草业学报 ›› 2021, Vol. 30 ›› Issue (7): 139-147.DOI: 10.11686/cyxb2020259
李欣航(), 肖泽华, 匡雪韶, 王悟敏, 罗亮宇, 刘文胜()
收稿日期:
2020-06-02
修回日期:
2020-08-19
出版日期:
2021-07-20
发布日期:
2021-06-03
通讯作者:
刘文胜
作者简介:
Corresponding author. E-mail: 403493641@qq.com基金资助:
Xin-hang LI(), Ze-hua XIAO, Xue-shao KUANG, Wu-min WANG, Liang-yu LUO, Wen-sheng LIU()
Received:
2020-06-02
Revised:
2020-08-19
Online:
2021-07-20
Published:
2021-06-03
Contact:
Wen-sheng LIU
摘要:
为探明植物对锰胁迫的耐受性机制,以采自重金属污染区与非污染区的鸡眼草为试验材料,在不同锰浓度胁迫下[0 (对照)、1000、5000、10000、15000、20000 μmol·L-1] 开展盆栽试验,比较研究锰胁迫对两种来源鸡眼草表型、生理生化特性及锰积累特征的影响。结果表明:随着锰浓度的升高,1) 两种来源鸡眼草的根干重、芽干重、根冠比均呈降低的趋势;当锰浓度达5000~20000 μmol·L-1时,与对照相比,污染区、非污染区鸡眼草的芽干重分别下降4.34%~27.71%与16.33%~49.77%,根干重分别下降19.00%~66.06%与27.90%~77.54%,污染区下降幅度均较非污染区的小;2) 两种来源鸡眼草的叶绿素、可溶性糖、脯氨酸含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性均呈先升后降的趋势,可溶性蛋白含量逐渐下降,丙二醛(MDA)含量则逐渐升高;3) 两种来源鸡眼草根、茎、叶的锰含量均增加;锰浓度为20000 μmol·L-1时,污染区和非污染区鸡眼草的叶锰含量分别为对照的16.53和13.41倍。因此,污染区鸡眼草锰耐受能力及富集能力均较非污染区鸡眼草高,较高的抗氧化酶活性是其耐受高锰胁迫的重要生理机制。
李欣航, 肖泽华, 匡雪韶, 王悟敏, 罗亮宇, 刘文胜. 锰胁迫下鸡眼草的富集特征及生理响应[J]. 草业学报, 2021, 30(7): 139-147.
Xin-hang LI, Ze-hua XIAO, Xue-shao KUANG, Wu-min WANG, Liang-yu LUO, Wen-sheng LIU. Metal accumulation characteristics and physiological response of Kummerowia striata to manganese stress[J]. Acta Prataculturae Sinica, 2021, 30(7): 139-147.
浓度 Concentration (μmol·L-1) | 芽长 Shoot length (cm) | 根长 Root length (cm) | 芽干重Shoot dry weight (mg·plant-1) | 根干重Root dry weight (mg·plant-1) | 根冠比 Root-shoot ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | |
0 | 11.10±0.46b | 10.90±0.53b | 9.53±0.61a | 10.17±1.53a | 6.22±0.28ab | 6.41±0.39a | 4.42±0.19a | 4.23±0.11a | 0.71±0.03a | 0.66±0.03a |
1000 | 12.80±1.11a | 12.37±1.03a | 9.73±0.78a | 9.60±0.66ab | 6.77±0.23a | 6.79±0.25a | 3.88±0.25b | 3.71±0.28b | 0.57±0.03bc | 0.55±0.04bc |
5000 | 11.10±1.12b | 9.07±0.87c | 9.03±0.55ab | 8.40±0.26bc | 5.95±0.25b | 5.36±0.57b | 3.58±0.25b* | 3.05±0.07c | 0.60±0.07b | 0.57±0.06b |
