草业学报 ›› 2022, Vol. 31 ›› Issue (4): 81-92.DOI: 10.11686/cyxb2021045
收稿日期:
2021-02-02
修回日期:
2021-03-10
出版日期:
2022-04-20
发布日期:
2022-01-25
通讯作者:
刘文辉
作者简介:
Corresponding author. E-mail: qhliuwenhui@163.com基金资助:
Rui WU(), Wen-hui LIU(), Yong-chao ZHANG, Min-jie LIU
Received:
2021-02-02
Revised:
2021-03-10
Online:
2022-04-20
Published:
2022-01-25
Contact:
Wen-hui LIU
摘要:
为探究老芒麦离区形态特征和影响落粒的关键因素,以1份高落粒种质和1份低落粒种质为研究对象,两份材料各自达到乳熟期开始分批采集样品,从离区形态特征、水解酶活性、动态落粒率及生理特性方面对两份种质及两种脱落类型进行了比较分析,进而明确高落粒与低落粒材料在落粒性上的差异以及种柄离区和小穗柄离区的差异。结果表明:1)高落粒材料的离区发育较低落粒材料早,且离区内陷较明显。种柄离区发育较小穗柄离区早,且离区更明显。观察脱落后的离区断裂面发现,离区存在环状结构。2)水解酶活性在乳熟后各时期存在差异,种子成熟后期酶活性普遍较高。高落粒材料的酶活性高于低落粒材料,种柄酶活性高于小穗柄酶活性,表明种柄脱落在落粒过程中占主导位置。3)种子成熟过程中,落粒率逐渐增加,高落粒种质的落粒率始终高于低落粒种质,且高落粒种质乳熟后第16天开始落粒率迅速增加。4)种子成熟过程中,落粒率与含水量、电导率及可溶性糖含量呈极显著(P<0.01)负相关,而与酶活性、发芽率及淀粉含量呈显著(P<0.05)或极显著(P<0.01)正相关,表明生理物质对老芒麦落粒具有一定的调控作用。因此,综合以上生理指标选择乳熟后第16天为老芒麦的最适收获期,该时期老芒麦种子已具有较高的活力,且能避免种子脱落的高峰期。
吴瑞, 刘文辉, 张永超, 刘敏洁. 老芒麦离区形态特征及生理特性差异研究[J]. 草业学报, 2022, 31(4): 81-92.
Rui WU, Wen-hui LIU, Yong-chao ZHANG, Min-jie LIU. Differences in morphological and physiological characteristics in the abscission zone of shattering-prone and shattering-resistant genotypes of Elymus sibiricus[J]. Acta Prataculturae Sinica, 2022, 31(4): 81-92.
资源编号Germplasm number | 采集地点Site | 生境Habitat | 落粒性Seed shattering | 类别Status |
---|---|---|---|---|
16-033 | 青海门源Menyuan,Qinghai | 河边、路边Riverside, roadside | 低落粒Low shattering | 野生种Wild |
17-149 | 青海贵德Guide,Qinghai | 干旱草原Arid grassland | 高落粒High shattering | 野生种Wild |
表1 供试老芒麦材料相关信息
Table 1 Information of E. sibiricus in this study
资源编号Germplasm number | 采集地点Site | 生境Habitat | 落粒性Seed shattering | 类别Status |
---|---|---|---|---|
16-033 | 青海门源Menyuan,Qinghai | 河边、路边Riverside, roadside | 低落粒Low shattering | 野生种Wild |
17-149 | 青海贵德Guide,Qinghai | 干旱草原Arid grassland | 高落粒High shattering | 野生种Wild |
图1 两份种质小穗柄与种柄部位离区形态特征A: 离区发育动态体视显微照片Stereoptic micrographs of abscission-zone developmental dynamic; B: 小穗柄或种柄脱落后离区断裂面Abscission-zone fracture surface after the spikelet stalk or seedstalk falls.
