草业学报 ›› 2021, Vol. 30 ›› Issue (9): 182-192.DOI: 10.11686/cyxb2020316
• 综合评述 • 上一篇
郑娟善1(), 丁考仁青3, 李新圃2, 梁泽毅1, 张剑搏1, 杜梅1, 丁学智1,2()
收稿日期:
2020-07-06
修回日期:
2020-09-24
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
丁学智
作者简介:
Corresponding author. E-mail: dingxuezhi@caas.cn基金资助:
Juan-shan ZHENG1(), KAO Ren-qing DING3, Xin-pu LI2, Ze-yi LIANG1, Jian-bo ZHANG1, Mei DU1, Xue-zhi DING1,2()
Received:
2020-07-06
Revised:
2020-09-24
Online:
2021-08-30
Published:
2021-08-30
Contact:
Xue-zhi DING
摘要:
瘤胃是反刍动物消化的第一个腔室,各种微生物(细菌、真菌和原生动物)相互作用将木质纤维素植物生物降解为易于代谢的化合物。瘤胃也是目前自然界公认的木质纤维素高效降解和利用的天然反应器,其真菌和细菌可分泌多种木质纤维素降解酶,在木质纤维素生产生物燃料和化学用品方面具有潜在的价值。因此,本研究在瘤胃内木质纤维降解的微生物及其降解木质纤维素相关酶的基础上,重点综述了瘤胃微生物在木质纤维素生物转化为乙醇、生物化学(有机酸)及沼气等方面的研究进展,旨在为瘤胃微生物和瘤胃酶在木质纤维素价值化利用方面的研究和应用提供新的方法和思路。
郑娟善, 丁考仁青, 李新圃, 梁泽毅, 张剑搏, 杜梅, 丁学智. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192.
Juan-shan ZHENG, KAO Ren-qing DING, Xin-pu LI, Ze-yi LIANG, Jian-bo ZHANG, Mei DU, Xue-zhi DING. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource[J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192.
1 | Ferreira J A, Mahboubi A, Lennartsson P R, et al. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresource Technology, 2016, 215: 334-345. |
2 | Aguirre-villegas H A, Larson R A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. Journal of Cleaner Production, 2017, 143: 169-179. |
3 | Sawatdeenarunat C, Surendra K C, Takara D, et al. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 2015, 178: 178-186. |
4 | Banerjee S, MIishra G, Roy A. Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnology & Bioprocess Engineering, 2019, 24(5): 713-733. |
5 | Yildirim E, Ince O, Aydni S, et al. Improvement of biogas potential of anaerobic digesters using rumen fungi. Renewable Energy, 2017, 109(8): 346-353. |
6 | Großkopf T, Tobias, Oyer, et al. Synthetic microbial communities. Current Opinion in Microbiology, 2014, 18: 72-77. |
7 | Xu C F, Ai S Q, Shen G N, et al. Microbial degradation of lignocellulose. Journal of Biological Engineering, 2019, 35(11): 1-11. |
许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解进展. 生物工程学报, 2019, 35(11): 1-11. | |
8 | Zheng J S, Zhang J B, Liang Z Y, et al. Research progress on degradation of lignocellulose by rumen microorganisms. Journal of Animal Nutrition, 2020, 32(5): 2010-2019. |
郑娟善, 张剑搏, 梁泽毅, 等. 瘤胃微生物对木质纤维素降解的研究进展. 动物营养学报, 2020, 32(5): 2010-2019. | |
9 | Jose V L, Appoothy T, More R P, et al. Metagenomic insights into the rumen microbial fibro lytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express, 2017, 7: 13. |
10 | Ren J Z, Lin H L. Planting grass in agricultural areas is an important step to improve agricultural systems and ensure food security. Acta Prataculturae Sinica, 2009, 18(5): 1-9. |
任继周, 林慧龙. 农区种草是改进农业系统、保证粮食安全的重大步骤. 草业学报, 2009, 18(5): 1-9. | |
11 | Pope P B, Mackenzie A K, Gregor I, et al. Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One, 2012, 7(6): e38571. |
12 | Hu Z H, Yu H Q. Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover. Process Biochemistry, 2005, 40(7): 2371-2377. |
13 | Lazuka A, Auer L, Bozonnet S, et al. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. Bioresource Technology, 2015, 196: 241-249. |