10000 | 9.73±0.87bc | 9.33±0.74c | 8.16±0.42bc | 7.20±0.44cd | 5.92±0.46b | 5.42±0.22b | 3.15±0.17c* | 2.66±0.11d | 0.53±0.01c | 0.49±0.03c |
15000 | 8.93±0.60cd | 8.26±0.49c | 7.70±0.26c* | 6.77±0.25de | 5.08±0.33c | 4.74±0.57b | 2.24±0.10d* | 1.89±0.04e | 0.44±0.02d | 0.40±0.04d |
20000 | 8.13±0.45d* | 6.97±0.25d | 7.23±0.64c* | 5.87±0.42e | 4.50±0.41c* | 3.22±0.22c | 1.50±0.10e* | 0.95±0.09f | 0.33±0.02e* | 0.29±0.01e |
表1 锰胁迫对两种来源鸡眼草生长的影响
Table 1 Effect of Mn stress on K. striata growth from two sources
浓度 Concentration (μmol·L-1) | 芽长 Shoot length (cm) | 根长 Root length (cm) | 芽干重Shoot dry weight (mg·plant-1) | 根干重Root dry weight (mg·plant-1) | 根冠比 Root-shoot ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | |
0 | 11.10±0.46b | 10.90±0.53b | 9.53±0.61a | 10.17±1.53a | 6.22±0.28ab | 6.41±0.39a | 4.42±0.19a | 4.23±0.11a | 0.71±0.03a | 0.66±0.03a |
1000 | 12.80±1.11a | 12.37±1.03a | 9.73±0.78a | 9.60±0.66ab | 6.77±0.23a | 6.79±0.25a | 3.88±0.25b | 3.71±0.28b | 0.57±0.03bc | 0.55±0.04bc |
5000 | 11.10±1.12b | 9.07±0.87c | 9.03±0.55ab | 8.40±0.26bc | 5.95±0.25b | 5.36±0.57b | 3.58±0.25b* | 3.05±0.07c | 0.60±0.07b | 0.57±0.06b |
10000 | 9.73±0.87bc | 9.33±0.74c | 8.16±0.42bc | 7.20±0.44cd | 5.92±0.46b | 5.42±0.22b | 3.15±0.17c* | 2.66±0.11d | 0.53±0.01c | 0.49±0.03c |
15000 | 8.93±0.60cd | 8.26±0.49c | 7.70±0.26c* | 6.77±0.25de | 5.08±0.33c | 4.74±0.57b | 2.24±0.10d* | 1.89±0.04e | 0.44±0.02d | 0.40±0.04d |
20000 | 8.13±0.45d* | 6.97±0.25d | 7.23±0.64c* | 5.87±0.42e | 4.50±0.41c* | 3.22±0.22c | 1.50±0.10e* | 0.95±0.09f | 0.33±0.02e* | 0.29±0.01e |
图1 锰胁迫对两种来源鸡眼草生长过程中总叶绿素、可溶性糖、可溶性蛋白和脯氨酸含量的影响FS:来源; FC:锰浓度; FS×C:交互作用;FW:鲜重。不同小写字母表示处理间显著差异(P<0.05);* 表示不同来源间显著差异(P<0.05),**(P<0.01),***(P<0.001),下同。FS: Sources; FC: Concentration; FS×C: Interaction; FW: Fresh matter. Different lowercase letters show significant difference among different Mn concentrations (P<0.05); * indicates significant difference between different sources (P<0.05), ** (P<0.01), *** (P<0.001). The same below.