Fig.1 Morphological characteristics of spikelet stalk and seedstalk of two germplasms
乳熟后天数 Days after milk stage (d) | 多聚半乳糖醛酸酶活性 Polygalacturonase activity (mg·h-1·g-1 FW) | 纤维素酶活性 Cellulase activity (μg·min-1·g-1 FW) | ||||
---|---|---|---|---|---|---|
高落粒High shattering | 低落粒Low shattering | t值t value | 高落粒High shattering | 低落粒Low shattering | t值t value | |
1 | 4.20±0.58e | 3.45±0.78d | 1.347 | 293.45±58.32e | 133.49±20.45e | 4.483* |
4 | 7.35±1.10d | 3.00±0.36d | 6.509** | 414.88±14.93d | 360.93±8.95d | 5.369** |
7 | 11.47±3.61c | 6.02±1.00c | 2.521 | 584.42±37.48c | 535.87±48.63c | 1.370 |
10 | 17.21±0.78b | 3.09±0.65d | 24.045*** | 617.79±84.05c | 572.68±27.52bc | 0.883 |
13 | 12.65±0.79c | 8.27±0.60b | 7.649** | 838.05±27.56a | 664.22±4.11a | 10.804*** |
16 | 13.67±1.07c | 9.11±1.06b | 5.265** | 540.34±33.21c | 605.29±20.97b | -2.864* |
19 | 12.01±1.59c | 5.26±1.49c | 5.345** | 717.95±16.51b | 652.08±29.47a | 3.377* |
22 | 20.03±0.92a | 18.51±0.87a | 2.080 | 734.73±51.99b | 528.11±4.18c | 6.862* |
F | 29.814** | 96.485** | - | 44.682** | 153.269** | - |
表2 两份种质成熟过程中的酶活性变化
Table 2 Changes of enzyme activity during ripening of two germplasms
乳熟后天数 Days after milk stage (d) | 多聚半乳糖醛酸酶活性 Polygalacturonase activity (mg·h-1·g-1 FW) | 纤维素酶活性 Cellulase activity (μg·min-1·g-1 FW) | ||||
---|---|---|---|---|---|---|
高落粒High shattering | 低落粒Low shattering | t值t value | 高落粒High shattering | 低落粒Low shattering | t值t value | |
1 | 4.20±0.58e | 3.45±0.78d | 1.347 | 293.45±58.32e | 133.49±20.45e | 4.483* |
4 | 7.35±1.10d | 3.00±0.36d | 6.509** | 414.88±14.93d | 360.93±8.95d | 5.369** |
7 | 11.47±3.61c | 6.02±1.00c | 2.521 | 584.42±37.48c | 535.87±48.63c | 1.370 |
10 | 17.21±0.78b | 3.09±0.65d | 24.045*** | 617.79±84.05c | 572.68±27.52bc | 0.883 |
13 | 12.65±0.79c | 8.27±0.60b | 7.649** | 838.05±27.56a | 664.22±4.11a | 10.804*** |
16 | 13.67±1.07c | 9.11±1.06b | 5.265** | 540.34±33.21c | 605.29±20.97b | -2.864* |
19 | 12.01±1.59c | 5.26±1.49c | 5.345** | 717.95±16.51b | 652.08±29.47a | 3.377* |
22 | 20.03±0.92a | 18.51±0.87a | 2.080 | 734.73±51.99b | 528.11±4.18c | 6.862* |
F | 29.814** | 96.485** | - | 44.682** | 153.269** | - |
乳熟后天数 Days after milk stage (d) | 多聚半乳糖醛酸酶活性 Polygalacturonase activity (mg·h-1·g-1) | 纤维素酶活性 Cellulase activity (μg·min-1·g-1) | ||||
---|---|---|---|---|---|---|
种柄Seedstalk | 小穗柄Spikelet stalk | t值t value | 种柄Seedstalk | 小穗柄Spikelet stalk | t值t value | |
1 | 3.72±1.04f | 3.92±1.07e | -0.223 | 190.10±45.22g | 236.84±30.21e | -1.488 |
4 | 5.61±0.81e | 4.74±0.07de | 1.855 | 440.97±4.70f | 334.84±15.90d | 11.091*** |
7 | 9.35±1.32d | 8.14±2.36c | 0.772 | 572.48±32.31e | 547.81±12.54a | 1.233 |
10 | 11.93±0.96c | 8.37±1.19c | 4.028* | 689.69±28.99d | 500.78±70.14ab | 4.312* |
13 | 13.71±1.39b | 7.21±1.33cd | 5.865** | 974.56±37.13a | 527.71±13.54a | 19.587*** |
16 | 10.42±0.90cd | 12.36±2.13b | -1.449 | 748.17±31.79c | 397.46±8.80c | 18.418*** |
19 | 9.05±0.57d | 8.21±2.67c | 0.531 | 906.60±25.28b | 463.43±17.51b | 24.955*** |
22 | 21.90±0.82a | 16.64±1.29a | 5.949** | 718.02±21.13cd | 544.82±42.09a | 6.369** |
