草业学报 ›› 2022, Vol. 31 ›› Issue (2): 192-202.DOI: 10.11686/cyxb2020522
• 研究论文 • 上一篇
金亚东1(), 赵海霞1, 桂瑞麒1, 马青2, 周玉香1()
收稿日期:
2020-11-25
修回日期:
2020-12-31
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
周玉香
作者简介:
Corresponding author. E-mail: zhyxzhww@163.com基金资助:
Ya-dong JIN1(), Hai-xia ZHAO1, Rui-qi GUI1, Qing MA2, Yu-xiang ZHOU1()
Received:
2020-11-25
Revised:
2020-12-31
Online:
2022-02-20
Published:
2021-12-22
Contact:
Yu-xiang ZHOU
摘要:
为了研究日粮精料水平和蛋氨酸铬(Cr-Met)添加对滩羊瘤胃发酵参数、脂肪酸组成和细菌丰度的影响,选取40只体重相近[(21.00±1.23) kg,5月龄]且健康状况良好的滩羊公羔,随机分为4组,每组10只。LC组饲喂精粗比为35∶65的全混合饲粮,日粮中不添加Cr-Met;HC组饲喂精粗比为55∶45的全混合饲粮,日粮中不添加Cr-Met;HCM和HCH组均饲喂精粗比为55∶45的全混合饲粮,Cr-Met的添加量分别为0.75和1.50 g·d-1·只-1。在试验第65 天晨饲后3 h通过各组滩羊口腔取瘤胃液,用于分析瘤胃发酵和瘤胃液脂肪酸组成以及细菌DNA 的提取。结果表明:1)HC组滩羊瘤胃pH、乙酸比例和乙酸/丙酸显著低于LC组(P<0.05),但微生物蛋白(MCP)产量、丙酸和戊酸比例却显著高于LC组(P<0.05);与HC组相比,HCM组的乙酸/丙酸显著升高(P<0.05)。2)HC组反式油酸溶纤维丁酸弧菌和黄色瘤胃球菌的DNA丰度显著低于LC组(P<0.05),但解脂厌氧弧杆菌的DNA丰度却显著高于LC组(P<0.05);高精料日粮中添加Cr-Met线性降低了硬脂酸溶纤维丁酸弧菌、反式油酸溶纤维丁酸弧菌、蛋白溶解梭菌和解脂厌氧弧杆菌的DNA丰度(P<0.05),但黄色瘤胃球菌的DNA丰度却线性升高(P<0.05)。3)与LC组相比,HC组滩羊瘤胃内t11 C18:1(TVA)、trans C18:1、c9t11 CLA、t10c12 CLA、C18:2n6和C18:3n3的浓度显著降低(P<0.05),而C18:0的浓度则显著升高(P<0.05);高精料日粮中添加Cr-Met线性提高了TVA和trans C18:1的浓度(P<0.05)。综上所述,饲喂精粗比为55∶45的日粮抑制了部分氢化细菌的生长,Cr-Met的添加对机体共轭亚油酸的生成有一定的促进作用。
金亚东, 赵海霞, 桂瑞麒, 马青, 周玉香. 日粮精料水平和蛋氨酸铬添加对滩羊瘤胃发酵特性、细菌和脂肪酸组成的影响[J]. 草业学报, 2022, 31(2): 192-202.
Ya-dong JIN, Hai-xia ZHAO, Rui-qi GUI, Qing MA, Yu-xiang ZHOU. Effects of dietary concentrate level and chromium-methionine supplementation on ruminal fermentation, and ruminal bacterial and fatty acid composition in Tan lambs[J]. Acta Prataculturae Sinica, 2022, 31(2): 192-202.