Fig.1 Effect of Mn stress on the total chlorophyll, soluble sugar, soluble protein and proline contents of leaves from two sources of K. striata
图2 锰胁迫对两种来源鸡眼草过氧化物酶、超氧化物歧化酶活性和丙二醛含量的影响
Fig.2 Effects of Mn stress on activities of peroxidase, superoxide dismutase and malondialdehyde content in two sources of K. striata
浓度 Concentration (μmol·L-1) | 根 Root (mg·kg-1) | 茎 Stem (mg·kg-1) | 叶 Leaf (mg·kg-1) | 转运系数 Translocation factor | ||||
---|---|---|---|---|---|---|---|---|
污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | |
0 | 334.71±16.43f* | 292.73±13.75f | 116.66±26.50f | 119.62±14.86f | 476.15±16.29f* | 391.24±42.56f | 0.89±0.04b | 0.87±0.07bc |
1000 | 1581.55±88.75e | 1389.40±107.66e | 544.88±39.18e | 480.67±18.33e | 2365.99±161.51e* | 1776.34±119.95e | 0.92±0.01b | 0.82±0.11c |
5000 | 4064.93±140.83d* | 3296.71±254.86d | 2300.77±116.86d | 2119.86±198.03d | 5024.65±53.59d* | 4237.83±181.41d | 0.90±0.01b | 0.97±0.04ab |
10000 | 6608.24±304.58c* | 5005.96±375.29c | 5255.48±318.26c* | 4646.92±75.34c | 8205.72±86.97c* | 5442.01±231.46c | 1.02±0.02a | 1.01±0.06a |
15000 | 8111.45±196.20b* | 6265.26±230.93b | 6641.18±269.96b* | 5734.77±373.44b | 10304.69±701.23b* | 7479.84±457.84b | 1.05±0.06a | 1.06±0.09a |
20000 | 9769.83±279.88a* | 7588.46±363.03a | 7886.09±195.24a* | 6740.52±306.26a | 12553.03±300.07a* | 8558.05±280.97a | 1.05±0.06a | 1.01±0.03a |
表2 锰胁迫下两种来源鸡眼草根、茎、叶的Mn含量
Table 2 Mn content of roots, stems and leaves from two sources of K. striata under Mn stress
浓度 Concentration (μmol·L-1) | 根 Root (mg·kg-1) | 茎 Stem (mg·kg-1) | 叶 Leaf (mg·kg-1) | 转运系数 Translocation factor | ||||
---|---|---|---|---|---|---|---|---|
污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | 污染区 C | 非污染区 NC | |
0 | 334.71±16.43f* | 292.73±13.75f | 116.66±26.50f | 119.62±14.86f | 476.15±16.29f* | 391.24±42.56f | 0.89±0.04b | 0.87±0.07bc |
1000 | 1581.55±88.75e | 1389.40±107.66e | 544.88±39.18e | 480.67±18.33e | 2365.99±161.51e* | 1776.34±119.95e | 0.92±0.01b | 0.82±0.11c |
5000 | 4064.93±140.83d* | 3296.71±254.86d | 2300.77±116.86d | 2119.86±198.03d | 5024.65±53.59d* | 4237.83±181.41d | 0.90±0.01b | 0.97±0.04ab |
10000 | 6608.24±304.58c* | 5005.96±375.29c | 5255.48±318.26c* | 4646.92±75.34c | 8205.72±86.97c* | 5442.01±231.46c | 1.02±0.02a | 1.01±0.06a |
15000 | 8111.45±196.20b* | 6265.26±230.93b | 6641.18±269.96b* | 5734.77±373.44b | 10304.69±701.23b* | 7479.84±457.84b | 1.05±0.06a | 1.06±0.09a |
20000 | 9769.83±279.88a* | 7588.46±363.03a | 7886.09±195.24a* | 6740.52±306.26a | 12553.03±300.07a* | 8558.05±280.97a | 1.05±0.06a | 1.01±0.03a |
