草业学报 ›› 2021, Vol. 30 ›› Issue (3): 200-207.DOI: 10.11686/cyxb2020146
刘帅楠1(), 李广1(), 吴江琪1, 马维伟1, 杨传杰1, 张世康2, 姚瑶3, 陆燕花1, 魏星星1, 张娟1
收稿日期:
2020-03-30
修回日期:
2020-05-18
出版日期:
2021-03-20
发布日期:
2021-03-09
通讯作者:
李广
作者简介:
Corresponding author. E-mail: lig@gsau.edu.cn基金资助:
Shuai-nan LIU1(), Guang LI1(), Jiang-qi WU1, Wei-wei MA1, Chuan-jie YANG1, Shi-kang ZHANG2, Yao YAO3, Yan-hua LU1, Xing-xing WEI1, Juan ZHANG1
Received:
2020-03-30
Revised:
2020-05-18
Online:
2021-03-20
Published:
2021-03-09
Contact:
Guang LI
摘要:
为探讨黄土丘陵区不同土地类型下土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量特征,本研究以黄土丘陵区典型小麦地、云杉林地、苜蓿地为对象,基于实测数据,采用方差、相关统计分析,研究不同土地类型、不同土层深度(0~10 cm、10~20 cm、20~40 cm、40~60 cm、60~80 cm、80~100 cm)土壤SOC、TN、TP含量及其化学计量比。结果表明:3种不同土地类型土壤SOC、TN和TP含量均随土层深度增加而降低,其平均含量分别为12.19、0.33和0.48 g·kg-1,小麦地和苜蓿地土壤SOC、TN和TP空间变异性较云杉林地偏大。SOC、TN含量为云杉林地>小麦地>苜蓿地,TP含量为云杉林地>苜蓿地>小麦地。土壤SOC、TN和TP间均存在显著正相关关系。小麦地C/P显著(P<0.05)高出苜蓿地41.96%,N/P显著高出云杉林地、苜蓿地28.57%、36.19%。3种不同土地类型土壤化学计量比(C/N、C/P、N/P)均值分别为:39.61、31.53、0.83,且其C/N大于中国平均值(12.3),C/P、N/P较全国平均值(61.0、5.2)明显偏小,黄土丘陵区C/N较稳定。土地类型对土壤C、N、P含量及其化学计量比存在不同程度的影响,合理调整土地利用结构有助于土壤养分的存留,有利于土壤生态的恢复。
刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207.
Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics[J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207.
指标 Index | 小麦地Wheat field | 云杉林地Spruce woodland | 苜蓿地Alfalfa field | ||||||
---|---|---|---|---|---|---|---|---|---|
标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | |
SOC | 5.96 | 12.00AB | 49.68 | 5.32 | 14.19A | 37.46 | 4.18 | 10.39B | 40.25 |
TN | 0.14 | 0.32AB | 44.60 | 0.14 | 0.37A | 36.73 | 0.14 | 0.30B | 47.61 |
TP | 0.19 | 0.41B | 45.37 | 0.16 | 0.52A | 31.35 | 0.21 | 0.51A | 41.70 |
C/N | 25.16 | 40.72AB | 61.81 | 21.76 | 42.23A | 51.53 | 16.89 | 35.90B | 47.05 |
C/P | 38.13 | 40.85A | 93.34 | 15.83 | 30.04AB | 52.70 | 13.69 | 23.71B | 57.76 |
N/P | 0.83 | 1.05A | 78.78 | 0.24 | 0.75B | 32.17 | 0.45 | 0.67B | 66.99 |
表1 不同土地类型0~100 cm土壤C、N、P含量及其化学计量比特征
Table 1 The content of C, N, P and stoichiometric characteristics of 0-100 cm soil in different land types
指标 Index | 小麦地Wheat field | 云杉林地Spruce woodland | 苜蓿地Alfalfa field | ||||||
---|---|---|---|---|---|---|---|---|---|
标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | |
SOC | 5.96 | 12.00AB | 49.68 | 5.32 | 14.19A | 37.46 | 4.18 | 10.39B | 40.25 |
TN | 0.14 | 0.32AB | 44.60 | 0.14 | 0.37A | 36.73 | 0.14 | 0.30B | 47.61 |
TP | 0.19 | 0.41B | 45.37 | 0.16 | 0.52A | 31.35 | 0.21 | 0.51A | 41.70 |
C/N | 25.16 | 40.72AB | 61.81 | 21.76 | 42.23A | 51.53 | 16.89 | 35.90B | 47.05 |
C/P | 38.13 | 40.85A | 93.34 | 15.83 | 30.04AB | 52.70 | 13.69 | 23.71B | 57.76 |
N/P | 0.83 | 1.05A | 78.78 | 0.24 | 0.75B | 32.17 | 0.45 | 0.67B | 66.99 |
图1 不同土地类型土壤不同土层养分含量不同大写字母表示同土层不同土地类型间差异显著,小写字母表示同土地类型不同土层间差异显著(P<0.05)。Different capital letters indicate significant difference between different land types in the same soil layer, and lowercase letters indicate significant difference among different soil layers of the same soil type (P<0.05).
