草业学报 ›› 2021, Vol. 30 ›› Issue (8): 98-108.DOI: 10.11686/cyxb2020274
杨鑫光1,2(), 李希来2(), 马盼盼2, 张静2, 周伟3
收稿日期:
2020-06-15
修回日期:
2020-07-21
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
李希来
作者简介:
Corresponding author. E-mail: xilai-li@163.com基金资助:
Xin-guang YANG1,2(), Xi-lai LI2(), Pan-pan MA2, Jing ZHANG2, Wei ZHOU3
Received:
2020-06-15
Revised:
2020-07-21
Online:
2021-07-09
Published:
2021-07-09
Contact:
Xi-lai LI
摘要:
煤矿开采过程中堆积的煤矸石山土壤营养元素缺乏,施肥是改善土壤理化状况、促进植被重建的有效手段。以高寒矿区煤矸石山人工建植草地为研究对象,通过设置轻施肥、中施肥、重施肥、1年不施肥、多年不施肥处理,研究不同施肥水平下的草地群落结构、植物生长和土壤性质变化特征,同时分析植物和土壤因子之间的关系,探讨该地区生态系统恢复的适宜施肥水平。结果表明:不同施肥水平的样地物种组成未发生明显变化。与对照相比,重施肥引起群落多样性、均匀性指数显著下降(P<0.05),多年不施肥引起群落丰富度、多样性指数显著下降(P<0.05),施肥过多或多年不施肥均不利于草地群落稳定。与对照相比,轻施肥、中施肥和重施肥措施均不同程度上增加了人工草地植被盖度、密度、高度和地上部分生物量,中施肥措施增加效果相对更好。与对照相比,重施肥措施显著增加了土壤碱解氮、全磷和速效磷含量(P<0.05),中施肥措施更有利于土壤有机质含量的积累。除土壤pH值之外,植被生长指标与土壤指标之间相互促进,特别是植被生长指标与土壤全钾和有机质含量达到极显著正相关(P<0.01)。适量施肥有利于江仓矿区煤矸石山植被生长和土壤性质的改善,而施肥量过大和不施肥均不利于人工草地生态系统的稳定发展。
杨鑫光, 李希来, 马盼盼, 张静, 周伟. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2021, 30(8): 98-108.
Xin-guang YANG, Xi-lai LI, Pan-pan MA, Jing ZHANG, Wei ZHOU. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area[J]. Acta Prataculturae Sinica, 2021, 30(8): 98-108.
科Family | 属Genus | 种Species | LF | MF | HF | CK | NF5 | UG |
---|---|---|---|---|---|---|---|---|
禾本科Gramineae | 披碱草属Elymus | 垂穗披碱草E. nutans | 45.12 | 51.68 | 61.05 | 41.34 | 29.69 | 0.00 |
禾本科Gramineae | 早熟禾属Poa | 冷地早熟禾P. crymophila | 31.46 | 25.14 | 25.97 | 33.89 | 64.09 | 8.02 |
禾本科Gramineae | 碱茅属Puccinellia | 星星草P. tenuiflora | 17.62 | 17.64 | 12.33 | 18.23 | 2.67 | 0.00 |
玄参科Scrophulariaceae | 马先蒿属Pedicularis | 甘肃马先蒿P. kansuensis | 5.80 | 5.53 | 0.65 | 6.54 | 3.56 | 0.00 |
莎草科Cyperaceae | 嵩草属Kobresia | 藏嵩草K. tibetica | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 62.61 |
莎草科Cyperaceae | 苔草属Carex | 青藏苔草C. moorcroftii | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 24.63 |
菊科Asteraceae | 火绒草属Leontopodium | 火绒草L. leontopodioides | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.75 |
表1 不同施肥水平下植物群落物种组成及其重要值
Table 1 Species composition and important value of vegetation community under the different levels of fertilization
科Family | 属Genus | 种Species | LF | MF | HF | CK | NF5 | UG |
---|---|---|---|---|---|---|---|---|
禾本科Gramineae | 披碱草属Elymus | 垂穗披碱草E. nutans | 45.12 | 51.68 | 61.05 | 41.34 | 29.69 | 0.00 |
禾本科Gramineae | 早熟禾属Poa | 冷地早熟禾P. crymophila | 31.46 | 25.14 | 25.97 | 33.89 | 64.09 | 8.02 |
禾本科Gramineae | 碱茅属Puccinellia | 星星草P. tenuiflora | 17.62 | 17.64 | 12.33 | 18.23 | 2.67 | 0.00 |
玄参科Scrophulariaceae | 马先蒿属Pedicularis | 甘肃马先蒿P. kansuensis | 5.80 | 5.53 | 0.65 | 6.54 | 3.56 | 0.00 |
莎草科Cyperaceae | 嵩草属Kobresia | 藏嵩草K. tibetica | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 62.61 |
莎草科Cyperaceae | 苔草属Carex | 青藏苔草C. moorcroftii | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 24.63 |
菊科Asteraceae | 火绒草属Leontopodium | 火绒草L. leontopodioides | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.75 |