来源 Source | 项目 Items | 芽干重Shoot dry weight | 根干重Root-dry weight | 根冠比 Root -shoot ratio | 脯氨酸 Proline | 可溶性 蛋白 Soluble protein | 可溶性糖 Soluble sugar | 过氧化物酶 Peroxidase | 超氧化物歧化酶 Superoxide dismutase | 丙二醛 Malonaldehyde | 根锰含量 Root manganese content | 茎锰含量 Stem manganese content | 叶锰含量 Leaf manganese content | 来源 Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
非污染区 Non contaminated zone | 芽干重Shoot dry weight | 0.877** | 0.725** | 0.627** | 0.854** | 0.550* | 0.695** | 0.590** | -0.825** | -0.847** | -0.854** | -0.841** | 污染区 Contaminated zone | |
根干重Root dry weight | 0.921** | 0.964** | 0.593** | 0.950** | 0.505* | 0.659** | 0.572* | -0.940** | -0.954** | -0.948** | -0.962** | |||
根冠比Root-shoot ratio | 0.762** | 0.943** | 0.560** | 0.913** | 0.478* | 0.606** | 0.553* | -0.910** | -0.899** | -0.889** | -0.916** | |||
脯氨酸Proline | 0.806** | 0.859** | 0.851** | 0.638** | 0.958** | 0.942** | 0.960** | -0.540* | -0.466 | -0.536* | -0.484* | |||
可溶性蛋白Soluble protein | 0.903** | 0.974** | 0.914** | 0.822** | 0.565* | 0.722** | 0.626** | -0.933** | -0.944** | -0.947** | -0.949** | |||
可溶性糖Soluble sugar | 0.673** | 0.714** | 0.745** | 0.947** | 0.684** | 0.942** | 0.960** | -0.514* | -0.412 | -0.496* | -0.426 | |||
过氧化物酶Peroxidase | 0.804** | 0.816** | 0.741** | 0.872** | 0.843** | 0.794** | 0.924** | -0.668** | -0.607** | -0.684** | -0.620** | |||
超氧化物歧化酶Superoxide dismutase | 0.829** | 0.893** | 0.898** | 0.971** | 0.875** | 0.917** | 0.884** | -0.554* | -0.456 | -0.527* | -0.484* | |||
丙二醛Malonaldehyde | -0.908** | -0.971** | -0.920** | -0.858** | -0.978** | -0.739** | -0.856** | -0.906** | 0.948** | 0.952** | 0.955** | |||
根锰含量Root manganese content | -0.883** | -0.976** | -0.911** | -0.826** | -0.980** | -0.685** | -0.846** | -0.858** | 0.961** | 0.992** | 0.995** | |||
茎锰含量Stem manganese content | -0.870** | -0.960** | -0.897** | -0.861** | -0.961** | -0.744** | -0.895** | -0.882** | 0.945** | 0.987** | 0.989** | |||
叶锰含量Leaf manganese content | -0.896** | -0.976** | -0.894** | -0.809** | -0.970** | -0.652** | -0.819** | -0.833** | 0.950** | 0.991** | 0.976** |
表3 锰胁迫下两种来源鸡眼草的生物量和生理生化指标相关性
Table 3 Correlation between biomass and physiological and biochemical indexes of two source of K. striata under Mn stress
来源 Source | 项目 Items | 芽干重Shoot dry weight | 根干重Root-dry weight | 根冠比 Root -shoot ratio | 脯氨酸 Proline | 可溶性 蛋白 Soluble protein | 可溶性糖 Soluble sugar | 过氧化物酶 Peroxidase | 超氧化物歧化酶 Superoxide dismutase | 丙二醛 Malonaldehyde | 根锰含量 Root manganese content | 茎锰含量 Stem manganese content | 叶锰含量 Leaf manganese content | 来源 Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
非污染区 Non contaminated zone | 芽干重Shoot dry weight | 0.877** | 0.725** | 0.627** | 0.854** | 0.550* | 0.695** | 0.590** | -0.825** | -0.847** | -0.854** | -0.841** | 污染区 Contaminated zone | |
根干重Root dry weight | 0.921** | 0.964** | 0.593** | 0.950** | 0.505* | 0.659** | 0.572* | -0.940** | -0.954** | -0.948** | -0.962** | |||
