草业学报 ›› 2022, Vol. 31 ›› Issue (10): 99-109.DOI: 10.11686/cyxb2021394
赛宁刚(), 祁娟(), 贾燕伟, 车美美, 杨娟弟, 王晓娟, 徐长林
收稿日期:
2021-11-01
修回日期:
2021-12-13
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
祁娟
作者简介:
E-mail: 124621504@qq.com基金资助:
Ning-gang SAI(), Juan QI(), Yan-wei JIA, Mei-mei CHE, Juan-di YANG, Xiao-juan WANG, Chang-lin XU
Received:
2021-11-01
Revised:
2021-12-13
Online:
2022-10-20
Published:
2022-09-14
Contact:
Juan QI
摘要:
本研究通过对东祁连山不同土地利用类型下土壤的7种重金属含量进行测定,结合青藏高原土壤元素背景值,对土壤重金属污染程度和综合潜在生态风险做出综合性评价。结果表明:7种重金属元素的均值都超过了土壤元素背景值,其中Zn和Ni平均含量较高,为196.67 mg·kg-1和74.28 mg·kg-1,分别是土壤背景值的3.20和3.00倍,形成了土壤重金属元素的富集现象;内梅罗综合污染指数法和潜在生态风险系数法分析显示,各类型土地平均内梅罗综合污染指数为2.84,属于中度污染程度,其中农田平均污染指数最大,为3.10,达到了重度污染水平;草地为2.71,湿地最小为2.49,均为中度污染水平。各类型土地的综合潜在生态风险系数为94.31,其中农田类风险系数最高,为101.90,草地类为92.22,湿地为73.29;各类型土壤中Zn元素变异系数最低;Cd元素变异系数最高。
赛宁刚, 祁娟, 贾燕伟, 车美美, 杨娟弟, 王晓娟, 徐长林. 东祁连山不同土地利用方式下土壤重金属污染评价[J]. 草业学报, 2022, 31(10): 99-109.
Ning-gang SAI, Juan QI, Yan-wei JIA, Mei-mei CHE, Juan-di YANG, Xiao-juan WANG, Chang-lin XU. Evaluation of soil heavy metal pollution under different land use patterns in the eastern Qilian Mountains[J]. Acta Prataculturae Sinica, 2022, 31(10): 99-109.
编号 Number | 来源 Source | 利用方式 Use pattern | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Elevation (m) |
---|---|---|---|---|---|
1 | 宋家庄黑青稞地 Songjiazhuang highland barley land | 农田Farmland | 102°53′1″ | 37°8′56″ | 2708 |
2 | 宋家庄燕麦地 Songjiazhuang oat land | 农田Farmland | 102°53′1″ | 37°8′56″ | 2708 |
3 | 下南泥沟燕麦地 Xiananni ravine oat land | 农田Farmland | 102°49′20″ | 37°10′32″ | 2795 |
4 | 下南泥沟口 Xiananni mizoguchi | 其他Other | 102°49′20″ | 37°10′32″ | 2796 |
5 | 河谷麦宾草草地River valley Elymus tangutorum land | 草地Grassland | 102°46′55″ | 37°12′16″ | 2846 |
6 | 垂穗披碱草草地Elymus nutans land | 草地Grassland | 102°47′6″ | 37°13′42″ | 2847 |
7 | 河谷湿地 River valley wetland | 湿地Wetland | 102°46′58″ | 37°12′11″ | 2849 |
8 | 河谷 River valley | 其他Other | 102°47′00″ | 37°12′14″ | 2853 |
9 | 35年燕麦地 35 years oats land | 农田Farmland | 102°45′56″ | 37°12′44″ | 2867 |
10 | 35年燕麦地旁土壤 Land adjacent to 35 years oat land | 其他Other | 102°45′56″ | 37°12′44″ | 2867 |
11 | 溪水沟青稞地 Xishui ravine barley land | 农田Farmland | 102°45′49″ | 37°12′9″ | 2886 |
12 | 宋家庄多年生草地 Songjiazhuang perennial grassland | 草地Grassland | 102°45′49″ | 37°12′8″ | 2888 |
13 | 马营沟沟谷阶地 Mayinggou cheuch terrace | 草地Grassland | 102°4′46″ | 37°11′15″ | 2973 |
14 | 马营沟阳坡 Mayinggou sunny slope | 草地Grassland | 102°45′56″ | 37°11′18″ | 2978 |
15 | 马营沟河谷阶地 Mayinggou river valley terrace | 草地Grassland | 102°43′34″ | 37°10′35″ | 3050 |
16 | 代乾北山山前 Daiqian North mountain | 草地Grassland | 102°37′40″ | 37°14′57″ | 3087 |
表1 样地概况
Table 1 Overview of sample site
编号 Number | 来源 Source | 利用方式 Use pattern | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Elevation (m) |
---|---|---|---|---|---|