项目 Items | 含量 Content | |
---|---|---|
LCa | HCa | |
原料组成Ingredient composition | ||
青贮玉米 Maize silage (%) | 33.00 | 15.00 |
苜蓿干草 Alfalfa hay (15% CP) | 32.00 | 30.00 |
玉米 Corn grain (%) | 11.24 | 29.74 |
豆粕 Soybean meal (43% CP) | 14.00 | 14.50 |
麦麸 Wheat bran (%) | 5.00 | 6.00 |
食盐NaCl (%) | 0.76 | 0.76 |
预混料b Mineral and vitamin premix (%) | 4.00 | 4.00 |
营养水平 Nutrient levels | ||
代谢能Metabolizable energy (ME c, MJ·kg-1) | 8.70 | 9.40 |
粗蛋白 Crude protein (CP,%) | 14.50 | 14.50 |
钙 Calcium (Ca,%) | 0.44 | 0.39 |
磷 Phosphorus (P,%) | 0.26 | 0.28 |
中性洗涤纤维 Neutral detergent fiber (NDF,%) | 37.91 | 29.45 |
酸性洗涤纤维 Acid detergent fiber (ADF,%) | 25.06 | 19.20 |
铬 Chromium(Cr, mg·kg-1 DM) | 0.28 | 0.24 |
表1 基础饲粮组成及营养水平(干物质基础)
Table 1 Composition and nutrition levels of diet (DM basis)
项目 Items | 含量 Content | |
---|---|---|
LCa | HCa | |
原料组成Ingredient composition | ||
青贮玉米 Maize silage (%) | 33.00 | 15.00 |
苜蓿干草 Alfalfa hay (15% CP) | 32.00 | 30.00 |
玉米 Corn grain (%) | 11.24 | 29.74 |
豆粕 Soybean meal (43% CP) | 14.00 | 14.50 |
麦麸 Wheat bran (%) | 5.00 | 6.00 |
食盐NaCl (%) | 0.76 | 0.76 |
预混料b Mineral and vitamin premix (%) | 4.00 | 4.00 |
营养水平 Nutrient levels | ||
代谢能Metabolizable energy (ME c, MJ·kg-1) | 8.70 | 9.40 |
粗蛋白 Crude protein (CP,%) | 14.50 | 14.50 |
钙 Calcium (Ca,%) | 0.44 | 0.39 |
磷 Phosphorus (P,%) | 0.26 | 0.28 |
中性洗涤纤维 Neutral detergent fiber (NDF,%) | 37.91 | 29.45 |
酸性洗涤纤维 Acid detergent fiber (ADF,%) | 25.06 | 19.20 |
铬 Chromium(Cr, mg·kg-1 DM) | 0.28 | 0.24 |
基因名称Gene name | 上下游引物序列 Primers sequence (5'-3') | 大小Size (bp) | 来源Source |
---|---|---|---|
总菌General bacteria | F-AGAGTTTGATCCTGGCTCAGGA T-TGCTGCCTCCCGTAGGAGT | - | [ |
硬脂酸溶纤维丁酸弧菌Butyrivibrio SA | F-TGAAAAACTCCGGTGGTATGAGAT R-CCGTGTCTCAGTCCCAATGTG | 126 | [ |
反式油酸溶纤维丁酸弧菌Butyrivibrio VA | F-TGCATTGGAAACTGTAGAACTAGAGTGT R-GCGTCAGTAATCGTCCAGTAAGC | 124 | [ |
白色瘤胃球菌R. albus | F-GTTTTAGGATTGTAAACCTCTGTCTT R-CCTAATATCTACGCATTTCACCGC | 270 | [ |
黄色瘤胃球菌R. flavefaciens | F-GATGCCGCGTGGAGGAAGAAG R-CATTTCACCGCTACACCAGGAA | 286 | [ |
蛋白溶解梭菌B. proteoclasticus | F-TCCTAGTGTAGCGGTGAAATG R-TTAGCGACGGCACTGAATGCCTAT | 188 | [ |
解脂厌氧弧杆菌Anaerovibrio lipolytica | F-TTGGGTGTTAGAAATGGATTCTAGTG R-TCGAAATGTTGTCCCCATCTG | 82 | [ |
埃式巨型球菌M. elsdenii | F-AGATGGGGACAACAGCTGGA T-CGAAAGCTCCGAAGAGCCT | 102 | [ |
表2 荧光定量PCR引物
Table 2 Primers used for real-time PCR quantification
基因名称Gene name | 上下游引物序列 Primers sequence (5'-3') | 大小Size (bp) | 来源Source |
---|---|---|---|
总菌General bacteria | F-AGAGTTTGATCCTGGCTCAGGA T-TGCTGCCTCCCGTAGGAGT | - | [ |
硬脂酸溶纤维丁酸弧菌Butyrivibrio SA | F-TGAAAAACTCCGGTGGTATGAGAT R-CCGTGTCTCAGTCCCAATGTG | 126 | [ |
反式油酸溶纤维丁酸弧菌Butyrivibrio VA | F-TGCATTGGAAACTGTAGAACTAGAGTGT R-GCGTCAGTAATCGTCCAGTAAGC | 124 | [ |
白色瘤胃球菌R. albus | F-GTTTTAGGATTGTAAACCTCTGTCTT R-CCTAATATCTACGCATTTCACCGC | 270 | [ |
