草业学报 ›› 2021, Vol. 30 ›› Issue (8): 109-118.DOI: 10.11686/cyxb2020290
• 研究论文 • 上一篇
韩晓栩1(), 赵媛媛1(), 张丽静1(), 郭丁1, 傅华1, 李永善2, 杨成新3
收稿日期:
2020-06-24
修回日期:
2020-09-03
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
张丽静
作者简介:
Corresponding author. E-mail: lijingzhang@lzu.edu.cn基金资助:
Xiao-xu HAN1(), Yuan-yuan ZHAO1(), Li-jing ZHANG1(), Ding GUO1, Hua FU1, Yong-shan LI2, Cheng-xin YANG3
Received:
2020-06-24
Revised:
2020-09-03
Online:
2021-07-09
Published:
2021-07-09
Contact:
Li-jing ZHANG
摘要:
以白沙蒿为试验材料,在干旱(D)、UV-B辐射(U)和干旱与UV-B辐射复合(D+U)胁迫下,从幼苗生长、膜脂氧化、次生物质类黄酮、脂肪酸代谢及其基因表达等方面研究了干旱和UV-B辐射胁迫及其互作对白沙蒿抗性生理的影响。结果显示,D和U处理下,白沙蒿幼苗叶、茎、根生物量及总生物量积累减少,株高、叶面积和相对含水量(RWC)降低。D+U处理缓解了D和U处理造成的白沙蒿生物量的下降。D和U处理下,叶相对电导率(REC)显著升高;D+U处理的REC显著下降。D处理的丙二醛(MDA)含量和脂氧合酶(LOX)活性分别为对照(CK)的1.65和3.69倍,而U处理MDA含量和LOX活性无显著变化;D+U处理MDA含量和LOX活性分别为D处理的66.69%和44.00%。D和U处理类黄酮含量分别为CK的1.25和1.37倍;D+U处理类黄酮含量为D处理的1.57倍。D处理未引起不饱和脂肪酸指数(IUFA)显著变化,U处理造成IUFA显著降低,为CK的91.96%;D+U处理IUFA为U处理的1.08倍。结果表明,干旱和UV-B辐射胁迫引起的膜损伤是造成白沙蒿生物量下降的主要原因;干旱和UV-B辐射复合胁迫通过增加类黄酮含量、抑制LOX活性和提高脂肪酸不饱和度的效应产生叠加作用,缓解了彼此对白沙蒿造成的膜损伤。
韩晓栩, 赵媛媛, 张丽静, 郭丁, 傅华, 李永善, 杨成新. 干旱和UV-B辐射胁迫及其互作对白沙蒿抗性生理的影响[J]. 草业学报, 2021, 30(8): 109-118.
Xiao-xu HAN, Yuan-yuan ZHAO, Li-jing ZHANG, Ding GUO, Hua FU, Yong-shan LI, Cheng-xin YANG. Interactive effects of drought and UV-B radiation on physiological defences in Artemisia sphaerocephala[J]. Acta Prataculturae Sinica, 2021, 30(8): 109-118.
处理 Treatment | 生物量Biomass (g·plant-1) | 根冠比 Root-shoot ratio | 株高 Plant height (cm) | 叶面积 Leaf area (cm2) | |||
---|---|---|---|---|---|---|---|
叶Leaf | 茎Stem | 根Root | 合计Total | ||||
CK | 0.57±0.02a | 0.85±0.05a | 1.13±0.08a | 2.56±0.11a | 0.79±0.04a | 38.70±0.17a | 1.45±0.01a |
D | 0.43±0.00c | 0.60±0.01b | 0.68±0.09c | 1.70±0.10c | 0.66±0.08a | 30.27±1.20c | 0.74±0.02d |
U | 0.43±0.01c | 0.75±0.02a | 0.83±0.07bc | 2.01±0.09b | 0.71±0.05a | 31.63±1.16c | 1.08±0.01c |
D+U | 0.51±0.00b | 0.81±0.03a | 0.93±0.05ab | 2.25±0.03b | 0.71±0.05a | 34.60±0.15b | 1.25±0.02b |
表1 干旱和UV-B辐射及其互作对白沙蒿幼苗生长的影响
Table 1 Effect of growth indices on A. sphaerocephala seedlings treated with drought and UV-B radiation acting individually and in combination
处理 Treatment | 生物量Biomass (g·plant-1) | 根冠比 Root-shoot ratio | 株高 Plant height (cm) | 叶面积 Leaf area (cm2) | |||
---|---|---|---|---|---|---|---|
叶Leaf | 茎Stem | 根Root | 合计Total | ||||
CK | 0.57±0.02a | 0.85±0.05a | 1.13±0.08a | 2.56±0.11a | 0.79±0.04a | 38.70±0.17a | 1.45±0.01a |
D | 0.43±0.00c | 0.60±0.01b | 0.68±0.09c | 1.70±0.10c | 0.66±0.08a | 30.27±1.20c | 0.74±0.02d |
U | 0.43±0.01c | 0.75±0.02a | 0.83±0.07bc | 2.01±0.09b | 0.71±0.05a | 31.63±1.16c | 1.08±0.01c |
D+U | 0.51±0.00b | 0.81±0.03a | 0.93±0.05ab | 2.25±0.03b | 0.71±0.05a | 34.60±0.15b | 1.25±0.02b |
图1 干旱和UV-B辐射及其互作对白沙蒿叶相对含水量的影响不同小写字母表示在P<0.05水平上差异显著。下同。Different lowercase letters mean significant difference at P<0.05. The same below.