1 | 宋家庄黑青稞地 Songjiazhuang highland barley land | 农田Farmland | 102°53′1″ | 37°8′56″ | 2708 |
2 | 宋家庄燕麦地 Songjiazhuang oat land | 农田Farmland | 102°53′1″ | 37°8′56″ | 2708 |
3 | 下南泥沟燕麦地 Xiananni ravine oat land | 农田Farmland | 102°49′20″ | 37°10′32″ | 2795 |
4 | 下南泥沟口 Xiananni mizoguchi | 其他Other | 102°49′20″ | 37°10′32″ | 2796 |
5 | 河谷麦宾草草地River valley Elymus tangutorum land | 草地Grassland | 102°46′55″ | 37°12′16″ | 2846 |
6 | 垂穗披碱草草地Elymus nutans land | 草地Grassland | 102°47′6″ | 37°13′42″ | 2847 |
7 | 河谷湿地 River valley wetland | 湿地Wetland | 102°46′58″ | 37°12′11″ | 2849 |
8 | 河谷 River valley | 其他Other | 102°47′00″ | 37°12′14″ | 2853 |
9 | 35年燕麦地 35 years oats land | 农田Farmland | 102°45′56″ | 37°12′44″ | 2867 |
10 | 35年燕麦地旁土壤 Land adjacent to 35 years oat land | 其他Other | 102°45′56″ | 37°12′44″ | 2867 |
11 | 溪水沟青稞地 Xishui ravine barley land | 农田Farmland | 102°45′49″ | 37°12′9″ | 2886 |
12 | 宋家庄多年生草地 Songjiazhuang perennial grassland | 草地Grassland | 102°45′49″ | 37°12′8″ | 2888 |
13 | 马营沟沟谷阶地 Mayinggou cheuch terrace | 草地Grassland | 102°4′46″ | 37°11′15″ | 2973 |
14 | 马营沟阳坡 Mayinggou sunny slope | 草地Grassland | 102°45′56″ | 37°11′18″ | 2978 |
15 | 马营沟河谷阶地 Mayinggou river valley terrace | 草地Grassland | 102°43′34″ | 37°10′35″ | 3050 |
16 | 代乾北山山前 Daiqian North mountain | 草地Grassland | 102°37′40″ | 37°14′57″ | 3087 |
范围Scope | Pi <1 | 1≤Pi <2 | 2≤Pi <3 | Pi≥3 |
---|---|---|---|---|
污染等级Pollution level | 清洁Clean | 轻度污染Light pollution | 中度污染Mederate pollution | 重度污染Severe pollution |
表2 单因子污染指数分级标准
Table 2 Classification standards of single-factor pollution index
范围Scope | Pi <1 | 1≤Pi <2 | 2≤Pi <3 | Pi≥3 |
---|---|---|---|---|
污染等级Pollution level | 清洁Clean | 轻度污染Light pollution | 中度污染Mederate pollution | 重度污染Severe pollution |
土壤污染等级 Soil pollution level | 土壤综合污染指数 Comprehensive pollution index of soil | 污染水平 Pollution level |
---|---|---|
Ⅰ | PN ≤0.7 | 清洁Clean |
Ⅱ | 0.7<PN ≤1.0 | 尚清洁Just clean |
Ⅲ | 1.0<PN ≤2.0 | 轻度污染Light pollution |
Ⅳ | 2.0<PN ≤3.0 | 中度污染Moderate pollution |
Ⅴ | PN>3.0 | 重度污染Severe pollution |
表3 表层土壤内梅罗指数分级指标
Table 3 Classification standard of Nemero integrated pollution index
土壤污染等级 Soil pollution level | 土壤综合污染指数 Comprehensive pollution index of soil | 污染水平 Pollution level |
---|---|---|
Ⅰ | PN ≤0.7 | 清洁Clean |
Ⅱ | 0.7<PN ≤1.0 | 尚清洁Just clean |
Ⅲ | 1.0<PN ≤2.0 | 轻度污染Light pollution |
Ⅳ | 2.0<PN ≤3.0 | 中度污染Moderate pollution |
Ⅴ | PN>3.0 | 重度污染Severe pollution |
单项生态风险系数等级 Single ecological risk coefficient level | 得分 Score | 综合生态风险指数等级 Comprehensive ecological risk index level | 得分 Score |
---|---|---|---|
轻微 Slight | <40 | 低生态风险 Low ecological risk | <150 |
中等 Secondary | 40~80 | 中等生态风险 Medium ecological risk | 150~300 |
强 Strong | 80~160 | 高生态风险 High ecological risk | 300~600 |
很强 Very strong | 160~320 | 极高生态风险 Extremely high ecological risk | >600 |