F | 90.348** | 17.418** | - | 206.852** | 35.381** | - |
表3 两种脱落类型酶活性差异
Table 3 Changes of enzyme activity during ripening of two shattering types
乳熟后天数 Days after milk stage (d) | 多聚半乳糖醛酸酶活性 Polygalacturonase activity (mg·h-1·g-1) | 纤维素酶活性 Cellulase activity (μg·min-1·g-1) | ||||
---|---|---|---|---|---|---|
种柄Seedstalk | 小穗柄Spikelet stalk | t值t value | 种柄Seedstalk | 小穗柄Spikelet stalk | t值t value | |
1 | 3.72±1.04f | 3.92±1.07e | -0.223 | 190.10±45.22g | 236.84±30.21e | -1.488 |
4 | 5.61±0.81e | 4.74±0.07de | 1.855 | 440.97±4.70f | 334.84±15.90d | 11.091*** |
7 | 9.35±1.32d | 8.14±2.36c | 0.772 | 572.48±32.31e | 547.81±12.54a | 1.233 |
10 | 11.93±0.96c | 8.37±1.19c | 4.028* | 689.69±28.99d | 500.78±70.14ab | 4.312* |
13 | 13.71±1.39b | 7.21±1.33cd | 5.865** | 974.56±37.13a | 527.71±13.54a | 19.587*** |
16 | 10.42±0.90cd | 12.36±2.13b | -1.449 | 748.17±31.79c | 397.46±8.80c | 18.418*** |
19 | 9.05±0.57d | 8.21±2.67c | 0.531 | 906.60±25.28b | 463.43±17.51b | 24.955*** |
22 | 21.90±0.82a | 16.64±1.29a | 5.949** | 718.02±21.13cd | 544.82±42.09a | 6.369** |
F | 90.348** | 17.418** | - | 206.852** | 35.381** | - |
图2 两份资源动态落粒率比较不同字母表示同一资源不同时期差异极显著(P<0.01) Different letters indicate that the same germplasm has extremely significant differences in different periods (P<0.01); ***: 各时期两份种质间差异极显著(P<0.001)Significant differences between the two germplasms in different periods (P<0.001); 下同The same below.
Fig.2 Comparison of dynamic shattering rate of two germplasms
乳熟后天数 Days after milk stage (d) | 标准发芽率Standard germination rate (%) | t值 t value | |
---|---|---|---|
高落粒 High shattering | 低落粒 Low shattering | ||
1 | 64.67±10.07e | 68.67±3.06e | -0.659 |
4 | 67.33±3.06e | 83.33±5.03d | -4.707** |
7 | 63.33±4.16de | 68.67±7.02e | -1.131 |
10 | 73.67±1.53cd | 87.67±2.08bcd | -9.391** |
13 | 75.67±1.53bc | 91.67±2.08abc | -10.733*** |
16 | 81.67±2.08b | 95.67±2.08a | -8.237** |
19 | 90.00±2.00a | 85.33±1.15cd | 3.500* |
22 | 93.33±1.15a | 92.33±2.08ab | 0.728 |
F | 21.626** | 25.046** | - |
表4 两份种质成熟过程中标准发芽率的变化
Table 4 Changes of standard germination rate during ripening of two germplasms
乳熟后天数 Days after milk stage (d) | 标准发芽率Standard germination rate (%) | t值 t value | |
---|---|---|---|
高落粒 High shattering | 低落粒 Low shattering | ||
1 | 64.67±10.07e | 68.67±3.06e | -0.659 |
4 | 67.33±3.06e | 83.33±5.03d | -4.707** |
7 | 63.33±4.16de | 68.67±7.02e | -1.131 |
10 | 73.67±1.53cd | 87.67±2.08bcd | -9.391** |
13 | 75.67±1.53bc | 91.67±2.08abc | -10.733*** |
16 | 81.67±2.08b | 95.67±2.08a | -8.237** |
19 | 90.00±2.00a | 85.33±1.15cd | 3.500* |
22 | 93.33±1.15a | 92.33±2.08ab | 0.728 |
F | 21.626** | 25.046** | - |
图7 各指标间相关性分析SR: 落粒率Shattering rate; PG of SS: 种柄多聚半乳糖醛酸酶活性PG activity of seedstalk; PG of SP: 小穗柄多聚半乳糖醛酸酶活性PG of spikelet stalk; CL of SS: 种柄纤维素酶活性CL activity of seedstalk; CL of SP: 小穗柄纤维素酶活性CL of spikelet stalk; SWC: 种子含水量Seed water content; SPWC: 穗含水量Spikelet water content; SG: 标准发芽率Standard germination rate; CR: 电导率Conductivity rate; SUC: 可溶性糖含量Soluble sugar content; SC: 淀粉含量Starch content; ***: P<0.001; **: P<0.01; *: P<0.05.