处理 Treatment | Patrick指数 Patrick index (R) | Margarlef指数 Margarlef index (Ma) | Shannon-Wiener 指数 Shannon-Wiener index (H′) | Simpson 指数 Simpson index (D) | Pielou 指数 Pielou index (JP) |
---|---|---|---|---|---|
LF | 4.00±0.00a | 0.44±0.00a | 1.04±0.10a | 0.59±0.04a | 0.75±0.07ab |
MF | 3.75±0.50a | 0.40±0.07a | 0.95±0.09ab | 0.54±0.04ab | 0.72±0.07ab |
HF | 3.50±0.58a | 0.36±0.07a | 0.76±0.09b | 0.43±0.05bc | 0.61±0.04b |
CK | 4.00±0.00a | 0.44±0.00a | 1.08±0.05a | 0.60±0.03a | 0.78±0.04a |
NF5 | 2.00±0.82b | 0.19±0.15b | 0.49±0.33c | 0.32±0.22c | 0.83±0.18a |
UG | 2.50±0.58b | 0.20±0.08b | 0.53±0.08c | 0.32±0.04c | 0.61±0.12b |
表2 不同施肥水平下植物群落结构变化特征
Table 2 Variation of vegetation community structure under the different levels of fertilization
处理 Treatment | Patrick指数 Patrick index (R) | Margarlef指数 Margarlef index (Ma) | Shannon-Wiener 指数 Shannon-Wiener index (H′) | Simpson 指数 Simpson index (D) | Pielou 指数 Pielou index (JP) |
---|---|---|---|---|---|
LF | 4.00±0.00a | 0.44±0.00a | 1.04±0.10a | 0.59±0.04a | 0.75±0.07ab |
MF | 3.75±0.50a | 0.40±0.07a | 0.95±0.09ab | 0.54±0.04ab | 0.72±0.07ab |
HF | 3.50±0.58a | 0.36±0.07a | 0.76±0.09b | 0.43±0.05bc | 0.61±0.04b |
CK | 4.00±0.00a | 0.44±0.00a | 1.08±0.05a | 0.60±0.03a | 0.78±0.04a |
NF5 | 2.00±0.82b | 0.19±0.15b | 0.49±0.33c | 0.32±0.22c | 0.83±0.18a |
UG | 2.50±0.58b | 0.20±0.08b | 0.53±0.08c | 0.32±0.04c | 0.61±0.12b |
图1 不同施肥水平下植物生长变化特征不同小写字母表示差异显著(P<0.05),下同。Different small letters indicate significant differences at P<0.05. The same below.
Fig.1 Variation of plant growth under the different levels of fertilization
指标Item | TN | TP | TK | AN | AP | AK | SOM | pH |
---|---|---|---|---|---|---|---|---|
VC | 0.195 | 0.166 | 0.666** | 0.206 | 0.271 | 0.257 | 0.642** | -0.330 |
VD | 0.170 | 0.168 | 0.678** | 0.210 | 0.273 | 0.248 | 0.613** | -0.345 |
VH | 0.305 | 0.438 | 0.605** | 0.520* | 0.574** | 0.276 | 0.611** | -0.493* |
AGB | 0.273 | 0.191 | 0.646** | 0.238 | 0.305 | 0.302 | 0.710** | -0.349 |
表3 不同施肥水平下植物生长与土壤指标之间的相关性分析
Table 3 Correlation analysis between different soil properties and vegetation growth parameters under the different levels of fertilization (n=20)
指标Item | TN | TP | TK | AN | AP | AK | SOM | pH |
---|---|---|---|---|---|---|---|---|
VC | 0.195 | 0.166 | 0.666** | 0.206 | 0.271 | 0.257 | 0.642** | -0.330 |
VD | 0.170 | 0.168 | 0.678** | 0.210 | 0.273 | 0.248 | 0.613** | -0.345 |
VH | 0.305 | 0.438 | 0.605** | 0.520* | 0.574** | 0.276 | 0.611** | -0.493* |
AGB | 0.273 | 0.191 | 0.646** | 0.238 | 0.305 | 0.302 | 0.710** | -0.349 |
1 | Li J, Sheng Y, Chen J, et al. Modeling the distribution of permafrost along a transportation corridor from Cetar to Muri in Qinghai Province. Progress in Geography, 2010, 29(9): 1100-1106. |
李静, 盛煜, 陈继, 等. 青海省柴达尔-木里地区道路沿线多年冻土分布模拟. 地理科学进展, 2010, 29(9): 1100-1106. | |
2 | Li S Q, Yang B S, Wu D M. Community succession analysis of naturally colonized plants on coal gob piles in Shanxi mining areas, China. Water, Air & Soil Pollution, 2008, 193: 211-228. |