黄色瘤胃球菌R. flavefaciens | F-GATGCCGCGTGGAGGAAGAAG R-CATTTCACCGCTACACCAGGAA | 286 | [ |
蛋白溶解梭菌B. proteoclasticus | F-TCCTAGTGTAGCGGTGAAATG R-TTAGCGACGGCACTGAATGCCTAT | 188 | [ |
解脂厌氧弧杆菌Anaerovibrio lipolytica | F-TTGGGTGTTAGAAATGGATTCTAGTG R-TCGAAATGTTGTCCCCATCTG | 82 | [ |
埃式巨型球菌M. elsdenii | F-AGATGGGGACAACAGCTGGA T-CGAAAGCTCCGAAGAGCCT | 102 | [ |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
pH | 6.86a | 6.46b | 6.47b | 6.35b | 0.06 | 0.0013 | 0.0003 | 0.9576 | 1.0000 |
氨态氮NH3-N (mmol·L-1) | 12.15 | 13.69 | 14.84 | 12.02 | 0.77 | 0.5429 | 0.8224 | 0.4448 | 0.2999 |
微生物蛋白MCP (μg·L-1) | 376.50b | 437.02a | 385.08ab | 411.66ab | 18.69 | 0.6343 | 0.0119 | 0.5880 | 0.4339 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 112.38 | 123.16 | 121.11 | 110.59 | 3.55 | 0.5423 | 0.1578 | 0.2851 | 0.6711 |
挥发性脂肪酸 Volatile fatty acids (VFA) | |||||||||
乙酸Acetate (%) | 68.88a | 61.06b | 63.91b | 61.09b | 0.91 | 0.0007 | 0.0011 | 0.9847 | 0.1143 |
丙酸Propionate (%) | 17.91b | 24.51a | 19.99ab | 24.08a | 0.99 | 0.0327 | 0.0012 | 0.8753 | 0.0891 |
丁酸 Butyrate (%) | 10.69 | 11.59 | 13.57 | 11.98 | 0.45 | 0.1390 | 0.2493 | 0.7690 | 0.1376 |
异丁酸 Isobutyrate (%) | 0.80 | 0.75 | 0.69 | 0.77 | 0.03 | 0.7451 | 0.5461 | 0.8995 | 0.4787 |
戊酸 Valerate (%) | 0.90b | 1.20a | 1.05a | 1.14a | 0.04 | 0.0593 | 0.0115 | 0.5849 | 0.2258 |
异戊酸 Isovalerate (%) | 0.82 | 0.88 | 0.78 | 0.94 | 0.06 | 0.8175 | 0.5773 | 0.7934 | 0.4743 |
乙酸/丙酸 Acetate∶propionate | 3.85a | 2.53c | 3.26ab | 2.69bc | 0.16 | 0.0037 | 0.0002 | 0.6751 | 0.0671 |
表3 日粮精料水平和Cr-Met添加对瘤胃发酵参数的影响
Table 3 Effects of dietary concentrate level and Cr-Met supplementation on rumen fermentation parameter
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
pH | 6.86a | 6.46b | 6.47b | 6.35b | 0.06 | 0.0013 | 0.0003 | 0.9576 | 1.0000 |
氨态氮NH3-N (mmol·L-1) | 12.15 | 13.69 | 14.84 | 12.02 | 0.77 | 0.5429 | 0.8224 | 0.4448 | 0.2999 |
微生物蛋白MCP (μg·L-1) | 376.50b | 437.02a | 385.08ab | 411.66ab | 18.69 | 0.6343 | 0.0119 | 0.5880 | 0.4339 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 112.38 | 123.16 | 121.11 | 110.59 | 3.55 | 0.5423 | 0.1578 | 0.2851 | 0.6711 |
挥发性脂肪酸 Volatile fatty acids (VFA) | |||||||||
乙酸Acetate (%) | 68.88a | 61.06b | 63.91b | 61.09b | 0.91 | 0.0007 | 0.0011 | 0.9847 | 0.1143 |
丙酸Propionate (%) | 17.91b | 24.51a | 19.99ab | 24.08a | 0.99 | 0.0327 | 0.0012 | 0.8753 | 0.0891 |
丁酸 Butyrate (%) | 10.69 | 11.59 | 13.57 | 11.98 | 0.45 | 0.1390 | 0.2493 | 0.7690 | 0.1376 |
异丁酸 Isobutyrate (%) | 0.80 | 0.75 | 0.69 | 0.77 | 0.03 | 0.7451 | 0.5461 | 0.8995 | 0.4787 |
戊酸 Valerate (%) | 0.90b | 1.20a | 1.05a | 1.14a | 0.04 | 0.0593 | 0.0115 | 0.5849 | 0.2258 |
异戊酸 Isovalerate (%) | 0.82 | 0.88 | 0.78 | 0.94 | 0.06 | 0.8175 | 0.5773 | 0.7934 | 0.4743 |