14 | Deng Y, Huang Z, Zhao M, et al. Effects of co-inoculating rice straw with ruminal microbiota and anaerobic sludge: Digestion performance and spatial distribution of microbial communities. Applied Microbiology and Biotechnology, 2017, 101: 5937-5948. |
15 | Zhang H, Zhang P, Ye J, et al. Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study. International Biodeterioration & Biodegradation, 2016, 113: 9-16. |
16 | Zadeh Z E, Abdulkhani A, Aboelazayem O, et al. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading. Processes, 2020, 8(7) : 1-31. |
17 | Goodacre R. Metabolomics of a superorganism. Journal of Nutrition, 2007, 137(Supple): 259-266. |
18 | Singh B, Gautam S K, Verma V, et al. Metagenomics in animal gastrointestinal tract-potential biotechnological prospects. Anaerobe, 2008, 14: 138-144. |
19 | Sirohi S K, Singh N, Dagar S S, et al. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Applied Microbiology and Biotechnology (in press), 2012, 95: 1135-1154. |
20 | Wang G R, Duan Y L. Studies on lignocellulose degradation by rumen microorganism. Advanced Materials Research, 2013, 853: 253-259. |
21 | Hu Z H, Liu S Y, Yue Z B, et al. Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms. Environmental Science & Technology, 2008, 42(1): 276-281. |
22 | Zang G L, Sheng G P, Tong Z H, et al. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environmental Science & Technology, 2010, 44(7): 2715-2720. |
23 | Denman S E, Nicholson M J, Brookman J L, et al. Detection and monitoring of anaerobic rumen fungi using an ARISA method. Letters in Applied Microbiology, 2008, 47: 492-499. |
24 | Sarah M, Itzhak M. Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiology Reviews, 2019, 43: 362-379. |
25 | Fliegerova K, Kaerger K, Kirk P, et al. Rumen microbiology: From evolution to revolution. New Delhi: Springer India, 2015: 97-112. |
26 | Bensoussan L Z, Morais S, Dassa B, et al. Broad phylogeny and functionality of cellulosome components in the bovine rumen microbiome. Environmental Microbiology, 2017, 19(1): 185-197. |
27 | Artzi L, Bayer E A, Morais S. Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides. Nature Review Microbiology, 2017, 15(2): 83-95. |
28 | Huhjh. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiology Letters, 2004, 238: 439-447. |
29 | Gao W. Relative contribution of rumen microorganisms to degradation of plant cell walls and the relationship between their adhesion and degradation. Beijing: China Agricultural University, 2004. |
高巍. 瘤胃微生物对植物细胞壁降解的相对贡献及其附着与降解的关系研究. 北京: 中国农业大学, 2004. | |
30 | Newbold C J, Ruente G, Belanche A, et al. The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 2015, 6: 1313. |
31 | Youssef N H, Couger M B, Struchtemeyer C G, et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Applied and Environmental Microbiology, 2013, 79(15): 4620-4634. |
32 | Wang S Q, Gu C M, Zhao H H. Progress on the mechanisms of lignocellulose biological degrading and the screening method on the degrading bacteria. Acta Agriculturae Boreali-Sinica, 2010, 25(8): 313-317. |
王士强, 顾春梅, 赵海红. 木质纤维素生物降解机理及其降解菌筛选方法研究进展. 华北农学报, 2010, 25(8): 313-317. | |
33 | Garvey M, Klose H, Fischer R, et al. Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology, 2013, 31(10): 581-593. |