Fig.7 Correlation analysis of each index
1 | Zhao X H, Xie W G, Zhang J C, et al. Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Frontiers in Plant Science, 2017, DOI: 10.3389/fpls.2017.00606. |
2 | Zhang J C, Xie W G, Zhao X H, et al. Enzyme activity change and histological analysis of the abscission zone of Elymus sibiricus. Acta Prataculturae Sinica, 2018, 27(7): 84-92. |
张俊超, 谢文刚, 赵旭红, 等. 老芒麦种子离区酶活变化及组织学分析. 草业学报, 2018, 27(7): 84-92. | |
3 | Zhao X H. The primary investigation of seed shattering mechanism and novel accession creation in Siberian wildrye (Elymus sibiricus L.). Lanzhou: Lanzhou University, 2017. |
赵旭红. 老芒麦落粒机理初探及新种质创制. 兰州: 兰州大学, 2017. | |
4 | Zhang J C, Zhao X H, Zhang Z Y, et al. Seed shattering dynamic, and its relationship with agronomic traits and geographical distribution of Elymus sibiricus in Qinghai-Tibet plateau. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(8): 1595-1602. |
张俊超, 赵旭红, 张宗瑜, 等. 青藏高原老芒麦落粒动态与农艺性状及地理分布关系研究. 西北植物学报, 2017, 37(8): 1595-1602. | |
5 | Patterson S E. Cutting loose. Abscission and dehiscence in Arabidopsis.Plant Physiology, 2001, 126(2): 494-500. |
6 | Tucker M L, Kim J. Abscission Research: What we know and what we still need to study. Stewart Postharvest Review, 2015, 11(2): 7. |
7 | Zanchin A, Marcato C, Trainotti L, et al. Characterization of abscission zones in the flowers and fruits of peach. New Phytologist, 2010, 129(2): 345-354. |
8 | Thurber C S, Hepler P K, Caicedo A L. Timing is everything: Early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice. BMC Plant Biology, 2011, DOI: 10.1186/1471-2229-11-14. |
9 | Liu Z J, Chen Y, Meng J, et al. Seed shattering and relevant traits of Leymus chinensis. Acta Agrestia Sinica, 2013, 21(1): 152-158. |
刘祝江, 陈延, 蒙静, 等. 羊草种子的落粒性及其相关特征的研究. 草地学报, 2013, 21(1): 152-158. | |
10 | You M H, Liu J P, Bai S Q, et al. Study on relationship of seed shattering, seed development and yield traits of Elymus sibiricus L.Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1256-1260. |
游明鸿, 刘金平, 白史且, 等. 老芒麦落粒性与种子发育及产量性状关系的研究. 西南农业学报, 2011, 24(4): 1256-1260. | |
11 | Chaowen X, Chris S, Anderson C T. Polygalacturonase involved in expansion1 functions in cell elongation and flower development in Arabidopsis. Plant Cell, 2014, 26(3): 1018-1035. |
12 | Taylor J E, Webb S T J, Coupe S A, et al. Changes in polygalacturonase activity and solubility of polyuronides during ethylene-stimulated leaf abscission in Sambucus nigra. Journal of Experimental Botany, 1993, 44: 93-98. |