Fig.1 Nutrient content in different soil layers of different land types
土地类型Land types | 土层Soil depth (cm) | C/N | C/P | N/P |
---|---|---|---|---|
小麦地Wheat field | 0~10 | 34.32±7.18Aa | 26.48±8.73Aa | 0.85±0.27Aa |
10~20 | 45.62±12.2Aa | 34.17±7.64Aa | 0.89±0.24Aa | |
20~40 | 37.53±16.74Aa | 49.32±28.77Aa | 1.27±0.55Aa | |
40~60 | 48.02±13.40Aa | 43.88±17.31Aa | 1.03±0.32Aa | |
60~80 | 48.14±8.62Aa | 52.53±14.99Aa | 1.31±0.43Aa | |
80~100 | 29.35±12.24Aa | 40.95±21.23Aa | 0.96±0.28Aa | |
云杉林地Spruce woodland | 0~10 | 38.94±7.42Aa | 24.00±3.18Aa | 0.66±0.07Aa |
10~20 | 35.88±8.96Aa | 22.78±6.18Aa | 0.80±0.03Aa | |
20~40 | 38.12±8.70Aa | 25.18±4.49Aa | 0.76±0.13Aa | |
40~60 | 28.31±9.01Aa | 30.63±6.89Aa | 0.85±0.19Aa | |
60~80 | 54.10±11.06Aa | 34.66±6.34Aa | 0.73±0.09Aa | |
80~100 | 53.26±10.58Aa | 42.17±11.82Aa | 0.75±0.07Aa | |
苜蓿地Alfalfa field | 0~10 | 27.03±3.76Aa | 17.22±3.15Aa | 0.65±0.11Aa |
10~20 | 34.91±5.64Aa | 20.86±3.09Aa | 0.61±0.05Aa | |
20~40 | 41.31±7.52Aa | 24.25±5.38Aa | 0.63±0.29Aa | |
40~60 | 35.89±9.29Aa | 30.84±8.92Aa | 0.92±0.30Aa | |
60~80 | 32.04±5.49Aa | 21.29±4.18Aa | 0.66±0.02Aa | |
80~100 | 46.20±13.82Aa | 27.88±9.01Aa | 0.43±0.21Aa |
表2 不同土地类型不同土层土壤养分化学计量比
Table 2 Stoichiometric ratio of soil nutrients in different soil layers of different land types
土地类型Land types | 土层Soil depth (cm) | C/N | C/P | N/P |
---|---|---|---|---|
小麦地Wheat field | 0~10 | 34.32±7.18Aa | 26.48±8.73Aa | 0.85±0.27Aa |
10~20 | 45.62±12.2Aa | 34.17±7.64Aa | 0.89±0.24Aa | |
20~40 | 37.53±16.74Aa | 49.32±28.77Aa | 1.27±0.55Aa | |
40~60 | 48.02±13.40Aa | 43.88±17.31Aa | 1.03±0.32Aa | |
60~80 | 48.14±8.62Aa | 52.53±14.99Aa | 1.31±0.43Aa | |
80~100 | 29.35±12.24Aa | 40.95±21.23Aa | 0.96±0.28Aa | |
云杉林地Spruce woodland | 0~10 | 38.94±7.42Aa | 24.00±3.18Aa | 0.66±0.07Aa |
10~20 | 35.88±8.96Aa | 22.78±6.18Aa | 0.80±0.03Aa | |
20~40 | 38.12±8.70Aa | 25.18±4.49Aa | 0.76±0.13Aa | |
40~60 | 28.31±9.01Aa | 30.63±6.89Aa | 0.85±0.19Aa | |
60~80 | 54.10±11.06Aa | 34.66±6.34Aa | 0.73±0.09Aa | |
80~100 | 53.26±10.58Aa | 42.17±11.82Aa | 0.75±0.07Aa | |
苜蓿地Alfalfa field | 0~10 | 27.03±3.76Aa | 17.22±3.15Aa | 0.65±0.11Aa |
10~20 | 34.91±5.64Aa | 20.86±3.09Aa | 0.61±0.05Aa | |
20~40 | 41.31±7.52Aa | 24.25±5.38Aa | 0.63±0.29Aa | |
40~60 | 35.89±9.29Aa | 30.84±8.92Aa | 0.92±0.30Aa | |
60~80 | 32.04±5.49Aa | 21.29±4.18Aa | 0.66±0.02Aa | |
80~100 | 46.20±13.82Aa | 27.88±9.01Aa | 0.43±0.21Aa |
项目Items | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|
SOC | 0.766** | 0.552* | 0.161 | -0.051 | 0.094 |
TN | 0.883** | -0.334 | -0.412 | -0.022 | |
TP | -0.433 | -0.733** | -0.397 | ||
C/N | 0.493* | 0.082 | |||
C/P | 0.813** |
表3 不同土地类型土壤C、N、P含量与化学计量比的相关性分析
Table 3 Correlations between C, N, P content and stoichiometric ratio of different land types