根冠比Root-shoot ratio | 0.762** | 0.943** | 0.560** | 0.913** | 0.478* | 0.606** | 0.553* | -0.910** | -0.899** | -0.889** | -0.916** | |||
脯氨酸Proline | 0.806** | 0.859** | 0.851** | 0.638** | 0.958** | 0.942** | 0.960** | -0.540* | -0.466 | -0.536* | -0.484* | |||
可溶性蛋白Soluble protein | 0.903** | 0.974** | 0.914** | 0.822** | 0.565* | 0.722** | 0.626** | -0.933** | -0.944** | -0.947** | -0.949** | |||
可溶性糖Soluble sugar | 0.673** | 0.714** | 0.745** | 0.947** | 0.684** | 0.942** | 0.960** | -0.514* | -0.412 | -0.496* | -0.426 | |||
过氧化物酶Peroxidase | 0.804** | 0.816** | 0.741** | 0.872** | 0.843** | 0.794** | 0.924** | -0.668** | -0.607** | -0.684** | -0.620** | |||
超氧化物歧化酶Superoxide dismutase | 0.829** | 0.893** | 0.898** | 0.971** | 0.875** | 0.917** | 0.884** | -0.554* | -0.456 | -0.527* | -0.484* | |||
丙二醛Malonaldehyde | -0.908** | -0.971** | -0.920** | -0.858** | -0.978** | -0.739** | -0.856** | -0.906** | 0.948** | 0.952** | 0.955** | |||
根锰含量Root manganese content | -0.883** | -0.976** | -0.911** | -0.826** | -0.980** | -0.685** | -0.846** | -0.858** | 0.961** | 0.992** | 0.995** | |||
茎锰含量Stem manganese content | -0.870** | -0.960** | -0.897** | -0.861** | -0.961** | -0.744** | -0.895** | -0.882** | 0.945** | 0.987** | 0.989** | |||
叶锰含量Leaf manganese content | -0.896** | -0.976** | -0.894** | -0.809** | -0.970** | -0.652** | -0.819** | -0.833** | 0.950** | 0.991** | 0.976** |
1 | Yu K, Liu J, Shang W W, et al. Tolerance and accumulation characteristics of Celosia argentea Linn. growing in Mn-contaminated soil. Acta Ecologica Sinica, 2015, 35(16): 5430-5436. |
余轲, 刘杰, 尚伟伟, 等. 青葙对土壤锰的耐性和富集特征. 生态学报, 2015, 35(16): 5430-5436. | |
2 | Wen K, Liu W S, Zhao Y L. Comparisons of biomass allocation between Plantago depressa plants growing in heavy-metal polluted and nonpolluted soils. Journal of Central South University of Forestry & Technology, 2018, 38(1): 94-98. |
文珂, 刘文胜, 赵运林. 重金属污染区与非污染区平车前生物量分配的比较. 中南林业科技大学学报, 2018, 38(1): 94-98. | |
3 | Ding H, Wang G D, Lou L L, et al. Physiological responses and tolerance of kenaf (Hibiscus cannabinus L.) exposed to chromium. Ecotoxicology and Environmental Safety, 2016, 133: 509-518. |
4 | Muszynska E, Labudda M, Rozanska E, et al. Heavy metal tolerance in contrasting ecotypes of Alyssum montanum. Ecotoxicology & Environmental Safety, 2018, 161: 305-317. |
5 | Liu Y T, Fang Z D, Xie C X, et al. Physiological reaction to lead stress of metallicolous and nonmetallicolous populations of Pteris vittata L. Journal of Logistical Engineering University, 2014, 30(1): 52-58. |
刘玉通, 方振东, 谢朝新, 等. 矿区生态型和非矿区生态型蜈蚣草对铅胁迫的生理响应. 后勤工程学院学报, 2014, 30(1): 52-58. | |