极强 Extremely strong | >320 |
表4 潜在生态风险评价指标
Table 4 Index of potential ecological risk assessment of heavy metals
单项生态风险系数等级 Single ecological risk coefficient level | 得分 Score | 综合生态风险指数等级 Comprehensive ecological risk index level | 得分 Score |
---|---|---|---|
轻微 Slight | <40 | 低生态风险 Low ecological risk | <150 |
中等 Secondary | 40~80 | 中等生态风险 Medium ecological risk | 150~300 |
强 Strong | 80~160 | 高生态风险 High ecological risk | 300~600 |
很强 Very strong | 160~320 | 极高生态风险 Extremely high ecological risk | >600 |
极强 Extremely strong | >320 |
图1 不同土地利用方式中土壤重金属元素含量不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences (P<0.05).
Fig.1 The contents of soil heavy metal under different land use types
元素 Element | 最大值 Maximum (mg·kg-1) | 最小值 Minimum (mg·kg-1) | 均值 Mean (mg·kg-1) | 样本超率 Exceedance rate (%) | 变异系数 Coefficient of variation (%) | 青藏高原背景值 Tibetan Plateau background value (mg·kg-1) | 中国背景值 China background value (mg·kg-1) |
---|---|---|---|---|---|---|---|
Cr | 130.08 | 95.39 | 109.87 | 100 | 10 | 90.40 | 61.00 |
Cd | 0.15 | 0.06 | 0.10 | 88 | 26 | 0.06 | 0.06 |
Cu | 70.04 | 38.07 | 48.28 | 100 | 16 | 14.90 | 22.60 |
Zn | 215.95 | 173.26 | 196.67 | 100 | 5 | 64.50 | 74.20 |
Ni Pb | 96.18 86.93 | 62.90 56.13 | 74.28 62.06 | 100 100 | 14 12 | 28.40 25.80 | 26.90 26.00 |
Mn | 826.86 | 419.77 | 632.25 | 88 | 18 | 462.00 | 583.00 |
表5 土壤重金属浓度统计参数
Table 5 Statistical parameters of soil heavy metal concentration
元素 Element | 最大值 Maximum (mg·kg-1) | 最小值 Minimum (mg·kg-1) | 均值 Mean (mg·kg-1) | 样本超率 Exceedance rate (%) | 变异系数 Coefficient of variation (%) | 青藏高原背景值 Tibetan Plateau background value (mg·kg-1) | 中国背景值 China background value (mg·kg-1) |
---|---|---|---|---|---|---|---|
Cr | 130.08 | 95.39 | 109.87 | 100 | 10 | 90.40 | 61.00 |
Cd | 0.15 | 0.06 | 0.10 | 88 | 26 | 0.06 | 0.06 |
Cu | 70.04 | 38.07 | 48.28 | 100 | 16 | 14.90 | 22.60 |
Zn | 215.95 | 173.26 | 196.67 | 100 | 5 | 64.50 | 74.20 |
Ni Pb | 96.18 86.93 | 62.90 56.13 | 74.28 62.06 | 100 100 | 14 12 | 28.40 25.80 | 26.90 26.00 |
Mn | 826.86 | 419.77 | 632.25 | 88 | 18 | 462.00 | 583.00 |
编号 Number | 单因子污染指数 Single factor pollution index (Pi) | 内梅罗污染综合指数 Nemero pollution comprehensive index (PN ) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Cd | Cu | Zn | Ni | Pb | Mn | ||
1 | 1.34 | 2.29 | 4.70 | 3.11 | 2.61 | 3.37 | 1.22 | 3.82 |
2 | 1.44 | 2.15 | 3.92 | 3.12 | 2.88 | 2.33 | 1.79 | 3.29 |
3 | 1.24 | 0.88 | 3.20 | 2.95 | 2.24 | 2.28 | 1.67 | 2.69 |
4 | 1.28 | 1.55 | 2.87 | 2.94 | 3.39 | 2.25 | 1.34 | 2.87 |
5 | 1.15 | 1.48 | 3.00 | 3.03 | 2.36 | 2.30 | 1.24 | 2.60 |
6 | 1.06 | 1.25 | 3.19 | 3.35 | 2.32 | 2.28 | 1.54 | 2.81 |
7 | 1.06 | 1.02 | 2.56 | 2.95 | 2.62 | 2.18 | 1.00 | 2.49 |
8 | 1.12 | 1.78 | 3.38 | 2.69 | 2.42 | 2.39 | 1.43 | 2.84 |
9 | 1.33 | 1.69 | 3.40 | 3.12 | 2.89 | 2.66 | 1.54 | 2.93 |