13 | Bonghi C, Rascio N, Ramina A, et al. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Molecular Biology, 1992, 20(5): 839-848. |
14 | GonzÃlez-carranza Z H, Elliott K A, Roberts J A. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsisthaliana. Journal of Experimental Botany, 2007, 58(13): 3719-3730. |
15 | Qiao A H, Han J G. Study on the changes of seed vigor during the maturation process of Elymus nutans and its optimal harvesting time. Journal of Anhui Agricultural Sciences, 2010, 38(22): 11847-11850. |
乔安海, 韩建国. 垂穗披碱草种子成熟过程中活力变化及适宜收获期研究. 安徽农业科学, 2010, 38(22): 11847-11850. | |
16 | Wu R, Liu W H, Zhang Y C, et al. A study of the correlation between seed shattering and agronomic trait of Elymus sibiricus on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2021, 30(4): 130-139. |
吴瑞, 刘文辉, 张永超, 等.青藏高原老芒麦落粒性及农艺性状相关性研究. 草业学报, 2021, 30(4): 130-139. | |
17 | Larson S R, Kellogg E A. Genetic dissection of seed production traits and identification of a major-effect seed retention QTL in hybrid Leymus (Triticeae) Wildryes. Crop Science, 2009, 49: 29-40. |
18 | Ma C H, Cheng J, Han J G, et al. Study on the dynamic changes of physiological and biochemical changes of Xinjiang Festuca arundinacea seed development. Acta Prataculturae Sinica, 2002, 11(4): 78-82. |
马春晖, 程军, 韩建国, 等. 新疆高羊茅种子发育生理生化变化的动态研究. 草业学报, 2002, 11(4): 78-82. | |
19 | Wang Y R, Guo L Z, Li H. GBT2930.4-2001 Rules for forage seed testing. Beijing: Standard Press of China, 2001. |
王彦荣, 郭莉珍, 李宏. GBT2930. 4-2001牧草检验规程发芽试验. 北京: 中国标准出版社, 2001. | |
20 | Feng Y R, Zhou Q, Li S, et al. Comparative study on stored seed vigor of different wheat varieties(lines). Seed, 2019, 38(1): 5-12. |
冯燕茹, 周琪, 李嵩, 等. 不同小麦品种(系)的存放种子活力比较研究. 种子, 2019, 38(1): 5-12. | |
21 | Gao J F. Plant physiology experiment guide. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
22 | Wang Y M. Wheat non-structural carbohydrates cumulative distribution and photosynthetic physiological response to water stress. Lanzhou: Gansu Agricultural University, 2014. |
王雅梅. 小麦非结构性碳水化合物累积分配和光合生理对水分胁迫的响应. 兰州: 甘肃农业大学, 2014. | |
23 | Fan S G, Wang Y R, Zhang M Q, et al. Seed shattering of gramineous grass. Pratacultural Science, 2013, 30(9): 1420-1427. |
范树高, 王彦荣, 张妙青, 等. 禾本科牧草种子的落粒性. 草业科学, 2013, 30(9): 1420-1427. | |
24 | Miao Y L. Study on the occurrence regularity and physiological mechanism of buckwheat falling granules. Xianyang: Northwest A&F University, 2019. |