乙酸/丙酸 Acetate∶propionate | 3.85a | 2.53c | 3.26ab | 2.69bc | 0.16 | 0.0037 | 0.0002 | 0.6751 | 0.0671 |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
硬脂酸溶纤维丁酸弧菌 Butyrivibrio SA | 0.2677a | 0.4199a | 0.1447b | 0.1138b | 0.0228 | 0.0019 | 0.9064 | 0.0028 | 0.1509 |
反式油酸溶纤维丁酸弧菌 Butyrivibrio VA | 0.2652a | 0.1132b | 0.0898bc | 0.0736c | 0.0240 | 0.0003 | 0.0004 | 0.0222 | 0.7551 |
蛋白溶解梭菌 B. proteoclasticus | 0.0626a | 0.0765a | 0.0615a | 0.0249b | 0.0078 | 0.0116 | 0.7954 | 0.0091 | 0.3952 |
白色瘤胃球菌 R. albus | 0.1538 | 0.1010 | 0.1056 | 0.1147 | 0.0116 | 0.4045 | 0.2108 | 0.6087 | 0.9200 |
黄色瘤胃球菌 R. flavefaciens | 2.2913a | 1.6674b | 1.7626b | 2.4301a | 0.1162 | 0.0124 | 0.0009 | 0.0005 | 0.0257 |
解脂厌氧弧杆菌 A. lipolytica | 0.0123c | 0.0462b | 0.0309a | 0.0301a | 0.0042 | 0.0066 | <0.0001 | 0.0396 | 0.2230 |
埃式巨型球菌 M. elsdenii (×10-3) | 0.1367 | 0.1433 | 0.1600 | 0.1667 | 0.0052 | 0.2605 | 0.5790 | 0.0977 | 0.3981 |
表4 日粮精料水平和Cr-Met添加对瘤胃细菌DNA相对丰度的影响
Table 4 Effects of dietary concentrate level and Cr-Met supplementation on the DNA abundance of selected rumen bacterial (% of total bacteria)
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
硬脂酸溶纤维丁酸弧菌 Butyrivibrio SA | 0.2677a | 0.4199a | 0.1447b | 0.1138b | 0.0228 | 0.0019 | 0.9064 | 0.0028 | 0.1509 |
反式油酸溶纤维丁酸弧菌 Butyrivibrio VA | 0.2652a | 0.1132b | 0.0898bc | 0.0736c | 0.0240 | 0.0003 | 0.0004 | 0.0222 | 0.7551 |
蛋白溶解梭菌 B. proteoclasticus | 0.0626a | 0.0765a | 0.0615a | 0.0249b | 0.0078 | 0.0116 | 0.7954 | 0.0091 | 0.3952 |
白色瘤胃球菌 R. albus | 0.1538 | 0.1010 | 0.1056 | 0.1147 | 0.0116 | 0.4045 | 0.2108 | 0.6087 | 0.9200 |
黄色瘤胃球菌 R. flavefaciens | 2.2913a | 1.6674b | 1.7626b | 2.4301a | 0.1162 | 0.0124 | 0.0009 | 0.0005 | 0.0257 |
解脂厌氧弧杆菌 A. lipolytica | 0.0123c | 0.0462b | 0.0309a | 0.0301a | 0.0042 | 0.0066 | <0.0001 | 0.0396 | 0.2230 |
埃式巨型球菌 M. elsdenii (×10-3) | 0.1367 | 0.1433 | 0.1600 | 0.1667 | 0.0052 | 0.2605 | 0.5790 | 0.0977 | 0.3981 |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
C18:0 | 23990.16b | 24825.01a | 24710.16a | 24530.07ab | 115.16 | 0.0352 | 0.0172 | 0.6803 | 0.3331 |
C18:1 | 2032.01a | 1750.91c | 1815.75b | 1872.88b | 26.85 | <0.0001 | 0.0002 | 0.0072 | 0.9080 |
t6/8 C18:1 | 18.38b | 16.59b | 17.46b | 22.09a | 0.65 | 0.0045 | 0.2032 | 0.0018 | 0.1402 |
t9 C18:1 | 41.82a | 28.95b | 34.53ab | 40.05a | 1.58 | 0.0053 | 0.0019 | 0.0097 | 0.9928 |
t10 C18:1 | 0.33 | 0.32 | 0.33 | 0.33 | 0.00 | 0.7237 | 0.4458 | 0.3031 | 0.9308 |
t11 C18:1 | 628.16a | 402.09c | 442.44b | 462.07b | 21.52 | <0.0001 | <0.0001 | 0.0211 | 0.6063 |
t12 C18:1 | 0.14 | 0.14 | 0.15 | 0.13 | 0.00 | 0.5626 | 0.4609 | 0.6923 | 0.2646 |
trans C18:1 | 688.83a | 448.09c | 494.90bc | 524.67b | 22.52 | <0.0001 | <0.0001 | 0.0420 | 0.6588 |
c9 C18:1 | 807.30 | 772.81 | 790.94 | 808.31 | 8.73 | 0.4624 | 0.0918 | 0.2306 | 0.9880 |
c9t11 CLA | 41.40a | 34.37b | 34.80b | 36.73b | 0.95 | 0.0194 | 0.0018 | 0.3520 | 0.7312 |