10 | 1.25 | 1.26 | 3.26 | 3.09 | 2.31 | 2.27 | 1.54 | 2.76 |
11 | 1.06 | 1.44 | 2.96 | 3.11 | 2.32 | 2.31 | 1.06 | 2.75 |
12 | 1.41 | 1.56 | 3.14 | 3.14 | 3.10 | 2.35 | 1.59 | 2.76 |
13 | 1.27 | 1.94 | 3.03 | 2.91 | 2.21 | 2.37 | 1.37 | 2.63 |
14 | 1.08 | 1.43 | 2.63 | 3.02 | 2.64 | 2.31 | 1.11 | 2.57 |
15 | 1.18 | 1.93 | 3.25 | 3.21 | 2.46 | 2.60 | 0.91 | 2.78 |
16 | 1.18 | 0.96 | 3.37 | 3.04 | 3.07 | 2.25 | 1.56 | 2.85 |
表6 土壤重金属单因子指数和内梅罗污染指数
Table 6 Single factor index and Nemero pollution index of soil heavy metals
编号 Number | 单因子污染指数 Single factor pollution index (Pi) | 内梅罗污染综合指数 Nemero pollution comprehensive index (PN ) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Cd | Cu | Zn | Ni | Pb | Mn | ||
1 | 1.34 | 2.29 | 4.70 | 3.11 | 2.61 | 3.37 | 1.22 | 3.82 |
2 | 1.44 | 2.15 | 3.92 | 3.12 | 2.88 | 2.33 | 1.79 | 3.29 |
3 | 1.24 | 0.88 | 3.20 | 2.95 | 2.24 | 2.28 | 1.67 | 2.69 |
4 | 1.28 | 1.55 | 2.87 | 2.94 | 3.39 | 2.25 | 1.34 | 2.87 |
5 | 1.15 | 1.48 | 3.00 | 3.03 | 2.36 | 2.30 | 1.24 | 2.60 |
6 | 1.06 | 1.25 | 3.19 | 3.35 | 2.32 | 2.28 | 1.54 | 2.81 |
7 | 1.06 | 1.02 | 2.56 | 2.95 | 2.62 | 2.18 | 1.00 | 2.49 |
8 | 1.12 | 1.78 | 3.38 | 2.69 | 2.42 | 2.39 | 1.43 | 2.84 |
9 | 1.33 | 1.69 | 3.40 | 3.12 | 2.89 | 2.66 | 1.54 | 2.93 |
10 | 1.25 | 1.26 | 3.26 | 3.09 | 2.31 | 2.27 | 1.54 | 2.76 |
11 | 1.06 | 1.44 | 2.96 | 3.11 | 2.32 | 2.31 | 1.06 | 2.75 |
12 | 1.41 | 1.56 | 3.14 | 3.14 | 3.10 | 2.35 | 1.59 | 2.76 |
13 | 1.27 | 1.94 | 3.03 | 2.91 | 2.21 | 2.37 | 1.37 | 2.63 |
14 | 1.08 | 1.43 | 2.63 | 3.02 | 2.64 | 2.31 | 1.11 | 2.57 |
15 | 1.18 | 1.93 | 3.25 | 3.21 | 2.46 | 2.60 | 0.91 | 2.78 |
16 | 1.18 | 0.96 | 3.37 | 3.04 | 3.07 | 2.25 | 1.56 | 2.85 |
编号 Number | 单一重金属潜在生态风险系数 Potential ecological risk coefficient of a single heavy metal (Eir ) | 土壤综合潜在生态风险指数 Potential ecological risk index of soil heavy metals (RI) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Cd | Cu | Zn | Ni | Pb | Mn | ||
1 | 2.69 | 68.75 | 23.50 | 3.11 | 13.04 | 16.85 | 1.22 | 129.15 |
2 | 2.88 | 64.53 | 19.58 | 3.12 | 14.38 | 11.65 | 1.79 | 117.92 |
3 | 2.49 | 26.41 | 15.98 | 2.95 | 11.22 | 11.40 | 1.67 | 72.12 |
4 | 2.55 | 46.41 | 14.35 | 2.94 | 16.93 | 11.27 | 1.34 | 95.79 |
5 | 2.30 | 44.53 | 14.98 | 3.03 | 11.80 | 11.49 | 1.24 | 89.38 |
6 | 2.11 | 37.50 | 15.94 | 3.35 | 11.58 | 11.42 | 1.54 | 83.43 |
7 | 2.13 | 30.47 | 12.78 | 2.95 | 13.08 | 10.88 | 1.00 | 73.29 |
8 | 2.24 | 53.44 | 16.89 | 2.69 | 12.12 | 11.94 | 1.43 | 100.75 |
9 | 2.67 | 50.78 | 17.00 | 3.12 | 14.44 | 13.28 | 1.54 | 102.82 |
10 | 2.49 | 37.66 | 16.32 | 3.09 | 11.57 | 11.37 | 1.54 | 84.03 |
11 | 2.12 | 43.28 | 14.81 | 3.11 | 11.61 | 11.53 | 1.06 | 87.51 |
12 | 2.81 | 46.72 | 15.68 | 3.14 | 15.50 | 11.74 | 1.59 | 97.18 |
13 | 2.54 | 58.28 | 15.17 | 2.91 | 11.07 | 11.86 | 1.37 | 103.21 |