缪亚丽. 荞麦落粒发生规律及其生理机制研究. 咸阳: 西北农林科技大学, 2019. | |
25 | Song Y P, Song L M. Research progress in molecular biology of rice shattering. Jiangsu Agricultural Sciences, 2015, 43(7): 88-90. |
宋颖娉, 宋立明. 水稻落粒性的分子生物学研究进展. 江苏农业科学, 2015, 43(7): 88-90. | |
26 | Zhang M Q. Seed shattering and its related MADS-box genes in Elymus nutans. Lanzhou: Lanzhou University, 2011. |
张妙青. 垂穗披碱草种子落粒性及其相关MADS-box基因研究. 兰州: 兰州大学, 2011. | |
27 | Zhang S, Zhang G L, Zeng X L. Advances in research on the effects of polygalacturonase and cellulase on fruit ripening. Journal of Fruit Science, 2005, 22(5): 532-536. |
张嵩, 张光伦, 曾秀丽. 纤维素酶和多聚半乳糖醛酸酶与果实成熟. 果树学报, 2005, 22(5): 532-536. | |
28 | Qi M F, Xu Y, Li T L, et al. Separation, purification and characterization of polygalacturonase of tomato pedicel related to abscission. Plant Physiology Communications, 2008, 44(3): 30-34. |
齐明芳, 徐杨, 李天来, 等. 与番茄花柄脱落相关的多聚半乳糖醛酸酶的分离纯化和特性. 植物生理学通讯, 2008, 44(3): 30-34. | |
29 | Xie W G, Zhang J C, Zhao X H, et al. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biology, 2017, https://doi.org/10.1186/s12870-017-1026-2 . |
[1] | 谢文刚, 万依阳, 张宗瑜, 张俊超. 禾本科植物落粒机理研究进展[J]. 草业学报, 2021, 30(8): 186-198. |
[2] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[3] | 张宇君, 尚以顺, 王普昶, 丁磊磊, 张文, 邹超. 干旱胁迫下保水剂对盘江白刺花幼苗生长和生理特性的影响[J]. 草业学报, 2020, 29(7): 90-98. |
[4] | 杨宁, 马绍英, 马蕾, 张旭辉, 王娜, 李胜, 柴强. 重茬豌豆幼苗对接种复合根瘤菌的生理响应[J]. 草业学报, 2020, 29(6): 144-152. |
[5] | 马蕾, 马绍英, 陈贵平, 柴强, 李胜. 豌豆与根瘤共生对水分胁迫的生理响应[J]. 草业学报, 2019, 28(9): 96-109. |
[6] | 张朝铖, 蒋倩, 吴志, 何新杰, 蒋凯, 高静雅, 李翔, 王宁. 4种观赏草的耐阴特性研究及评价[J]. 草业学报, 2019, 28(7): 60-72. |
[7] | 吴潇, 何秀娟, 吴超, 董玉锋, 张燕, 徐宇, 秦卫东, 吕俊, 王三根, 宗学凤. 遮荫处理对葛根光合及抗氧化特性的影响[J]. 草业学报, 2019, 28(5): 68-78. |
[8] | 梁坤伦, 贾存智, 孙金豪, 王明艳, 傅华, 毛祝新. 高寒地区垂穗披碱草种质对低温胁迫的生理响应及其耐寒性评价[J]. 草业学报, 2019, 28(3): 111-121. |
[9] | 张建军, 党翼, 赵刚, 樊廷录, 王磊, 程万莉, 李尚中, 王淑英, 雷康宁, 张朝伟. 秸秆还田与氮肥减施对旱地春玉米产量及生理指标的影响[J]. 草业学报, 2019, 28(10): 156-165. |
[10] | 刘洪庆, 付丹丹, 武海杰, 苗福泓, 孙娟, 杨国锋. 不同轮作模式对后茬作物小麦产量及生理指标的影响[J]. 草业学报, 2018, 27(8): 59-66. |
[11] | 张俊超, 谢文刚, 赵旭红, 张宗瑜, 赵永强, 王彦荣. 老芒麦种子离区酶活变化及组织学分析[J]. 草业学报, 2018, 27(7): 84-92. |
[12] | 张建军, 樊廷录, 赵刚, 党翼, 王磊, 王勇, 李尚中, 程万莉. 耕作方式与长期定位施肥对雨养农田冬小麦产量的调控效应[J]. 草业学报, 2018, 27(7): 175-186. |
[13] | 潘航, 冯缨, 王喜勇, 李岩. 荒漠环境下10种沙拐枣的生理特征比较研究[J]. 草业学报, 2017, 26(6): 68-75. |
[14] | 席锐, 李发弟, 王维民, 李冲, 喇永富, 刘婷, 潘香羽, 唐德富, 李宝胜. 湖羊在西北寒旱地区行为学和生理指标的观测[J]. 草业学报, 2016, 25(5): 184-191. |
[15] | 裴瑞芳, 刘英, 刘柏林, 张宁, 司怀军, 王蒂. 马铃薯ARF基因RNAi载体的遗传转化及对其试管薯生理特性的影响[J]. 草业学报, 2015, 24(2): 142-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||