 上坡Up | 274.84±87.67Ba | 38.76±14.43Ab | 0.32±0.05Bb | 0.34±0.04Ab | 0.45±0.03Ab | 0.16±0.01Ba | 0.47±0.04Ab |
中坡Mid | 680.99±79.51Aa | 55.91±15.61Ab | 0.46±0.03Ab | 0.44±0.06Aa | 0.38±0.04Ba | 0.21±0.01Aa | 0.48±0.08Aa | |
下坡Down | 369.79±63.91Ba | 42.06±6.00Ab | 0.40±0.04Ab | 0.42±0.05Aa | 0.42±0.03ABa | 0.18±0.01Ba | 0.42±0.03Aa | |
沿阶草 O.bodinieri | 上坡Up | 276.47±75.01Aa | 65.95±3.36Ba | 1.25±0.67Ba | 0.43±0.02Aa | 0.41±0.03Ab | 0.18±0.03Aa | 0.41±0.08Ab |
中坡Mid | 439.23±120.49Ab | 94.97±5.69Aa | 2.33±0.40Aa | 0.44±0.21Aa | 0.36±0.13Aa | 0.18±0.04Aab | 0.46±0.18Aa | |
下坡Down | 261.22±114.52Aa | 74.19±9.15Ba | 1.49±0.21ABa | 0.23±0.11Ab | 0.28±0.18Aa | 0.18±0.04Aa | 0.93±0.51Aa |
表2 3种草篱根-土复合体中根系形态指标和化学成分特征
Table 2 Root morphology and chemical composition characteristics of three grasses hedgerow root-soil complex
草类 Types of grass | 坡位 Slope position | 根长 Root length (cm) | 根表面积 Root surface area(cm2) | 根体积 Root volume(cm3) | 纤维素 Cellulose (%) | 半纤维素 Hemicellulose (%) | 木质素 Lignin (%) | 木纤比 Wood fiber ratio |
---|---|---|---|---|---|---|---|---|
二月兰 O.violaceus | 上坡Up | 208.59±83.62Aa | 28.67±4.98Ab | 0.46±0.10Ab | 0.27±0.03Bc | 0.55±0.07Aa | 0.17±0.01Aa | 0.65±0.07Aa |
中坡Mid | 304.95±81.32Ab | 40.84±12.09Ab | 0.49±0.44Ab | 0.37±0.02Aa | 0.34±0.06Ba | 0.15±0.01Ab | 0.40±0.02Ba | |
下坡Down | 297.86±82.54Aa | 42.05±12.73Ab | 0.32±0.04Ab | 0.37±0.04Aab | 0.28±0.01Ba | 0.16±0.01Aa | 0.39±0.09Ba | |
光叶苕子 V. rothvar | 上坡Up | 274.84±87.67Ba | 38.76±14.43Ab | 0.32±0.05Bb | 0.34±0.04Ab | 0.45±0.03Ab | 0.16±0.01Ba | 0.47±0.04Ab |
中坡Mid | 680.99±79.51Aa | 55.91±15.61Ab | 0.46±0.03Ab | 0.44±0.06Aa | 0.38±0.04Ba | 0.21±0.01Aa | 0.48±0.08Aa | |
下坡Down | 369.79±63.91Ba | 42.06±6.00Ab | 0.40±0.04Ab | 0.42±0.05Aa | 0.42±0.03ABa | 0.18±0.01Ba | 0.42±0.03Aa | |
沿阶草 O.bodinieri | 上坡Up | 276.47±75.01Aa | 65.95±3.36Ba | 1.25±0.67Ba | 0.43±0.02Aa | 0.41±0.03Ab | 0.18±0.03Aa | 0.41±0.08Ab |
中坡Mid | 439.23±120.49Ab | 94.97±5.69Aa | 2.33±0.40Aa | 0.44±0.21Aa | 0.36±0.13Aa | 0.18±0.04Aab | 0.46±0.18Aa | |
下坡Down | 261.22±114.52Aa | 74.19±9.15Ba | 1.49±0.21ABa | 0.23±0.11Ab | 0.28±0.18Aa | 0.18±0.04Aa | 0.93±0.51Aa |
抗剪指标 Shear index | 草类 Types of grass | 自然含水率 Natural moisture content | 土壤容重 Soil bulk density | 毛管孔隙度 Capillary porosity | 有机质 Organic matter | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 纤维素 Cellulose | 半纤维素 Hemicellulose | 木质素 Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
黏聚力 Cohesive strength | 二月兰O.violaceus | 0.07 | -0.52 | -0.31 | 0.32 | 0.92** | 0.82** | 0.18 | 0.47 | -0.52 | -0.36 |
光叶苕子V. rothvar | -0.19 | 0.09 | -0.54 | 0.91** | 0.99** | 0.80* | 0.66 | 0.72* | -0.56 | 0.86** | |
沿阶草O.bodinieri | -0.05 | -0.07 | 0.02 | 0.83** | 0.85** | 0.94** | 0.85** | 0.11 | -0.24 | 0.11 | |
内摩擦角 Internal friction angle | 二月兰O.violaceus | -0.18 | 0.20 | -0.22 | 0.46 | 0.39 | 0.16 | 0.30 | 0.13 | -0.46 | -0.44 |