34 | Chandel A K, Chandrasekhar G, Silva M B, et al. The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 2012, 32(3): 187-202. |
35 | Rana V, Rana D. Role of microorganisms in lignocellulosic biodegradation. Renewable Biofuels, 2017: 19-67. |
36 | Lombard V, Golaconda R H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 2014, 42: 490-495. |
37 | Steenbakkers P J M, Li X L, Ximenes E A, et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. Journal of Bacteriology, 2001, 183(18): 5325-5333. |
38 | Flint H J, Bayer E A, Rincon M T, et al. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Reviews Microbiology, 2008, 6(2): 121-131. |
39 | Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiology Reviews, 2005, 29(1): 3-23. |
40 | Samayam I P, Schall C A. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology, 2010, 101(10): 3561-3566. |
41 | Wang T Y, Chen H L, Lu M Y, et al. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnology for Biofuels, 2011, 4(1): 24. |
42 | Solomon K V, Haitjema C H, Henske J K, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 2016, 351(6278): 1192-1195. |
43 | Avgustin G, Flint H J, Whitehend T R. Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicola from the rumen. FEMS Microbiology Letters, 1992, 78: 137-143. |
44 | Dodd D, Mackie R I, Cann I K. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Molecular Microbiology, 2011, 79: 292-304. |
45 | Ezer A, Matalon E, Jindou S, et al. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. Journal of Bacteriology, 2008, 190(24): 8220-8222. |
46 | Wang D D. Isolation and identification of rumen fungi and evaluation its application in silage. Xianyang: Northwest A & F University, 2017. |
王砀砀. 瘤胃真菌分离鉴定及其在青贮饲料中应用效果评价. 咸阳: 西北农林科技大学, 2017. | |
47 | Haitjema C H, Solomon K V, Henske J K, et al. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnology & Bioengineering, 2014, 111(8): 1471-1482. |
48 | Glass N L. The enigmatic universe of the herbivore gut. Trends in Biochemical Sciences, 2014, 41(7): 561-562. |
49 | Christensen S J, Badino S F, Cavaleiro1 A M, et al. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Engineering, Design and Selection, 2020, 32(9): 401-409. |
50 | Karita S. Carbohydrate-binding modules in plant cell wall-degrading enzymes. Trends in Glycoscience & Glycotechnology, 2016, 28(161): 49-53. |
51 | Bernardes A, Pellegrini V O A, Curtolo F, et al. Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydrate Polymers, 2019, 211: 57-68. |
52 | El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Research, 2018, 47: 427-432. |
53 | Liu J R, Duan C H, Zhao X, et al. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Applied Microbiology and Biotechnology, 2008, 79(2): 225-233. |
54 | Lehtio J, Sugiyama J, Gustavsson M, et al. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proceedings of the National Academy of Sciences, 2003, 100: 484-489. |
55 | Christopherson M R, Dawson J A, Stevenson D M, et al. Unique aspects of fiber degradation by the ruminal ethanologenic 7 revealed by physiological and transcriptomic analysis. BMC Genomics, 2014, 15(1): 1-13. |
56 | Jun H S, Ha J K, Malburg L M, et al. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Canadian Journal of Microbiology, 2003, 49(3): 171-180. |