14 | 2.15 | 42.97 | 13.16 | 3.02 | 13.18 | 11.53 | 1.11 | 87.13 |
15 | 2.36 | 57.97 | 16.26 | 3.21 | 12.32 | 12.98 | 0.91 | 106.01 |
16 | 2.36 | 28.75 | 16.83 | 3.04 | 15.37 | 11.26 | 1.56 | 79.18 |
表7 土壤重金属污染系数和潜在生态风险系数
Table 7 Soil heavy metal pollution coefficient and potential ecological risk coefficient
编号 Number | 单一重金属潜在生态风险系数 Potential ecological risk coefficient of a single heavy metal (Eir ) | 土壤综合潜在生态风险指数 Potential ecological risk index of soil heavy metals (RI) | ||||||
---|---|---|---|---|---|---|---|---|
Cr | Cd | Cu | Zn | Ni | Pb | Mn | ||
1 | 2.69 | 68.75 | 23.50 | 3.11 | 13.04 | 16.85 | 1.22 | 129.15 |
2 | 2.88 | 64.53 | 19.58 | 3.12 | 14.38 | 11.65 | 1.79 | 117.92 |
3 | 2.49 | 26.41 | 15.98 | 2.95 | 11.22 | 11.40 | 1.67 | 72.12 |
4 | 2.55 | 46.41 | 14.35 | 2.94 | 16.93 | 11.27 | 1.34 | 95.79 |
5 | 2.30 | 44.53 | 14.98 | 3.03 | 11.80 | 11.49 | 1.24 | 89.38 |
6 | 2.11 | 37.50 | 15.94 | 3.35 | 11.58 | 11.42 | 1.54 | 83.43 |
7 | 2.13 | 30.47 | 12.78 | 2.95 | 13.08 | 10.88 | 1.00 | 73.29 |
8 | 2.24 | 53.44 | 16.89 | 2.69 | 12.12 | 11.94 | 1.43 | 100.75 |
9 | 2.67 | 50.78 | 17.00 | 3.12 | 14.44 | 13.28 | 1.54 | 102.82 |
10 | 2.49 | 37.66 | 16.32 | 3.09 | 11.57 | 11.37 | 1.54 | 84.03 |
11 | 2.12 | 43.28 | 14.81 | 3.11 | 11.61 | 11.53 | 1.06 | 87.51 |
12 | 2.81 | 46.72 | 15.68 | 3.14 | 15.50 | 11.74 | 1.59 | 97.18 |
13 | 2.54 | 58.28 | 15.17 | 2.91 | 11.07 | 11.86 | 1.37 | 103.21 |
14 | 2.15 | 42.97 | 13.16 | 3.02 | 13.18 | 11.53 | 1.11 | 87.13 |
15 | 2.36 | 57.97 | 16.26 | 3.21 | 12.32 | 12.98 | 0.91 | 106.01 |
16 | 2.36 | 28.75 | 16.83 | 3.04 | 15.37 | 11.26 | 1.56 | 79.18 |
1 | Zhu Y G, Li G, Zhang G L, et al. Soil security: From earth’s critical zone to ecosystem services. Acta Geographica Sinica, 2015, 70(12): 1859-1869. |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务. 地理学报, 2015, 70(12): 1859-1869. | |
2 | Zhou Q X, Teng Y, Lin D S. The principles and methods for deriving and determining remediation criteria for contaminated soils. Journal of Agro-Environment Science, 2013, 32(2): 205-214. |
周启星, 滕涌, 林大松. 污染土壤修复基准值推导和确立的原则与方法. 农业环境科学学报, 2013, 32(2): 205-214. | |
3 | Sjc A, Yjk A, Yc B, et al. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution, 2021, 289(15): 117851. |
4 | Yang Y P, Chen Q, Wang L N, et al. Winter pollution characteristics and physicochemical properties of PM2.5 in a northwest industrial city. Environmental Science, 2020, 41(12): 5267-5275. |
杨燕萍, 陈强, 王莉娜, 等. 西北工业城市冬季PM2.5污染特征及理化性质. 环境科学, 2020, 41(12): 5267-5275. | |
5 | Gan T T, Zhao N J, Yin G F, et al. A review on heavy metal pollution of agricultural land soil in the Yangtze River Delta and relevant pollution control strategy. Strategic Study of CAE, 2021, 23(1): 174-184. |
甘婷婷, 赵南京, 殷高方, 等. 长江三角洲地区农用地土壤重金属污染状况与防治建议. 中国工程科学, 2021, 23(1): 174-184. | |