Fig.1 Effect of RWC on A. sphaerocephala leaves treated with drought and UV-B radiation acting individually and in combination
图2 干旱和UV-B辐射及其互作对白沙蒿叶相对电导率、丙二醛含量和脂氧合酶活性的影响
Fig.2 Effect of REC, MDA content and LOX activity on A. sphaerocephala leaves treated with drought and UV-B radiation acting individually and in combination
图3 干旱和UV-B辐射及其互作对白沙蒿叶类黄酮含量及其合成途径中关键酶的影响
Fig.3 Effect of flavonoids content and key enzymes in its synthesis pathway on A. sphaerocephala leaves treated with drought and UV-B radiation acting individually and in combination
脂肪酸Fatty acid | CK | D | U | D+U |
---|---|---|---|---|
C16:0 | 19.37±0.12a | 17.26±0.05c | 18.44±0.08b | 19.13±0.10a |
C18:0 | 2.30±0.15a | 2.15±0.24a | 2.61±0.41a | 2.33±0.25a |
C18:1 | 3.17±0.01c | 3.76±0.11b | 8.78±0.10a | 3.01±0.03c |
C18:2 | 29.40±0.06b | 23.80±0.10d | 32.24±0.28a | 28.31±0.21c |
C18:3 | 42.19±0.27b | 45.03±0.34a | 33.38±0.29c | 42.36±0.28b |
C20:0 | 3.57±0.36b | 7.99±0.19a | 4.55±0.44b | 4.87±0.08b |
SFA | 25.24±0.33b | 27.40±0.37a | 25.61±0.46b | 26.32±0.24ab |
UFA | 74.76±0.33a | 72.60±0.37b | 74.39±0.46a | 73.68±0.24ab |
IUFA | 188.54±0.92a | 188.45±1.01a | 173.40±1.31b | 186.71±0.72a |
表2 干旱和UV-B辐射及其互作对白沙蒿叶脂肪酸组成及含量的影响
Table 2 Effect of fatty acid composition and content on A. sphaerocephala leaves treated with drought and UV-B radiation acting individually and in combination (%)
脂肪酸Fatty acid | CK | D | U | D+U |
---|---|---|---|---|
C16:0 | 19.37±0.12a | 17.26±0.05c | 18.44±0.08b | 19.13±0.10a |
C18:0 | 2.30±0.15a | 2.15±0.24a | 2.61±0.41a | 2.33±0.25a |
C18:1 | 3.17±0.01c | 3.76±0.11b | 8.78±0.10a | 3.01±0.03c |
C18:2 | 29.40±0.06b | 23.80±0.10d | 32.24±0.28a | 28.31±0.21c |
C18:3 | 42.19±0.27b | 45.03±0.34a | 33.38±0.29c | 42.36±0.28b |
C20:0 | 3.57±0.36b | 7.99±0.19a | 4.55±0.44b | 4.87±0.08b |
SFA | 25.24±0.33b | 27.40±0.37a | 25.61±0.46b | 26.32±0.24ab |
UFA | 74.76±0.33a | 72.60±0.37b | 74.39±0.46a | 73.68±0.24ab |
IUFA | 188.54±0.92a | 188.45±1.01a | 173.40±1.31b | 186.71±0.72a |
图4 干旱和UV-B辐射及其互作对白沙蒿叶中FAD基因表达的影响
Fig.4 Effect of FAD gene expression on A. sphaerocephala leaves treated with drought and UV-B radiation acting individually and in combination
图5 干旱和UV-B辐射及其互作对白沙蒿类黄酮和脂肪酸代谢的影响方框内的“↑”和“↓”分别代表胁迫对白沙蒿的促进和抑制作用。 ↑ and ↓ in the box respectively represent the promotion and inhibition of stress in A. sphaerocephala.