t10c12 CLA | 28.22a | 23.58b | 25.42ab | 26.01ab | 0.73 | 0.1550 | 0.0305 | 0.2527 | 0.7297 |
C18:2 t9c11 | 3.66 | 3.34 | 3.56 | 3.72 | 0.12 | 0.6934 | 0.3025 | 0.3339 | 0.9252 |
C18:2 c10t12 | 1.75 | 1.61 | 1.58 | 1.60 | 0.07 | 0.8440 | 0.5684 | 0.9581 | 0.9035 |
C18:2n6 | 6.77a | 5.34b | 5.66b | 6.14ab | 0.21 | 0.0167 | 0.0056 | 0.1376 | 0.8381 |
C18:3n3 | 0.28a | 0.26b | 0.26b | 0.26b | 0.00 | 0.0004 | 0.0039 | 0.5098 | 0.7018 |
表5 日粮精料水平和Cr-Met添加对瘤胃脂肪酸组成的影响
Table 5 Effects of dietary concentrate level and Cr-Met supplementation on fatty acid composition of rumen fluid (mg·kg-1)
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
C18:0 | 23990.16b | 24825.01a | 24710.16a | 24530.07ab | 115.16 | 0.0352 | 0.0172 | 0.6803 | 0.3331 |
C18:1 | 2032.01a | 1750.91c | 1815.75b | 1872.88b | 26.85 | <0.0001 | 0.0002 | 0.0072 | 0.9080 |
t6/8 C18:1 | 18.38b | 16.59b | 17.46b | 22.09a | 0.65 | 0.0045 | 0.2032 | 0.0018 | 0.1402 |
t9 C18:1 | 41.82a | 28.95b | 34.53ab | 40.05a | 1.58 | 0.0053 | 0.0019 | 0.0097 | 0.9928 |
t10 C18:1 | 0.33 | 0.32 | 0.33 | 0.33 | 0.00 | 0.7237 | 0.4458 | 0.3031 | 0.9308 |
t11 C18:1 | 628.16a | 402.09c | 442.44b | 462.07b | 21.52 | <0.0001 | <0.0001 | 0.0211 | 0.6063 |
t12 C18:1 | 0.14 | 0.14 | 0.15 | 0.13 | 0.00 | 0.5626 | 0.4609 | 0.6923 | 0.2646 |
trans C18:1 | 688.83a | 448.09c | 494.90bc | 524.67b | 22.52 | <0.0001 | <0.0001 | 0.0420 | 0.6588 |
c9 C18:1 | 807.30 | 772.81 | 790.94 | 808.31 | 8.73 | 0.4624 | 0.0918 | 0.2306 | 0.9880 |
c9t11 CLA | 41.40a | 34.37b | 34.80b | 36.73b | 0.95 | 0.0194 | 0.0018 | 0.3520 | 0.7312 |
t10c12 CLA | 28.22a | 23.58b | 25.42ab | 26.01ab | 0.73 | 0.1550 | 0.0305 | 0.2527 | 0.7297 |
C18:2 t9c11 | 3.66 | 3.34 | 3.56 | 3.72 | 0.12 | 0.6934 | 0.3025 | 0.3339 | 0.9252 |
C18:2 c10t12 | 1.75 | 1.61 | 1.58 | 1.60 | 0.07 | 0.8440 | 0.5684 | 0.9581 | 0.9035 |
C18:2n6 | 6.77a | 5.34b | 5.66b | 6.14ab | 0.21 | 0.0167 | 0.0056 | 0.1376 | 0.8381 |
C18:3n3 | 0.28a | 0.26b | 0.26b | 0.26b | 0.00 | 0.0004 | 0.0039 | 0.5098 | 0.7018 |
1 | Serra A, Mele M, La Comba F, et al. Conjugated linoleic acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Science, 2009, 81(2): 396-404. |
2 | Schmid A, Collomb M, Sieber R, et al. Conjugated linoleic acid in meat and meat products: A review. Meat Science, 2006, 73(1): 29-41. |
3 | Gudla P, Abughazaleh A A, Ishlak A, et al. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Animal Feed Science and Technology, 2012, 171(2/3/4): 108-116. |
4 | Fuentes M C, Calsamiglia S, Cardozo P W, et al. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Journal of Dairy Science, 2009, 92(9): 4456-4466. |
5 | Majdoub-Mathlouthi L, Saïd B, Say A, et al. Effect of concentrate level and slaughter body weight on growth performances, carcass traits and meat quality of Barbarine lambs fed oat hay based diet. Meat Science, 2013, 93(3): 557-563. |