6 | Yang J L, Zhang G L. Formation, characteristics and eco-environmental implications of urban soils: A review. Soil Science and Plant Nutrition, 2015, 61(Supplement 1): 30-46. |
7 | Liao C, Zeng F P, Liu S. Concentration and spatial distribution of heavy metals in agricultural soils of Pingxiang city. Journal of Environmental Management College of China, 2015, 25(1): 62-66. |
廖冲, 曾凡萍, 刘澍. 萍乡市农用土壤重金属含量及其分布特征分析. 中国环境管理干部学院学报, 2015, 25(1): 62-66. | |
8 | Zhou J J, Zhou J, Feng R G. Status of China’s heavy metal contamination in soil and its remediation strategy. Bulletin of the Chinese Academy of Sciences, 2014, 29(3): 272, 315-320, 350. |
周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略. 中国科学院院刊, 2014, 29(3): 272, 315-320, 350. | |
9 | Ruan Y L, Li X D, Li T Y, et al. Heavy metal pollution in agricultural soils of the Karst areas and its harm to human health. Earth and Environment, 2015, 43(1): 92-97. |
阮玉龙, 李向东, 黎廷宇, 等. 喀斯特地区农田土壤重金属污染及其对人体健康的危害. 地球与环境, 2015, 43(1): 92-97. | |
10 | Zhao F L, Gao Y, Liu C L. Research process on soil heavy metal pollution and remediation method. Environmental Science & Technology, 2012, 36(12): 232-235. |
赵凤兰, 高原, 刘彩玲. 土壤重金属污染与修复方法研究进展. 环境科学与技术, 2012, 36(12): 232-235. | |
11 | Zhao Y W, Li Y P, Duan S R, et al. Correlation between heavy metal distribution in tissue of livestock in mining area in central Tibet and the breeding environment. Journal of Domestic Animal Ecology, 2020, 41(1): 62-67. |
赵玉文, 李瑛萍, 段少荣, 等. 藏中矿区家畜组织中重金属分布与放牧环境关系研究. 家畜生态学报, 2020, 41(1): 62-67. | |
12 | Sheng J, Wang X, Ping G, et al. Heavy metals of the Tibetan top soils. Environmental Science and Pollution Research, 2012, 19(8): 3362-3370. |
13 | Dai L, Wang L, Liang T, et al. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in Eastern Qinghai-Tibet Plateau, China. Science of the Total Environment, 2019, 653(25): 849-859. |
14 | Wu J, Duan D, Jian L, et al. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Science of the Total Environment, 2016, 550: 628-636. |
15 | Zhou H C, Yao Y J, Liang T, et al. Risk of heavy metal pollution in soil of alpine meadow with different degradation gradients in Tianzhu county. Ecology and Environmental Sciences, 2020, 29(10): 2102-2109. |
周会程, 姚玉娇, 梁婷, 等. 天祝不同退化梯度高寒草甸土壤重金属污染及风险评价. 生态环境学报, 2020, 29(10): 2102-2109. | |
16 | Kai J R, Wang C Y, Li C H. Comparative study on two pretreatment methods for atomic absorptive spectrophotometry determination of Cu, Zn and Cd in rice. Food Science and Technology, 2018, 43(2): 322-325. |
开建荣, 王彩艳, 李彩虹. 2种消解方法-原子吸收分光光度法检测大米粉中铜、锌、镉含量. 食品科技, 2018, 43(2): 322-325. | |
17 | Ministry of Land and Resources of the People’s Republic of China. Specification of multi-purpose regional geochemical survey |
1∶250000, DZ/T 0258-2014. Beijing: China Standards Press, 2014. | |