3 | Li S Q, Liber K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China. Science of the Total Environment, 2018, 618: 1314-1323. |
4 | Zhang L, Wang J M, Bai Z K, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, 2015, 128: 44-53. |
5 | Ahirwal J, Maiti S K, Reddy M S. Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena, 2017, 156: 42-50. |
6 | Sheoran V, Sheoran A S, Poonia P. Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 2010, 3(2): 1-20. |
7 | Song Y H, Ai Z M, Qiao L L, et al. Effects of fertilization on ecological stoichiometric ratio soil carbon, nitrogen and phosphorus in farmland of the Loess Plateau. Research of Soil and Water Conservation, 2019, 26(6): 38-45, 52. |
宋亚辉, 艾泽民, 乔磊磊, 等. 施肥对黄土高原农地土壤碳氮磷生态化学计量比的影响. 水土保持研究, 2019, 26(6): 38-45, 52. | |
8 | Egan G, Zhou X, Wang D M, et al. Long-term effects of grazing, liming and nutrient fertilization on the nitrifying community of grassland soils. Soil Biology and Biochemistry, 2018, 118: 97-102. |
9 | Bélanger G, Ziadi N, Lajeunesse J, et al. Shoot growth and phosphorus-nitrogen relationship of grassland swards in response to mineral phosphorus fertilization. Field Crops Research, 2017, 204: 31-41. |
10 | Hu D X, Wang J L, Pan D F, et al. Effects of fertilization on yield and quality of Leymus chinensis cultivated grassland. Chinese Journal of Grassland, 2017, 39(1): 35-41. |
胡冬雪, 王建丽, 潘多锋, 等. 施氮肥对羊草栽培草地生产性能及品质的影响. 中国草地学报, 2017, 39(1): 35-41. | |
11 | Poeplau C, Zopf D, Greiner B, et al. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agriculture, Ecosystems and Environment, 2018, 265: 144-155. |
12 | Zhang X M, Ma Q H, Zhang Z L, et al. Effects of fertilization rate on forage yield and water use efficiency of artificial grassland in an alpine arid area.Scientia Agricultura Sinica, 2019, 52(8): 1368-1379. |
张学梅, 马千虎, 张子龙, 等. 施肥对高寒荒漠草原区混播人工草地产量和水分利用的影响. 中国农业科学, 2019, 52(8): 1368-1379. | |
13 | Rong Y P, Han J G, Wang P. Effects of different range restorations on soil and vegetation of Russian wildrye (Psathyrostachys juncea) pasture. Acta Prataculturae Sinica, 2002, 11(1): 17-23. |
戎郁萍, 韩建国, 王培. 不同草地恢复方式对新麦草草地土壤和植被的影响. 草业学报, 2002, 11(1): 17-23. | |
14 | Yang X G, Li X L, Jin L Q, et al. Effectiveness of different artificial restoration measures for soil and vegetation recovery on coal mine tailings in an alpine area. Acta Prataculturae Sinica, 2019, 28(3): 1-11. |
杨鑫光, 李希来, 金立群, 等. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究. 草业学报, 2019, 28(3): 1-11. | |
15 | Lu R K. Methods of soil and agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 1999. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. | |
16 | Xiao J P, Lv S J, Wei Z J, et al. Response of community diversity of Stipa breviflora in desert steppe to fertilization. Chinese Journal of Grassland, 2017, 39(5): 84-89. |
肖嘉圃, 吕世杰, 卫智军, 等. 短花针茅荒漠草原群落多样性对施肥的响应. 中国草地学报, 2017, 39(5): 84-89. | |