57 | Kam D K, Jun H S, Ha J K, et al. Characteristics of adjacent family 6 acetylxylan esterase from Fibrobacter succinogenes and the interaction with the Xyn10E xylanase in hydrolysis of acetylated xylan. Canadian Journal of Microbiology, 2005, 51(10): 821-832. |
58 | Singh B, Bhat T K, Singh B. Exploiting gastrointestinal microbes for livestock and industrial development-review. Asian-Australasian Journal of Animal Sciences, 2001, 14(4): 567-586. |
59 | Pack M, Bedford M, Wyatt C. Feed enzymes may improve corn, sorghum diets. Feedstuffs, 1998, 70: 18-19. |
60 | Bansal S, Goel G. Commercial application of rumen microbial enzymes. Rumen Microbiology, 2015: 281-291. |
61 | Cheng K J, Lee S S, Bae H D, et al. Industrial application of rumen microbes. Asian-Australasian Journal of Animal Sciences, 1999, 12: 84-92. |
62 | Romero J J, Macias E G, Ma Z X, et al. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. Journal of Dairy Science, 2016, 99(5): 3486-3496. |
63 | Guo C Y. The effects of xylanase and cellulose on growth performance, nutrition digestibility, ruminal fermentation and microbial diversity in heifers. Beijing: Chinese Academy of Agricultural Sciences, 2010. |
国春艳. 木聚糖酶和纤维素酶对后备奶牛生长代谢、瘤胃发酵及微生物区系的影响. 北京: 中国农业科学院, 2010. | |
64 | Chalupa W. Manipulating rumen fermentation. Journal of Animal Science, 1977, 45: 58-99. |
65 | Beauchemin K A, Colombatto D, Morgavi D P, et al. Use of exogenous fibro lytic enzymes to improve feed utilization by ruminants. Journal of Animal Science, 2003, 81: 37-47. |
66 | Weimer P J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Frontiers in Microbiology, 2015, 6: 296. |
67 | Paul S S, Kamra D N, Sastry V R B. Fermentative characteristics and fibro lytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Archives of Animal Nutrition, 2010, 64(4): 279-292. |
68 | Lee S S, Ha J K, Cheng K J. Influence of an anaerobic fungal culture administration on in vitro ruminal fermentation and nutrient digestion. Animal Feed Science and Technology, 2000, 88: 201-217. |
69 | Dey A, Sehgal J P, Puniya A K, et al. Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian-Australasian Journal of Animal Sciences, 2004, 17(6): 820-824. |
70 | Lee S M, Guan L L, Eun J S, et al. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. Journal of Applied Microbiology, 2015, 118(3): 565-573. |
71 | Saxena S, Sehgal J, Puniya A, et al. Effect of administration of rumen fungi on production performance of lactating buffaloes. Beneficial Microbes, 2010, 1(2): 183-188. |
72 | Tripathi V K, Sehgal J P, Puniya A K, et al. Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Archives of Animal Nutrition, 2007, 61(5): 416-423. |
73 | Weimer P J, Russell J B, Muck R E. Lessons from the cow: What the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource Technology, 2009, 100(21): 5323-5331. |
74 | Davies D, Theodorou M, Newbold J. Biotransformation and fermentation-exploiting the rumen and silo. IGER Innovations, 2007, 11: 37-41. |
75 | Akhtar J, Idris A, Aziz R A. Recent advances in production of succinic acid from lignocellulosic biomass. Applied Microbiology & Biotechnology, 2013, 98(3): 987-1000. |