6 | Fruet A P, Stefanello F S, Rosado Junior A G, et al. Whole grains in the finishing of culled ewes in pasture or feedlot: Performance, carcass characteristics and meat quality. Meat Science, 2016, 113: 97-103. |
7 | Wang Y, Xu L, Liu J, et al. A high grain diet dynamically dhifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of cheep. Frontiers in Microbiology, 2017, 8: 2080. |
8 | Xu L, Wang Y, Liu J, et al. Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. Journal of Animal Science and Biotechnology, 2018, 9: 32. |
9 | Zhang J, Shi H, Wang Y, et al. Effect of dietary forage to foncentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Frontiers in Microbiology, 2017, 8: 2206. |
10 | Plaizier J C, Li S, Danscher A M, et al. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology, 2017, 74(2): 485-495. |
11 | Tian Y Y, Gong L M, Xue J X, et al. Effects of graded levels of chromium methionine on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. Biological Trace Element Research, 2015, 168(1): 110-421. |
12 | Gaebel G, Martens H, Suendermann M, et al. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo‐rumen of sheep. Quarterly Journal of Experimental Physiology, 1987, 72: 501-511. |
13 | Lashkari S, Habibian M, Jensen S K. A review on the role of chromium supplementation in ruminant nutrition-effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biological Trace Element Research, 2018, 186(2): 305-321. |
14 | Dallago B S, Mcmanus C M, Caldeira D F, et al. Performance and ruminal protozoa in lambs with chromium supplementation. Research in Veterinary Science, 2011, 90(2): 253-256. |
15 | Salamon R V, Vargáné-Visi É, András C D, et al. Synthetic methods to obtain conjugated linoleic acids (CLAs) by catalysis -A review. Acta Alimentaria, 2015, 44(2): 229-234. |
16 | Prem K J, Tv R. Current knowledge on source and synthesis of conjugated linoleic acid (CLA): A review. Advances in Biotechnology & Microbiology, 2017, 7(2): 8. |
17 | Wang J Q, Lu D X, Yang H J, et al. Feeding standard of mutton sheep NY/T 816-2004. Beijing: China Agriculture Press, 2004. |
王加启, 卢德勋, 杨红建, 等. 肉羊饲养标准NY/T 816-2004. 北京: 中国农业出版社, 2004. | |
18 | Wang J Q. Methods in ruminant nutrition research. Beijing: Modern Education Press, 2011. |
王加启. 反刍动物营养学研究方法. 北京: 现代教育出版社, 2011. | |
19 | Wu X D. Effects of flax seed cake instead of soybean meal on growth performance, blood biochemical indicators, rumen fermentation of sheep. Taiyuan: Shanxi Agricultural University, 2017. |
武晓东. 胡麻饼代替豆粕对肉羊生产性能、血液指标、瘤胃发酵性能的研究. 太原: 山西农业大学, 2017. | |
20 | Makkar H P S, Sharma O P, Dawra R K, et al. Simple determination of microbial protein in rumen liquor. Journal of Dairy Science, 1982, 65(11): 2170-2173. |