17 | Hensgen F, Bühle L, Wachendorf M. The effect of harvest, mulching and low-dose fertilization of liquid digestate on above ground biomass yield and diversity of lower mountain semi-natural grasslands. Agriculture, Ecosystems and Environment, 2016, 216: 283-292. |
18 | Ren Q J, Luo Y J, Wang H Y, et al. Restoration of degraded typical alpine meadowland on the Qinghai-Tibetan plateau-Effect of fertilizing and cutting on grassland quality. Acta Prataculturae Sinica, 2004, 13(2): 43-49. |
仁青吉, 罗燕江, 王海洋, 等. 青藏高原典型高寒草甸退化草地的恢复—施肥刈割对草地质量的影响. 草业学报, 2004, 13(2): 43-49. | |
19 | Dong Q M, Zhao X Q, Ma Y S. Grazing rate effect on major plant population niches in artificially mixed-sown alpine grassland. Chinese Journal of Eco-Agriculture, 2007, 15(5): 1-6. |
董全民, 赵新全, 马玉寿. 放牧率对高寒混播草地主要植物种群生态位的影响. 中国生态农业学报, 2007, 15(5): 1-6. | |
20 | Duan M J, Ganzhu Z B, Guo J, et al. Effects of fertilization on plant diversity and productivity of alpine meadow in Northern Tibet. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(11): 1696-1703. |
段敏杰, 干珠扎布, 郭佳, 等. 施肥对藏北高寒草地植物多样性及生产力的影响. 西北农业学报, 2016, 25(11): 1696-1703. | |
21 | Holmes P M. Shrubland restoration following woody alien invasion and mining: Effects of topsoil depth, seed source, and fertilizer addition. Restoration Ecology, 2001, 9(1): 71-84. |
22 | Ge Q Z, Wei B, Zhang L F, et al. Influence of restoration measures on plant community in alpine meadow. Pratacultural Science, 2012, 29(10): 1517-1520. |
葛庆征, 魏斌, 张灵菲, 等. 草地恢复措施对高寒草甸植物群落的影响. 草业科学, 2012, 29(10): 1517-1520. | |
23 | Borges B M M N, Bordonal R D O, Silveira M L, et al. Short-term impacts of high levels of nitrogen fertilization on soil carbon dynamics in a tropical pasture.Catena, 2019, 174: 413-416. |
24 | Hou X Y, Liu S L, Zhao S, et al. Interaction mechanism between floristic quality and environmental factors during ecological restoration in a mine area based on structural equation modeling. Ecological Engineering, 2018, 124: 23-30. |
25 | Li Z J, Zhu T C, Qin M. Effects of different varieties and levels of fertilizer application on the economic benefit of forage rye and fertilization management. Acta Prataculturae Sinica, 2009, 18(3): 148-153. |
李志坚, 祝廷成, 秦明. 不同施肥水平与组合对饲用黑麦经济效益的影响及施肥决策. 草业学报, 2009, 18(3): 148-153. | |
26 | Dutta R K, Agrawal M. Restoration of opencast coal mine spoil by planting exotic tree species: A case study in dry tropical region. Ecological Engineering, 2003, 21: 143-151. |
27 | Li X K, Lu J W, Chen F, et al. Effects of different fertilization treatments on forage yield and soil properties in sudangrass-ryegrass rotation. Journal of Plant Nutrition and Fertilizer, 2008, 14(3): 581-586. |
李小坤, 鲁剑巍, 陈防, 等. 苏丹草-黑麦草轮作中不同施肥措施对饲料产量及土壤性质的影响. 植物营养与肥料学报, 2008, 14(3): 581-586. | |
28 | Feng P Y, Liang L B. Influence of fertilization on physicochemical properties and phosphorus fractions of reclaimed soil in coal-mining subsided land. Journal of Soil and Water Conservation, 2018, 32(5): 229-233. |