76 | Sauer M, Marx H, Mattanovich D. From rumen to industry. Microbial Cell Factories, 2012, 11(121): 1-3. |
77 | Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research & Applied Sciences, 2014, 7: 163-173. |
78 | Lynd L R, Weimer P J, van Zyl W H, et al. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66: 506-577. |
79 | Pang J, Liu Z Y, Hao M, et al. An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. Biotechnology for Biofuels, 2017, 10: 165. |
80 | Azhar S H M, Abdulla R, Jambo S A, et al. Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 2017, 10: 52-61. |
81 | Procházka J, Mrázek J, Štrosová L, et al. Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 2012, 12(3): 343-351. |
82 | Aydin S, Yildirim E, Ince O, et al. Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass. Algal Research, 2017, 23: 150-160. |
83 | Li Q, Xu Z Y, Zhou Y L, et al. Bio-augmented anaerobic digestion of vinegar residue by rumen microbes and its mechanisms. Research of Environmental Sciences, 2020, 33(10): 2370-2377. |
李倩, 许之扬, 周云龙, 等. 瘤胃微生物强化醋糟厌氧消化及其机制. 环境科学研究, 2020, 33(10): 2370-2377. | |
84 | Barragán-trinidad M, Carrillo-reyes J, Buitrón G. Hydrolysis of microbiological biomass using ruminal microorganisms as a pretreatment to increase methane recovery. Bioresource Technology, 2017, 244: 100-107. |
85 | Li N, Yang F, Xiao L, et al. Effect of feedstock concentration on biogas production by inoculating rumen microorganisms in biomass solid waste. Applied Biochemistry and Biotechnology, 2018, 184(4): 1219-1231. |
86 | Wei Y Q. Diversity of anaerobic fungi and methanogens co-cultures from the rumen of yak and their fibro lytic characteristics. Lanzhou: Lanzhou University, 2016. |
魏亚琴. 牦牛瘤胃厌氧真菌与甲烷菌共培养物的多样性及其纤维降解特性研究. 兰州: 兰州大学, 2016. | |
87 | Jin W Y. Technology and application of rumen microorganisms in anaerobic digestion of agriculture solid organic waste. Dalian: Dalian University of Technology, 2018. |
靳文尧. 瘤胃微生物厌氧消化农业固体有机废物技术与应用研究. 大连: 大连理工大学, 2018. |
[1] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
[2] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[3] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
[4] | 张剑搏, 丁考仁青, 梁泽毅, Anum-aliAhmad, 杜梅, 郑娟善, 丁学智. 早期营养干预对幼龄反刍动物瘤胃微生物区系发育的影响[J]. 草业学报, 2021, 30(2): 199-211. |
[5] | 董春晓, 吕佳颖, 张智安, 李飞, 李发弟. 饲料来源对育肥湖羊生产性能、养分消化及瘤胃微生物组成的影响[J]. 草业学报, 2019, 28(4): 106-115. |
[6] | 靳继鹏, 郭武君, 张筱艳, 张昌吉, 张勇, 王春辉, 张利平. 冷季放牧补饲对甘肃高山细毛后备母羊瘤胃代谢参数及瘤胃微生物数量的影响[J]. 草业学报, 2018, 27(7): 93-103. |
[7] | 杨宏波,刘红,占今舜,林淼,赵国琦. 不同精粗比颗粒饲料对断奶公犊牛瘤胃发酵参数和微生物的影响[J]. 草业学报, 2015, 24(12): 131-138. |
[8] | 杨巧丽, 姚拓, 王得武, 滚双宝. 木质纤维分解菌群筛选及其对秸秆分解与畜禽粪便除臭能力评价[J]. 草业学报, 2015, 24(1): 196-203. |
[9] | 吴娟子,张建丽,潘玉梅,刘智微,钟小仙. 象草和杂交狼尾草细胞壁组分及乙醇理论产量动态分析[J]. 草业学报, 2014, 23(4): 153-161. |
[10] | 高瑞芳,张建国. 发酵对新鲜甜玉米秸秆生产乙醇的影响[J]. 草业学报, 2014, 23(2): 154-159. |
[11] | 王得武,姚拓,杨巧丽,韩华雯,张英,卢虎,滚双宝. 高效稳定纤维素分解菌群筛选及其分解特性研究[J]. 草业学报, 2014, 23(2): 253-259. |
[12] | 王新峰,毛胜勇,朱伟云. 绞股蓝皂甙对体外瘤胃微生物甲烷产量及发酵特性的影响[J]. 草业学报, 2011, 20(2): 52-59. |
[13] | 毛胜勇,王新峰,朱伟云. 体外法研究延胡索酸二钠对瘤胃微生物发酵活力及甲烷产量的影响[J]. 草业学报, 2010, 19(2): 69-75. |
[14] | 刘吉利,朱万斌,谢光辉,林长松,程序. 能源作物柳枝稷研究进展[J]. 草业学报, 2009, 18(3): 232-240. |
[15] | 张磊,邵涛. 添加乙醇对象草青贮发酵品质的影响[J]. 草业学报, 2009, 18(2): 52-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||