Fig.5 Effects of drought and UV-B radiation on flavonoid metabolism and fatty acid metabolism in A. sphaerocephala
1 | Schimel D S. Drylands in the earth system. Science, 2010, 327: 418-419. |
2 | Wassmann R, Jagadish S V K, Heuer S, et al. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 2009, 101(8): 59-122. |
3 | Hui R, Zhao R, Song G, et al. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species. Environmental Science & Pollution Research International, 2018, 25(3/4): 1-11. |
4 | Zhang X X, Tang X, Wang M, et al. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. Journal of Photochemistry & Photobiology B Biology, 2017, 173: 360-367. |
5 | Alonso R, Berli F J, Piccoli P, et al. Ultraviolet-B radiation, water deficit and abscisic acid: A review of independent and interactive effects on grapevines. Theoretical & Experimental Plant Physiology, 2016, 28(1): 11-22. |
6 | Wang L J, Li D, Shen H T, et al. Effects of brassinolide on growth, physiology and photosynthetic characteristics of flue-cured tobacco seedlings under drought stress. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(11): 33-41. |
王丽君, 李冬, 申洪涛, 等.油菜素内酯对干旱胁迫下烤烟幼苗生长生理及光合特性的影响. 西北农林科技大学学报(自然科学版), 2020, 48(11): 33-41. | |
7 | Duan B L, Xuan Z Y, Zhang X L, et al. Interactions between drought, ABA application and supplemental UV-B in Populus yunnanensis. Physiologia Plantarum, 2010, 134(2): 257-269. |
8 | Sangtarash M H, Qaderi M M, Chinnappa C C, et al. Differential responses of two Stellaria longipes ecotypes to ultraviolet-B radiation and drought stress. Flora, 2009, 204(8): 593-603. |
9 | Hanna B, Justyna N, Tamara C. Separate and combined responses to water deficit and UV-B radiation. Plant Science, 2013, 213(4): 98-105. |
10 | Hui R, Zhao R, Liu L, et al. Effects of UV-B, water deficit and their combination on Bryum argenteum plants. Russian Journal of Plant Physiology, 2016, 63(2): 216-223. |
11 | He L H, Jia X Y, Gao Z Q, et al. Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses. African Journal of Biotechnology, 2011, 1020(20): 4046-4056. |
12 | Cechin I, Corniani N, Fumis T, et al. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiation & Environmental Biophysics, 2008, 47(3): 405-413. |
13 | Mao L C, Pang H Q, Wang G, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 2007, 44(1): 42-47. |
14 | King D L, Klein B P. Effect of flavonoids and related compounds on soybean lipoxygenase-1 activity. Journal of Food Science, 2010, 52(1): 220-221. |
15 | Gondor O K, Szalai G, Kovács V, et al. Impact of UV-B on drought- or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat. Ecotoxicology and Environmental Safety, 2014, 108: 129-134. |
16 | Xu L X, Han L B, Huang B R. Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass. Crop Science, 2011, 51(1): 273-281. |
17 | Gupta R, Bhadauriya P, Chauhan V S, et al. Impact of UV-B radiation on thylakoid membrane and fatty acid profile of Spirulina platensis. Current Microbiology, 2008, 56(2): 156-161. |
18 | Hai Z, Zhao W Z, Zheng X J, et al. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat. Journal of Plant Research, 2015, 128(4): 613-622. |
19 | Liu M L, Li X R, Liu Y B, et al. Analysis of differentially expressed genes under UV-B radiation in the desert plant Reaumuria soongorica. Gene, 2015, 574(2): 265-272. |
20 | Editorial Board of the Flora of China of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1991: 76. |
中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1991: 76. | |
21 | Yang X, Baskin C C, Baskin J M, et al. Seed mucilage improves seedling emergence of a sand desert shrub. PloS One, 2012, 7(4): e34597. |
22 | Wan L Q, Li X L, Shi Y H, et al. A study on the response and on the comparison of physiological and biochemical indexes of four Lolium perenne varieties under PEG stress. Acta Prataculturae Sinica, 2010, 19(1): 83-88. |
万里强, 李向林, 石永红, 等. PEG胁迫下4个黑麦草品种生理生化指标响应与比较研究. 草业学报, 2010, 19(1): 83-88. | |
23 | Chen A K, Han R H, Li D Y, et al. A Comparison of two methods for electrical conductivity about plant leaves. Journal of Guangdong Education Institute, 2010, 30(5): 88-91. |
陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究. 广东教育学院学报, 2010, 30(5): 88-91. | |
24 | Qin Y R, Nong Y C, Huang J B, et al. The comparison of contents of malondialdehyde and proline in the area of Karst area in Northwestern Guangxi Province. Agricultural Science & Technology, 2011, 12(4): 469-473, 575. |