项目Items | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|
SOC | 0.766** | 0.552* | 0.161 | -0.051 | 0.094 |
TN | 0.883** | -0.334 | -0.412 | -0.022 | |
TP | -0.433 | -0.733** | -0.397 | ||
C/N | 0.493* | 0.082 | |||
C/P | 0.813** |
1 | Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439(7075): 457-461. |
2 | Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. |
3 | Peng X Y, Jia Y N, Jiang Y J, et al. Soil ecological chemometrics characteristics of different land types in Karst valley area of Zhongliang mountain. Chinese Agricultural Science Bulletin, 2019, 35(5): 84-92. |
彭学义, 贾亚男, 蒋勇军, 等. 中梁山岩溶槽谷区不同土地类型土壤生态化学计量学特征. 中国农学通报, 2019, 35(5): 84-92. | |
4 | Zhou Z H, Wang C K, Zhang Q Z. The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in Northeastern China. Acta Ecologica Sinica, 2015, 35(20): 6694-6702. |
周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响. 生态学报, 2015, 35(20): 6694-6702. | |
5 | Zhang Y, Liang A H, Wang P P, et al. Soil nutrient effects of different vegetation restoration models in loess hilly area. Journal of Northwest Agriculture, 2010, 19(9): 114-118. |
张杨, 梁爱华, 王平平, 等. 黄土丘陵区不同植被恢复模式土壤养分效应. 西北农业学报, 2010, 19(9): 114-118. | |
6 | Torgny N, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392(6679): 914-916. |
7 | Liu X F, Liu S F, Jiang L, et al. Stoichiometric characteristics of soil C, N and P in different vegetation types in the rocky desertification area of Northwestern Hunan Province. Journal of Central South University of Forestry & Technology, 2019, 39(2): 72-78. |
刘兴锋, 刘思凡, 蒋龙, 等. 湘西北石漠化区不同植被类型土壤C、N、P的化学计量特征. 中南林业科技大学学报, 2019, 39(2): 72-78. | |
8 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008(8): 3937-3947. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008(8): 3937-3947. | |
9 | Qiu L P, Zhang X C. Effects of land use on soil properties in Ziwuling region. Journal of Natural Resources, 2006(6): 965-972. |
邱莉萍, 张兴昌. 子午岭不同土地利用方式对土壤性质的影响. 自然资源学报, 2006(6): 965-972. | |
10 | Bai Y R, Zhang X, Bao W B, et al. The soil carbon, nitrogen, and phosphorus contents and their stoichiometry under different land uses in loess hilly region. Agricultural Research in the Arid Areas, 2019, 37(4): 117-123, 131. |
白一茹, 张兴, 包维斌, 等. 黄土丘陵区不同土地利用方式土壤碳氮磷及其生态化学计量特征. 干旱地区农业研究, 2019, 37(4): 117-123, 131. | |
11 | Chen X W, Li B L. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 2003, 186(1): 197-206. |
12 | Ma K, Ma B, He X P, et al. Research of the distribution of soil nutrient in different land patterns on the loess plateau of South Ningxia. Journal of Agricultural Sciences, 2006(2): 1-5, 14. |
马琨, 马斌, 何宪平, 等. 宁夏南部山区不同土地类型土壤养分的分布特征研究. 农业科学研究, 2006(2): 1-5, 14. | |
13 | Sun Q, Wang B, Zhou H P, et al. Spatial variation of ecological stoichiometry of soil C,N and P in a small catchment of loess hilly area. Chinese Journal of Ecology, 2020, 39(3): 766-774. |
孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性. 生态学杂志, 2020, 39(3): 766-774. | |
14 | Zhao F Z. Chemometric characteristics of C, N, P and response mechanism of soil organic carbon pool and components of returned vegetation in loess hilly area. Xianyang: Northwest A & F University, 2015. |
赵发珠. 黄土丘陵区退耕植被土壤C、N、P化学计量学特征与土壤有机碳库及组分的响应机制. 咸阳: 西北农林科技大学, 2015. | |
15 | Zhu Q L. The influence of site conditions of different vegetation zones on the characteristics of plant litter soil eco-stoichiometry. Xianyang: Northwest A & F University, 2013. |
朱秋莲. 黄土丘陵区不同植被带立地条件对植物—枯落物—土壤生态化学计量特征的影响. 咸阳: 西北农林科技大学, 2013. | |
16 | Su B W. Scale effect of spatial variability of soil nutrients and its response to winter wheat growth. Tai’an: Shandong Agricultural University, 2019. |
宿宝巍. 农田土壤养分空间变异尺度效应及其冬小麦生育响应. 泰安: 山东农业大学, 2019. | |
17 | Wang Z G, Zhang C, Sun B P, et al. Overview of national soil and water conservation zoning. Soil and Water Conservation in China, 2015(12): 12-17. |
王治国, 张超, 孙保平, 等. 全国水土保持区划概述. 中国水土保持, 2015(12): 12-17. | |
18 | Lu R K. Soil agrochemical analysis method. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
19 | Wei X R, Shao M A. Distribution characteristics of soil nutrients in small watershed of Loess Plateau. Acta Ecologica Sinica, 2007(2): 603-612. |
魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征. 生态学报, 2007(2): 603-612. | |
20 | Rutigliano F A, Ascoli R D. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729. |
21 | Qi L H, Zhang X D, Zhou J X, et al. Soil microbial quantity, biomass carbon and nitrogen and their fractal characteristics in different vegetation restoration areas of small watershed in Northwest Hunan. Scientia Silvae Sinicae, 2009, 45(8): 14-20. |
漆良华, 张旭东, 周金星, 等. 湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征. 林业科学, 2009, 45(8): 14-20. | |
22 | Jobbagy E E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436. |
23 | Zhang S, Xu M X, Zhang Y F, et al. Impact of land use change on deep soil organic carbon storage in loess hilly area. Acta Scientiae Circumstantiae, 2014, 34(12): 3094-3101. |
张帅, 许明祥, 张亚锋, 等. 黄土丘陵区土地利用变化对深层土壤有机碳储量的影响. 环境科学学报, 2014, 34(12): 3094-3101. | |
24 | Lv W Q, Tang J G, Luo S Q, et al. 4 study on the effect of vegetation restoration mode on the organic carbon and nitrogen of surface soil in rocky desertification area of Guizhou Province. Forest Resources Management, 2016(5): 47-52, 70. |
吕文强, 唐金刚, 罗时琴, 等. 4种植被恢复模式对贵州石漠化地区表层土壤有机碳氮的影响研究. 林业资源管理, 2016(5): 47-52, 70. | |
25 | Pan J, Song N P, Wu X D, et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus in artificial Caragana forest with different planting years in desert grassland. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 160-168. |