光叶苕子V. rothvar | 0.48 | -0.23 | 0.57 | -0.34 | -0.57 | -0.79* | -0.05 | -0.44 | 0.20 | -0.25 | |
沿阶草O.bodinieri | -0.60 | -0.03 | -0.56 | 0.56 | 0.52 | 0.31 | 0.38 | 0.77* | 0.36 | 0.04 | |
平均抗剪强度 Average shear strength | 二月兰O.violaceus | -0.23 | 0.48 | -0.08 | 0.52 | 0.06 | -0.07 | 0.38 | 0.04 | -0.23 | -0.33 |
光叶苕子V. rothvar | 0.46 | -0.20 | 0.31 | 0.28 | 0.06 | -0.40 | 0.45 | -0.02 | -0.22 | 0.36 | |
沿阶草O.bodinieri | -0.63 | 0.09 | -0.57 | 0.64 | 0.56 | 0.47 | 0.61 | 0.69* | 0.27 | 0.13 |
表3 3种草篱根-土复合体抗剪强度指标与影响因素相关关系
Table 3 Correlation between shear strength indexes and influencing factors of three kinds of hedgerow root-soil complex
抗剪指标 Shear index | 草类 Types of grass | 自然含水率 Natural moisture content | 土壤容重 Soil bulk density | 毛管孔隙度 Capillary porosity | 有机质 Organic matter | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 纤维素 Cellulose | 半纤维素 Hemicellulose | 木质素 Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
黏聚力 Cohesive strength | 二月兰O.violaceus | 0.07 | -0.52 | -0.31 | 0.32 | 0.92** | 0.82** | 0.18 | 0.47 | -0.52 | -0.36 |
光叶苕子V. rothvar | -0.19 | 0.09 | -0.54 | 0.91** | 0.99** | 0.80* | 0.66 | 0.72* | -0.56 | 0.86** | |
沿阶草O.bodinieri | -0.05 | -0.07 | 0.02 | 0.83** | 0.85** | 0.94** | 0.85** | 0.11 | -0.24 | 0.11 | |
内摩擦角 Internal friction angle | 二月兰O.violaceus | -0.18 | 0.20 | -0.22 | 0.46 | 0.39 | 0.16 | 0.30 | 0.13 | -0.46 | -0.44 |
光叶苕子V. rothvar | 0.48 | -0.23 | 0.57 | -0.34 | -0.57 | -0.79* | -0.05 | -0.44 | 0.20 | -0.25 | |
沿阶草O.bodinieri | -0.60 | -0.03 | -0.56 | 0.56 | 0.52 | 0.31 | 0.38 | 0.77* | 0.36 | 0.04 | |
平均抗剪强度 Average shear strength | 二月兰O.violaceus | -0.23 | 0.48 | -0.08 | 0.52 | 0.06 | -0.07 | 0.38 | 0.04 | -0.23 | -0.33 |
光叶苕子V. rothvar | 0.46 | -0.20 | 0.31 | 0.28 | 0.06 | -0.40 | 0.45 | -0.02 | -0.22 | 0.36 | |
沿阶草O.bodinieri | -0.63 | 0.09 | -0.57 | 0.64 | 0.56 | 0.47 | 0.61 | 0.69* | 0.27 | 0.13 |
1 | Fabio C N, Romain D, Fritz S, et al. Bedrock bedding, 1andsliding and erosional budgets in the Central European Alps. Terra Nova, 2015, 27(5): 370-378. |
2 | Li X K, He C X, Jiang Z C. Method and principles of ecological rehabilitation and reconstruction in fragile karst ecosystem. Carsologica Sinica, 2003, 22(1): 12-17. |
李先琨, 何成新, 蒋忠诚. 岩溶脆弱生态区生态恢复、重建的原理与方法. 中国岩溶, 2003, 22(1): 12-17. | |
3 | Aerts R, Maes W, November E, et al. Surface runoff and seed trapping efficiency of shrubs in a regenerating semiarid woodland in northern Ethiopia. Catena, 2006, 65: 61-70. |
4 | Endo T, Tsuruta T. The effect of tree roots upon the shearing strength of soil //Forestry and forest products research institute. annual report of the hokkaido branch, forest place experimental station. Sapporo, Japan: Forestry and Forest Products Research Institute, 1969. |