21 | Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2009, 83(5): 987-998. |
22 | Zhang Y Y, Wang C, Liu Q, et al. Effects of different roughage to concentrate ratios on ruminal fermentation characteristics, nutrients digestion and metabolism of Jinnan cattle. Chinese Journal of Animal Nutrition, 2014, 26(8): 2365-2372. |
张莹莹, 王聪, 刘强, 等. 不同精粗比饲粮对晋南牛瘤胃发酵特性和养分消化代谢的影响. 动物营养学报, 2014, 26(8): 2365-2372. | |
23 | Polyorach S, Wanapat M, Cherdthong A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 36-45. |
24 | Wang C, Liu Q, Guo G, et al. Effects of concentrate- to- forage ratios and 2-methylbutyrate supplementation on ruminal fermentation, bacteria abundance and urinary excretion of purine derivatives in Chinese Simmental steers. Journal of Animal Physiology and Animal Nutrition, 2018, 102(4): 901-909. |
25 | Kljak K, Pino F, Heinrichs A J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. Journal of Dairy Science, 2017, 100(1): 213-223. |
26 | Fuentes M C, Calsamiglia S, Fievez V, et al. Effect of pH on ruminal fermentation and biohydrogenation of diets rich in omega-3 or omega-6 fatty acids in continuous culture of ruminal fluid. Animal Feed Science and Technology, 2011, 169(1/2): 35-45. |
27 | Ishlak A, Günal M, Abughazaleh A A. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Animal Feed Science and Technology, 2015, 207: 31-40. |
28 | Jenkins T C, Wallace R J, Moate P J, et al. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 2008, 86(2): 397-412. |
29 | Latham M J, Storry J E, Sharpe M E. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied Microbiology, 1972, 24(6): 871-877. |
30 | Paillard D, Mckain N, Rincon M T, et al. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. Journal of Applied Microbiology, 2007, 103(4): 1251-1261. |
31 | Hobson P N. Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Journal of General Microbiology, 1965, 38(2): 167-180. |
32 | Mackie R I, Gilchrist F M C, Robberts A M, et al. Mircobiological and chemical changes in the rumen during the stepwise adaptation of sheep to high-concentrate diets. Journal of Agricultural Science, 1978, 90: 241-254. |
33 | Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the pumen pevealed with real-time PCR. Applied and Environmental Microbiology, 2001, 67(6): 2766-2774. |
34 | Verhulst A, Janssen G, Parmentier G, et al. Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Systematic and Applied Microbiology, 1987, 9(1/2): 12-15. |
35 | Troegeler-Meynadier A, Palagiano C, Enjalbert F. Effects of pH and fermentative substrate on ruminal metabolism of fatty acids during short-term in vitro incubation. Journal of Animal Physiology Animal Nutrition, 2013, 98(4): 704-713. |
36 | Prins R A, Lankhorst A, Meer P V D, et al. Some characteristics of anaerovibrio lipolytica a rumen lipolytic organism. Antonie van Leeuwenhoek, 1975, 41: 1-11. |