冯鹏艳, 梁利宝. 施肥对采煤塌陷区复垦土壤理化性质和磷分级的影响. 水土保持学报, 2018, 32(5): 229-233. | |
29 | Hou Y P, Wang L C, Li Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. |
侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52(20): 3573-3584. | |
30 | Yang X G, Li X L, Jin L Q, et al. Changes in soil properties of coal mine spoils in an alpine coal mining area after short-term restoration. Acta Prataculturae Sinica, 2018, 27(8): 30-38. |
杨鑫光, 李希来, 金立群, 等. 短期恢复下高寒矿区煤矸石山土壤变化特征研究. 草业学报, 2018, 27(8): 30-38. | |
31 | Li E Y, He G Y. Tibetan plateau alpine meadow soil properties and enzyme activity in response to fertilization gradients in different seasons. Guihaia, 2014, 34(4): 467-472. |
李恩宇, 何贵永. 青藏高原高寒草甸不同季节土壤理化性质及酶活性对施肥处理的响应. 广西植物, 2014, 34(4): 467-472. | |
32 | Zhu L B, Zheng Y, Zeng Z H, et al. Study on the vegetation and soil characteristics of different vegetation types in Hulunbeier typical steppe. Chinese Journal of Grassland, 2008, 30(3): 32-36. |
朱立博, 郑勇, 曾昭海, 等. 呼伦贝尔典型草原不同植被类型植被与土壤特征研究. 中国草地学报, 2008, 30(3): 32-36. | |
33 | Lozano Y M, Hortal S, Armas C, et al. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biology & Biochemistry, 2014, 78: 298-306. |
34 | Alday J G, Marrs R H, Martínez-Ruiz C. Soil and vegetation development during early succession on restored coal wastes: A six-year permanent plot study. Plant and Soil, 2012, 353: 305-320. |
35 | Yang X G, Li X L, Shi M M, et al. The effects of replaced topsoil of different depths on the vegetation and soil properties of reclaimed coal mine spoils in an alpine mining area. Israel Journal of Ecology & Evolution, 2019, 65(3/4): 92-105. |
[1] | 何周窈, 王勇, 苏正安, 杨鸿琨, 周涛. 干热河谷冲沟沟头活跃度对植物群落结构的影响[J]. 草业学报, 2020, 29(9): 28-37. |
[2] | 王锐, 李希来, 张静. 四种覆土处理对高寒煤矿区排土场渣山植被恢复的影响[J]. 草业学报, 2020, 29(7): 40-51. |
[3] | 黄玙璠, 舒英格, 肖盛杨, 陈梦军. 喀斯特山区不同草地土壤养分与酶活性特征[J]. 草业学报, 2020, 29(6): 93-104. |
[4] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
[5] | 杨鑫光, 李希来, 金立群, 孙华方. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2019, 28(3): 1-11. |
[6] | 杨鑫光, 李希来, 金立群, 孙华方. 短期恢复下高寒矿区煤矸石山土壤变化特征研究[J]. 草业学报, 2018, 27(8): 30-38. |
[7] | 杨文航, 任庆水, 秦红, 宋虹, 袁中勋, 李昌晓. 三峡库区消落带不同海拔狗牙根草地土壤微生物生物量碳氮磷含量特征[J]. 草业学报, 2018, 27(2): 57-68. |
[8] | 黄岩, 多田琦, 遇瑶, 姚凤娇, 季婧, 邝肖, 崔国文, 胡国富. 施肥对提高秣食豆产量和饲用品质的影响[J]. 草业学报, 2017, 26(4): 211-217. |
[9] | 王鹏飞, 贾璐婷, 杜俊杰, 张建成, 穆霄鹏, 丁伟. 黄土丘陵沟壑区欧李栽植对土壤质量改良作用的评价[J]. 草业学报, 2017, 26(3): 65-74. |
[10] | 刘文辉, 张英俊, 师尚礼, 贺永娟, 孙建, 魏小星. 高寒区施肥和豆科混播水平对燕麦人工草地土壤酶活性的影响[J]. 草业学报, 2017, 26(1): 23-33. |
[11] | 蒲琴, 胡玉福, 蒋双龙, 何剑锋, 舒向阳, 杨泽鹏. 不同生态治理措施下高寒沙化草地土壤氮素变化特[J]. 草业学报, 2016, 25(7): 24-33. |
[12] | 戴雅婷, 侯向阳, 闫志坚, 解继红, 吴洪新. 库布齐沙地两种植被恢复类型根际土壤微生物群落功能多样性研究[J]. 草业学报, 2016, 25(10): 56-65. |
[13] | 李刚, 修伟明, 王杰, 吴元凤, 赵建宁, 宋晓龙, 杨殿林. 不同植被恢复模式下呼伦贝尔沙地土壤反硝化细菌nirK基因组成结构和多样性研究[J]. 草业学报, 2015, 24(1): 115-123. |
[14] | 杨磊,王彦荣,余进德. 干旱荒漠区土壤种子库研究进展[J]. 草业学报, 2010, 19(2): 227-234. |
[15] | 张相锋,马闯,董世魁,张文辉,刘新成. 不同草灌配比对泌桐高速公路护坡植物群落特征的影响[J]. 草业学报, 2009, 18(4): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||