覃勇荣, 农艳春, 黄江滨, 等. 桂西北岩溶地区植物丙二醛和脯氨酸含量比较. 农业科学与技术, 2011, 12(4): 469-473, 575. | |
25 | Liu B G, Zhu Y Y. Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. Journal of Food Engineering, 2007, 78(2): 584-587. |
26 | Chu B Q, Mao Z X, Fu H. Study on fatty acid of Vicia sativa and Elymus nutans in alpine grassland region. Pratacultural Science, 2011, 28(6): 1190-1193. |
楚秉泉, 毛祝新, 傅华. 高山草原地区箭筈豌豆和垂穗披碱草脂肪酸构成研究. 草业科学, 2011, 28(6): 1190-1193. | |
27 | Hu X, Zhang L, Nan S, et al. Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data. Gene, 2018, 657: 39-49. |
28 | Harwood J L. Recent advances in the biosynthesis of plant fatty acids. Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism, 1996, 1301(1/2): 7-56. |
29 | Martinez-Luescher J, Torres N, Hilbert G, et al. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry, 2014, 102: 106-114. |
30 | Bandurska H, Cieślak M. Response of barley seedlings to water deficit and enhanced UV-B irradiation acting alone and in combination. Acta Physiologiae Plantarum, 2012, 34(1): 161-171. |
31 | Rajabbeigi E, Eichholz I, Beesk N, et al. Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). Journal of Applied Botany and Food Quality, 2013, 86: 190-197. |
32 | Liu M L, Cao B, Zhou S H, et al. Responses of the flavonoid pathway to UV-B radiation stress and the correlation with the lipid antioxidant characteristics in the desert plant Caryopteris mongolica. Acta Ecologica Sinica, 2012, 32(3): 150-155. |
33 | Myungmin O, Carey E E, Rajashekar C B. Regulated water deficits improve phytochemical concentration in lettuce. Journal of the American Society for Horticultural Science, 2010, 135(3): 223-229. |
34 | Shehab G G, Ahmed O K, El-Beltagi H S. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38(1): 139-148. |
35 | Chen Y J, Wang J X. Inhibitory effects of several flavonoidson the activity of soybean lipoxygenase. Natural Product Research and Development, 2008(1): 98-101. |
陈艳君, 王建新. 黄酮类化合物对大豆脂肪氧合酶的抑制作用研究. 天然产物研究与开发, 2008(1): 98-101. | |
36 | Toumi I, Gargouri M, Nouairi I, et al. Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biologia Plantarum, 2008, 52(1): 161-164. |
37 | Zhang J, Kenworthy K, Unruh J B, et al. Changes of leaf membrane fatty acid composition and saturation level of warm-season turfgrass during drought stress. Crop Science, 2017, 57(5): 2843-2851. |
38 | Kramer G F, Norman H A, Krizek D T, et al. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry, 1991, 30(7): 2101-2108. |
39 | Miao X M, Zhang L J, Chen X L, et al. The relationship of fatty acid composition and resistance of Artemisia sphaerocephala seedlings under water stress. Acta Prataculturae Sinica, 2015, 24(2): 55-61. |
缪秀梅, 张丽静, 陈晓龙, 等. 水分胁迫下白沙蒿幼苗抗性与其膜脂构成关系研究. 草业学报, 2015, 24(2): 55-61. | |
40 | Liu H, Zhang J T, Chen H Y, et al. Fatty acid desaturation and plant responses to biotic and abiotic stresses. Journal of Northeast Agricultural University, 2013, 44(1): 154-160. |
刘华, 张建涛, 陈海燕, 等. 脂肪酸去饱和酶参与植物对胁迫的响应. 东北农业大学学报, 2013, 44(1): 154-160. | |
41 | Huang X. Effect of LeFAD7 gene on drought resistance of tomato plants. Northern Horticulture, 2010(21): 145-149. |
黄霄. ω-3脂肪酸去饱和酶基因对番茄抗旱性的影响. 北方园艺, 2010(21): 145-149. |
[1] | 张涛, 牟英玉, 亓王盼, 郭长征, 张继友, 毛胜勇. 亚急性瘤胃酸中毒耐受性不同的奶牛血浆和乳中脂肪酸及代谢物组成分析[J]. 草业学报, 2021, 30(7): 101-110. |
[2] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[3] | 赵小强, 钟源, 周文期. 不同水分环境下玉米叶面积QTL定位及候选基因分析[J]. 草业学报, 2021, 30(5): 103-120. |
[4] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
[5] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[6] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[7] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[8] | 张宁, 曹允馨, 徐伟, 常智慧. 干旱胁迫下污泥对草地早熟禾生长及激素代谢的影响[J]. 草业学报, 2021, 30(3): 167-176. |
[9] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[10] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[11] | 王继卿, 沈继源, 刘秀, 李少斌, 罗玉柱, 赵孟丽, 郝志云, 柯娜, 宋宜泽, 乔莉蓉. 子午岭黑山羊与辽宁绒山羊产肉性能、肉品质、肌肉营养成分和脂肪酸含量比较[J]. 草业学报, 2021, 30(2): 166-177. |
[12] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[13] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[14] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[15] | 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8): 116-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||