37 | Kalscheur K F, Teter B B, Piperova L S, et al. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy science, 1997, 80(9): 2104-2114. |
38 | Wallace J R, Chaudhary L C, Mckain N, et al. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiology Letters, 2006, 265(2): 195-201. |
39 | Mckain N, Shingfield K J, Wallace R J. Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: Products and mechanisms. Microbiology, 2010, 156(2): 579-588. |
40 | Abughazaleh A, Jacobson B N. Production of trans C18:1 and conjugated linoleic acid in continuous culture fermenters fed diets containing fish oil and sunflower oil with decreasing levels of forage. Animal, 2007, 1(5): 660-665. |
41 | Maczulak A E, Dehority B A, Palmquist D L. Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology, 1981, 42(5): 856-862. |
42 | Wallace R J, Mckain N, Shingfield K J, et al. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. Journal of Lipid Research, 2007, 48(10): 2247-2254. |
43 | Kim Y J, Liu R H, Rychlik J L, et al. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. Journal of Applied Microbiology, 2002, 92(5): 976-982. |
44 | Klieve A V, Hennessy D, Ouwerkerk D, et al. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology, 2003, 95(3): 621-630. |
45 | Maia M R, Chaudhary L C, Figueres L, et al. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 2007, 91(4): 303-314. |
[1] | 韩晓栩, 赵媛媛, 张丽静, 郭丁, 傅华, 李永善, 杨成新. 干旱和UV-B辐射胁迫及其互作对白沙蒿抗性生理的影响[J]. 草业学报, 2021, 30(8): 109-118. |
[2] | 张涛, 牟英玉, 亓王盼, 郭长征, 张继友, 毛胜勇. 亚急性瘤胃酸中毒耐受性不同的奶牛血浆和乳中脂肪酸及代谢物组成分析[J]. 草业学报, 2021, 30(7): 101-110. |
[3] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[4] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[5] | 王继卿, 沈继源, 刘秀, 李少斌, 罗玉柱, 赵孟丽, 郝志云, 柯娜, 宋宜泽, 乔莉蓉. 子午岭黑山羊与辽宁绒山羊产肉性能、肉品质、肌肉营养成分和脂肪酸含量比较[J]. 草业学报, 2021, 30(2): 166-177. |
[6] | 马晓文, 李发弟, 李飞, 郭龙. 饲粮大麦粉碎粒度对湖羊瘤胃微生物组成及肌肉脂肪酸的影响[J]. 草业学报, 2021, 30(12): 202-211. |
[7] | 吴爽, 周玉香, 贾柔, 金亚东, 杨万宗. 纤维素酶处理荞麦秸秆对其纤维结构和滩羊肉品质的影响[J]. 草业学报, 2021, 30(1): 170-180. |
[8] | 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8): 116-125. |
[9] | 宗成, 张健, 邵涛, 董志浩, 李君风, 唐露, 冉启凡, 刘秦华. 添加剂对紫花苜蓿青贮饲料发酵品质的影响[J]. 草业学报, 2020, 29(12): 180-187. |
[10] | 张翔, 杨勇, 刘学勇, 向佐湘. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响[J]. 草业学报, 2020, 29(1): 117-124. |
[11] | 司华哲, 李志鹏, 南韦肖, 金春爱, 李光玉, 刘晗璐. 添加植物乳杆菌对低水分稻秸青贮微生物组成影响研究[J]. 草业学报, 2019, 28(3): 184-192. |
[12] | 林栋, 张德罡, McCulleyRebeccaL.. 蔬菜-牧草轮作5年草地土壤微生物量变化及其群落结构分异[J]. 草业学报, 2019, 28(11): 22-31. |
[13] | 那亚, 孙启忠, 王红梅. 呼伦贝尔草甸草原牧草青贮饲料脂肪酸成分研究[J]. 草业学报, 2017, 26(2): 215-223. |
[14] | 付刚, 沈振西. 放牧改变了藏北高原高寒草甸土壤微生物群落[J]. 草业学报, 2017, 26(10): 170-178. |
[15] | 金艳梅, 张晓庆, 王冲, 李美, 王燚, 严沁. 放牧时间对羊肉多不饱和脂肪酸沉积及氧化稳定性的影响[J]. 草业学报, 2016, 25(7): 104-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||