6 | Hu G T, Yang X, Chen X M, et al. Physiological responses of bamboo-willow plants to heavy metal stress. Acta Scientiae Circumstantiae, 2016, 36(10): 3870-3875. |
胡国涛, 杨兴, 陈小米, 等. 速生树种竹柳对重金属胁迫的生理响应. 环境科学学报, 2016, 36(10): 3870-3875. | |
7 | Wang Y F, Yue Y C. Physiological response of Saussurea ussuriensis to Pb stress in Pb polluted and non-polluted areas. Chinese Journal of Ecology, 2014, 33(9): 2388-2394. |
王一峰, 岳永成. 重金属污染区与非污染区乌苏里风毛菊对铅胁迫的生理抗性. 生态学杂志, 2014, 33(9): 2388-2394. | |
8 | Zambrosia F C B, Mesquitab G L, Marchioric P E R, et al. Anatomical and physiological bases of sugarcane tolerance to manganese toxicity. Environmental and Experimental Botany, 2016, 132: 100-112. |
9 | Liu P D, Luo J J, Bai C J, et al. Effects of excess manganese toxicity on growth and antioxidant enzyme activity in Stylosanthes guianensis seedlings. Acta Prataculturae Sinica, 2018, 27(9): 194-200. |
刘攀道, 罗佳佳, 白昌军, 等. 过量锰处理对苗期柱花草生长及抗氧化酶活性的影响. 草业学报, 2018, 27(9): 194-200. | |
10 | Wu Z, Wu T M. Study on the appearance feature and living vitality of Kummerowia striata seed. Chinese Horticulture Abstracts, 2013, 29(11): 9-12. |
吴哲, 吴铁明. 鸡眼草种子形态特征观测及生活力的测定. 中国园艺文摘, 2013, 29(11): 9-12. | |
11 | Wang Y, Xiang Q, Peng Y L. Study on biology characteristics and harmfulness of Kummerowia striata in Changde. Acta Prataculturae Sinica, 2011, 20(5): 231-236. |
王云, 向群, 彭友林. 常德市鸡眼草生物学特征及危害特性的研究. 草业学报, 2011, 20(5): 231-236. | |
12 | Geng B, Xu L G, Tang J J, et al. Responses of Kummerowia striata to arbuscular mycorrhizal fungi and soil drought stress under two growth substrates. Bulletin of Science and Technology, 2008, 24(3): 315-319, 378. |
耿彬, 徐礼根, 唐建军, 等. 两种土壤基质条件下鸡眼草对水分胁迫和丛枝菌根真菌的响应. 科技通报, 2008, 24(3): 315-319, 378. | |
13 | Zhang Y X, Li L F, Chai T Y, et al. Mechanisms of manganese toxicity and manganese tolerance in plants. Chinese Bulletin of Botany, 2010, 45(4): 506-520. |
张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展. 植物学报, 2010, 45(4): 506-520. | |
14 | Pan G, Zhang H P, Liu P, et al. Effect of manganese stress on seed germination, seeding physiological and biochemical characteristics of Xanthium sibiricum. Acta Prataculturae Sinica, 2017, 26(11): 157-166. |
潘高, 张合平, 刘鹏, 等. 锰胁迫对苍耳种子萌发及幼苗生理生化特性的影响. 草业学报, 2017, 26(11): 157-166. | |
15 | Zou Q. Plant physiology experimental guide. Beijing: China Agriculture Press, 2000: 62-174. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 62-174. | |
16 | Li H S. Plant physiological and biochemical principle and technology. Beijing: Higher Education Press, 2000: 169-184. |
李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000: 169-184. | |
17 | Fu Q, Yang L Y, Lai J L, et al. Tissue accumulation and subcellular distribution of cesium in Vicia faba. Asian Journal of Ecotoxicology, 2015, 10(6): 297-304. |