中华人民共和国国土资源部. 多目标区域地球化学调查规范(1∶250000), DZ/T 0258-2014. 北京: 中国标准出版社, 2014. | |
18 | Cheng Y A, Tian J L. Background values and distribution characteristics of soil elements in Tibet. Beijing: Science Press, 1993. |
成延鏊, 田均良. 西藏土壤元素背景值及其分布特征. 北京: 科学出版社, 1993. | |
19 | China National Environmental Monitoring Centre. Background values of soil elements in China. Beijing: China Environmental Science Press, 1990. |
中国环境监测总站. 中国土壤元素背景值. 北京: 中国环境科学出版社, 1990. | |
20 | Chen Y L, Shi L, Wang Z R. Pollution assessment and spatial distribution of soil heavy metals in mining area based on GIS. Science of Surveying and Mapping, 2018, 1(4): 80-86. |
陈优良, 史琳, 王兆茹. 基于GIS的矿区土壤重金属污染评价及空间分布. 测绘科学, 2018, 1(4): 80-86. | |
21 | Lv J, Zhang Z, Li S, et al. Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3): 1671-1681. |
22 | Lin Q, Liu E, Zhang E, et al. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. Catena, 2016, 145: 193-203. |
23 | Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science & Technology, 2008, 31(2): 112-115. |
徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算. 环境科学与技术, 2008, 31(2): 112-115. | |
24 | Chen B Y, Wang H J, Cao T H, et al. Spatio-temporal characteristics of heavy metal accumulation in soil-rice cropping system under different phosphate fertilizer concentrations. Journal of Agro-Environment Science, 2010, 29(12): 2274-2280. |
陈宝玉, 王洪君, 曹铁华, 等. 不同磷肥浓度下土壤-水稻系统重金属的时空累积特征. 农业环境科学学报, 2010, 29(12): 2274-2280. | |
25 | Ding S N, Xue S, Liu G B, et al. Effect of long-term fertilization on soil microelements of farmland in hilly region of the Loess Plateau. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(1): 124-130. |
丁少男, 薛萐, 刘国彬, 等. 长期施肥对黄土丘陵区农田土壤微量元素有效含量的影响. 西北农林科技大学学报(自然科学版), 2017, 45(1): 124-130. | |
26 | Zhao X G, Zhang Y Y, Du H D. Evaluation of heavy metal pollution in soils under different land use types in the northern mining area of Shannxi Province. Environmental Engineering, 2019, 37(9): 188-193. |
赵晓光, 张亦扬, 杜华栋. 陕北矿区不同土地类型下土壤重金属污染评价. 环境工程, 2019, 37(9): 188-193. | |
27 | Delang C O. Causes and distribution of soil pollution in China. Environmental & Socio-economic Studies, 2017, 5(4): 1-17. |
28 | Chen X M, Zhu B H, Yang W, et al. Sources, spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun reservoir upstream. Environmental Chemistry, 2015, 34(12): 2248-2256. |
陈小敏, 朱保虎, 杨文, 等. 密云水库上游金矿区土壤重金属空间分布, 来源及污染评价. 环境化学, 2015, 34(12): 2248-2256. | |
29 | Lin Y P. Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals. Environmental Geology, 2002, 42(1): 1-10. |
30 | Shi N N, Ding Y F, Zhao X F, et al. Heavy metals content and pollution risk assessment of cropland soils around a pesticide industrial park. Chinese Journal of Applied Ecology, 2010, 21(7): 1835-1843. |
石宁宁, 丁艳锋, 赵秀峰, 等. 某农药工业园区周边土壤重金属含量与风险评价. 应用生态学报, 2010, 21(7): 1835-1843. | |