5 | Bischetti G B, Chiaradia E A, Simonato T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil, 2005, 278(1/2): 11-22. |
6 | Mao Z, Yang M, Bourrier F, et al. Evaluation of root reinforcement models using numerical modelling approaches. Plant and Soil, 2014, 381(1/2): 249-270. |
7 | Bourrier F, Kneib F, Chareyre B, et al. Discretemodeling of granular soils reinforcement by plant roots. Ecological Engineering, 2013, 61(Part C): 646-657. |
8 | Liu C Y, Hu X S, Dou Z N, et al. Shear strength tests of the root soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定. 草业学报, 2017, 26(9): 14-26. | |
9 | Qi Z X, Yu D M, Liu Y B, et al. Experimental research on factors affecting shear strength of halophyte root-soil composite systems in cold and arid environments. Journal of Engineering Geology, 2017, 25(6): 1438-1448. |
祁兆鑫, 余冬梅, 刘亚斌, 等. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究. 工程地质学报, 2017, 25(6): 1438-1448. | |
10 | Li J, Wang X, Jia H X, et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region. Acta Ecologica Sinica, 2019, 39(14): 5117-5126. |
李佳, 汪霞, 贾海霞, 等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响. 生态学报, 2019, 39(14): 5117-5126. | |
11 | Wang Y, Du F, Zhou M, et al. Research on shear strength of root soil composite in a forest and grass standing site in northern shaanxi. Research of soil ang Water Conservation, 2018, 25(2): 213-219. |
王月, 杜峰, 周敏, 等. 陕北林草混交根土复合体抗剪强度研究. 水土保持研究, 2018, 25(2): 213-219. | |
12 | Zhou T, Chen Y, Wang R Z, et al. Root characteristics of Cynodon dactylis and Trifolium repens and their effect on shear performance of purple soilin barren hillside. Acta Prataculturae Sinica, 2019, 28(3): 63-73. |
周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究. 草业学报, 2019, 28(3): 62-73. | |
13 | Li T, Wang R Z, Chen Y, et al. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
李铁, 王润泽, 谌芸, 等. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响. 草业学报, 2018, 27(2): 69-78. | |
14 | Tang H, Chen Y, Liu X H, et al. Study on the mechanic features of root and root-soil matrix of Dolichos lablab L.hedgerows on the slopes of the karst area. Acta Ecologica Sinica, 2019, 39(16): 6114-6125. |
唐菡, 谌芸, 刘枭宏, 等. 喀斯特坡地拉巴豆地埂篱根及根-土复合体力学特性. 生态学报, 2019, 39(16): 6114-6125. | |
15 | Zhang Q Y, Tang L X, Pan L, et al. Study on the tensile and shear properties of shrubs and the applicability of model WU in karst area. Journal of Yangtze River Scientific Research Institute, . |
张乔艳, 唐丽霞, 潘露, 等. 喀斯特区灌木抗拉抗剪特性及WU模型适用性研究. 长江科学院院报, . | |
16 | Wang R Z, Chen Y, Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effects on the anti erodibility of purple soil in slopelands. Acta Prataculturae Sinica, 2017, 26(7): 45-54. |
王润泽, 谌芸, 李铁, 等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响. 草业学报, 2017, 26(7): 45-54. | |