潘军, 宋乃平, 吴旭东, 等. 荒漠草原不同种植年限人工柠条林土壤碳氮磷化学计量特征. 浙江大学学报(农业与生命科学版), 2015, 41(2): 160-168. | |
26 | Rong Y P, Han J G, Wang P, et al. Effect of grazing intensity on physical and chemical properties of grassland soil. Chinese Journal of Grassland, 2001(4): 42-48. |
戎郁萍, 韩建国, 王培, 等. 放牧强度对草地土壤理化性质的影响. 中国草地, 2001(4): 42-48. | |
27 | Zhou Y B, Guo X W, Wei Y W, et al. Vertical distribution characteristics of C, N, P in typical plantation soils in the semi-arid area of Northwest Liaoning. Journal of Shenyang Agricultural University, 2016, 47(4): 418-424. |
周永斌, 郭鑫炜, 魏亚伟, 等. 辽西北半干旱区典型人工林土壤C,N,P的垂直分布特征. 沈阳农业大学学报, 2016, 47(4): 418-424. | |
28 | Qin J, Kong H Y, Liu H. Stoichiometric characteristics of C, N, P, K in different forest soils of Pinus massoniana. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 68-76, 82. |
秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征. 西北农林科技大学学报(自然科学版), 2016, 44(2): 68-76, 82. | |
29 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/2/3): 139-151. |
30 | Du M Y, Feng H Y, Zhang L J, et al. Soil carbon and nitrogen characteristics of different vegetation restoration types in rocky mountain areas of North China. Chinese Journal of Ecology, 2018, 37(6): 1849-1855. |
杜满义, 封焕英, 张连金, 等. 华北石质山区不同植被恢复类型土壤碳、氮特征. 生态学杂志, 2018, 37(6): 1849-1855. | |
31 | Li L, Wang G J, Zhou G X, et al. Temporal and spatial characteristics of soil C∶N∶P ecological stoichiometry under Phoebe zhennan plantation of Huitong. Journal of Central South University of Forestry & Technology, 2016, 36(2): 96-100, 109. |
李栎, 王光军, 周国新, 等. 会同桢楠人工幼林土壤C∶N∶P生态化学计量的时空特征. 中南林业科技大学学报, 2016, 36(2): 96-100, 109. | |
32 | National Soil Census Office. China soil. Beijing: China Agriculture Press, 1998. |
全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. | |
33 | Gan H Y, Zhang S Z, Liang K, et al. Distribution and pollution assessment of nutrient elements in water and surface sediments of Beibu Gulf coastal wetland. Wetland Science, 2012, 10(3): 285-298. |
甘华阳, 张顺之, 梁开, 等. 北部湾北部滨海湿地水体和表层沉积物中营养元素分布与污染评价. 湿地科学, 2012, 10(3): 285-298. |
[1] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[2] | 刘晶, 谢婉余, 张巧明, 徐少君. 黄土丘陵区不同植物凋落叶片的分解及养分释放特性[J]. 草业学报, 2018, 27(9): 25-33. |
[3] | 方昭, 张少康, 刘海威, 焦峰, 张军. 黄土丘陵区草本群落生物量空间分布格局及其影响因素[J]. 草业学报, 2018, 27(2): 26-35. |
[4] | 刘晶, 赵燕, 张巧明, 徐少君. 不同利用方式对豫西黄土丘陵区土壤微生物生物量及群落结构特征的影响[J]. 草业学报, 2016, 25(8): 36-47. |
[5] | 刘海威, 张少康, 焦峰. 黄土丘陵区不同退耕年限草地群落特征及其土壤水分养分效应[J]. 草业学报, 2016, 25(10): 31-39. |
[6] | 青烨,孙飞达,李勇,陈文业,李昕. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 2015, 24(3): 38-47. |
[7] | 李广,黄高宝,王琦,罗珠珠. 基于APSIM模型的旱地小麦和豌豆水肥协同效应分析[J]. 草业学报, 2011, 20(5): 151-159. |
[8] | 隋媛媛,杜峰,张兴昌. 黄土丘陵区撂荒群落土壤速效养分空间变异性研究[J]. 草业学报, 2011, 20(2): 76-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||