31 | Guo X D, Sun Q F, Zhao Y S, et al. Distribution and sources of heavy metals in the farmland soil of the Hunchun basin of Jilin Province, China. Journal of Agro-Environment Science, 2018, 37(9): 1875-1883. |
郭晓东, 孙岐发, 赵勇胜, 等. 珲春盆地农田重金属分布特征及源解析. 农业环境科学学报, 2018, 37(9): 1875-1883. | |
32 | Wang M, Li S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops. Plant Nutrition and Fertilizer Science, 2014, 20(2): 466-480. |
王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响. 植物营养与肥料学报, 2014, 20(2): 466-480. | |
33 | Zhang J, Li X L, Pei H K. The effect of several heavy metal elements in soil and grass on livestock in alpine grassland. Hubei Agricultural Sciences, 2012, 51(20): 4579-4582. |
张静, 李希来, 裴海昆. 天然草场土壤、牧草中重金属含量对放牧家畜的影响. 湖北农业科学, 2012, 51(20): 4579-4582. | |
34 | Sun W C, Luo Y H, Ma H Q, et al. Exposure level of heavy metal in yak milk among farms. Food Science and Technology, 2011, 36(8): 305-308. |
孙万成, 罗毅皓, 马海青, 等. 不同牧场牦牛乳重金属元素暴露水平分析. 食品科技, 2011, 36(8): 305-308. | |
35 | Vymazal J. Constructed wetlands for wastewater treatment: Five decades of experience.Environmental Science & Technology, 2011, 45(1): 61-69. |
36 | Du Y, Pan K, Yu C, et al. Plant diversity decreases net global warming potential integrating multiple functions in microcosms of constructed wetlands. Journal of Cleaner Production, 2018, 184(20): 718-726. |
37 | Chen S M, Tang Y J, Luo L F, et al. Purification effects of simulation wetland system of several kinds of mangrove plants on heavy metals in wastewater. Ecological Science, 2017, 36(5): 27-33. |
陈思敏, 唐以杰, 罗丽芬, 等. 几种红树植物模拟湿地系统对污水中重金属的净化效应. 生态科学, 2017, 36(5): 27-33. |
[1] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[2] | 任军, 石遥, 刘方, 田蓉, 刘兴. 贵州锰矿废渣堆场重金属污染风险评价及草本植物重金属吸收特征[J]. 草业学报, 2021, 30(8): 86-97. |
[3] | 李欣航, 肖泽华, 匡雪韶, 王悟敏, 罗亮宇, 刘文胜. 锰胁迫下鸡眼草的富集特征及生理响应[J]. 草业学报, 2021, 30(7): 139-147. |
[4] | 赵文, 尹亚丽, 李世雄, 刘燕, 刘晶晶, 董怡玲, 苏世锋, 吉凌鹤. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171. |
[5] | 贺国宝. 祁连山北坡植物群落空间分布格局与多样性研究[J]. 草业学报, 2021, 30(12): 194-201. |
[6] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[7] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[8] | 胡娜, 李葆春, 姚立蓉, 汪军成, 边秀秀, 侯静静, 司二静, 杨轲, 孟亚雄, 马小乐, 王化俊. 不同重金属胁迫对盐生草种子萌发特性的影响[J]. 草业学报, 2019, 28(6): 66-81. |
[9] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
[10] | 刘玉祯, 曹文侠, 王金兰, 李文, 辛雨琼, 王世林, 王小军. 祁连山东段不同类型灌丛斑块土壤特征对围封的响应[J]. 草业学报, 2019, 28(11): 32-45. |
[11] | 景美玲, 马玉寿, 李世雄, 王彦龙. 大通河上游16种多年生禾草引种试验研究[J]. 草业学报, 2017, 26(6): 76-88. |
[12] | 曹苗文, 贾彤, 景炬辉, 柴宝峰. 铜尾矿库白羊草内生真菌的分布及rDNA-ITS系统发育[J]. 草业学报, 2017, 26(5): 163-172. |
[13] | 严莲英, 范成五, 赵振宇, 刘桂华, 胡岗, 秦松. 黔北轻污染耕地12种优势杂草重金属含量及富集特征[J]. 草业学报, 2017, 26(10): 237-244. |
[14] | 朱平, 陈仁升, 宋耀选, 刘光琇, 陈拓, 张威. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 2015, 24(6): 75-84. |
[15] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||