17 | Institute of Soil Physics, Nanjing Soil Research Institute, Chinese Academy of Sciences. Physical properties of Soil. Beijing: Beijing Science Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 北京科学出版社, 1978. | |
18 | Li H S. Experimental principle and techniques for plant physiology and biochemistry. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
19 | Liu Y B, Hu X S, Yu D M, et al. Root distribution characteristics of combination of herbs and shrubs in loess area of Xining basin and its effect on enhancing soil shear strength. Journal of Engineering Geology, 2020, 28(3): 471-481. |
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应. 工程地质学报, 2020, 28(3): 471-481. | |
20 | Wang G, Zhou T Y, Wei J. Experimental study on shear resistance of herb root soil complex in purple soil and yellow soil. Soil and Water Conservation in China, 2019(4): 34-37, 69. |
王耕, 周腾禹, 韦杰. 紫色土和黄壤草本根土复合体抗剪性能试验研究. 中国水土保持, 2019(4): 34-37, 69. | |
21 | Cheng H, Zhao J M, Cai G T, et al. Experimental study of increment in shear strength of soil with roots of tall fescue plants. Journal of Nanchang Institute of Technology, 2018, 37(1): 1-8. |
程洪, 赵建民, 蔡高堂, 等. 高羊茅根系增强土壤黏聚力的试验研究. 南昌工程学院学报, 2018, 37(1): 1-8. | |
22 | Andreoli A, Bischetti G B, Chiaradia E, et al. The roots of river restoration: Role of vegetation recover in bed stabilization. Iahr World Congress, 2017. |
23 | Wu Y R, Liu J, Zhang X, et al. Relationship between anti-shear characteristics of root and its responses to their chemical components for three shrubs. Journal of Arid Land Resources and Environment, 2019, 33(4): 129-133. |
武艺儒, 刘静, 张欣, 等. 3种灌木直根抗剪特性及其与化学组分的关系. 干旱区资源与环境, 2019, 33(4): 129-133. |
[1] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[2] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[3] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[4] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[5] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[6] | 杨林, 陈默, 李海燕, 杨允菲. 模拟降雨格局变化对虎尾草分株和根系特征的影响[J]. 草业学报, 2021, 30(1): 181-188. |
[7] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[8] | 黄海霞, 杨琦琦, 崔鹏, 陆刚, 韩国君. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207. |
[9] | 张桐瑞, 李富翠, 李辉, 季双旋, 范志浩, 陈雨峰, 晁跃辉, 韩烈保. 草垫植入对混合草坪坪床稳定性和表观质量的影响[J]. 草业学报, 2020, 29(8): 27-36. |
[10] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[11] | 刘芳, 陈震, 徐雯, 储志英, 管永祥, 吴桂成, 还静, 孙政国. 不同稻茬土壤对紫云英根瘤生长特性的影响研究[J]. 草业学报, 2020, 29(6): 153-161. |
[12] | 陈有军, 董全民, 周青平. 不同水分和土壤处理对糙毛以礼草苗期根系构型和根鞘形成的影响[J]. 草业学报, 2020, 29(3): 60-69. |
[13] | 张盼盼, 杨裕然, 薛佳欣, 王涛, 刘涵, 刘翠英, 冯佰利, 张雄. 烯效唑对盐胁迫下糜子幼苗形态和生理特性的调控效应[J]. 草业学报, 2020, 29(10): 81-90. |
[14] | 朱亚琼, 于辉, 郑伟, 黎松松, 娜尔克孜, 刘岳含, 郝帅, 艾丽菲热. 燕麦+箭筈豌豆混播草地混播优势的测度与影响因素分析[J]. 草业学报, 2020, 29(1): 74-85. |
[15] | 赵雅姣, 刘晓静, 童长春, 吴勇. 紫花苜蓿/玉米间作对紫花苜蓿结瘤固氮特性的影响[J]. 草业学报, 2020, 29(1): 95-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||