付倩, 杨垒滟, 赖金龙, 等. 蚕豆对铯的吸收蓄积及亚细胞分布研究. 生态毒理学报, 2015, 10(6): 297-304. | |
18 | Fernando D R, Lynch J P. Manganese phytotoxicity: New light on an old problem. Annals of Botany, 2015, 116: 313-319. |
19 | Sheokand S, Kumari A, Sawhney V. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiological and Molecular Plant Pathology, 2018, 14(4): 355-362. |
20 | Xin J P, Li W M, Qi Q, et al. Effects of Cd on antioxidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata. Acta Prataculturae Sinica, 2018, 27(10): 23-34. |
辛建攀, 李文明, 祁茜, 等. 镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响. 草业学报, 2018, 27(10): 23-34. | |
21 | Wu X L, Ou Y B, Yuan G H, et al. Physiological responses of two poplar species to high boron stress. Chinese Journal of Plant Ecology, 2015, 39(4): 407-415. |
吴秀丽, 欧庸彬, 原改换, 等. 两种杨树对高硼胁迫的生理响应. 植物生态学报, 2015, 39(4): 407-415. | |
22 | Zhao J Q, Zhao H R, Hu M, et al. Physiological metabolism and protective enzyme activity of different ecotypes of Miscanthus floridulus under Pb stress. Ecology and Environmental Sciences, 2011, 20(3): 525-531. |
赵建桥, 赵华荣, 胡萌, 等. 铅胁迫下不同生态型五节芒(Miscanthus floridulus)的抗氧化系统差异研究. 生态环境学报, 2011, 20(3): 525-531. | |
23 | Chen X M, Hu G T, Yang X, et al. Heavy metal accumulation and physiological response of bamboo-willow plants to soil co-contaminated with Cd and Zn. Acta Scientiae Circumstantiae, 2017, 37(10): 3968-3976. |
陈小米, 胡国涛, 杨兴, 等. 速生树种竹柳对复合污染土壤中镉和锌的吸收、积累与生理响应特性. 环境科学学报, 2017, 37(10): 3968-3976. | |
24 | Gan J H, Xiong Z T, Li J P, et al. Differential response to copper stress in the reproductive resources and allocation of metallophyte Kummerowia stipulacea. Ecotoxicology & Environmental Safety, 2013, 89: 204-211. |
25 | Pan G, Zhang H P, Liu P, et al. Effects of manganese stress on phenology and biomass allocation in Xanthium strumarium from metalliferous and non-metalliferous sites. Ecotoxicology & Environmental Safety, 2019, 172: 308-316. |
[1] | 谢德金, 李静文, 叶友杰, 殷彪, 任可, 陈凌艳, 荣俊冬, 郑郁善. 光质对草珊瑚幼苗生长及其生理生化基础的影响[J]. 草业学报, 2020, 29(8): 104-115. |
[2] | 王宁, 付亚军, 袁美丽, 刘征阳, 张铭鑫, 米银法. GA3浸种对入侵植物节节麦种子破眠及发芽特性的影响[J]. 草业学报, 2020, 29(2): 73-81. |
[3] | 方美烟, 王贤东, 于全平, 陈勇. 不同消化能、粗蛋白质水平饲粮对泌乳前期伊犁马营养物质消化代谢、血液生理生化指标和激素的影响[J]. 草业学报, 2020, 29(10): 129-138. |
[4] | 杨成德, 崔月贞, 冯中红, 薛莉, 金梦军. 内生枯草芽孢杆菌265ZY4对温度和紫外光胁迫下紫花针茅生化特征的影响[J]. 草业学报, 2019, 28(6): 101-108. |
[5] | 严莲英, 范成五, 刘桂华, 高翔, 秦松. 阿哈水库底泥基质中3种绿化植物的生长及Cd的富集特征[J]. 草业学报, 2019, 28(4): 203-212. |
[6] | 肖泽华, 李欣航, 潘高, 吴耀文, 杨灿鑫, 匡雪韶, 刘文胜. 锰胁迫对黄花草种子萌发及幼苗生理生化特征的影响[J]. 草业学报, 2019, 28(12): 75-84. |
[7] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[8] | 靳军英, 张卫华, 王大可, 寇青青, 运剑苇, 黄建国. 扁穗牛鞭草的水肥耦合效应研究[J]. 草业学报, 2018, 27(1): 106-114. |
[9] | 黄钰芳, 张恩和, 张新慧, 王惠珍, 王琦, 刘青林, 石雨仟. 兰州百合根及鳞茎水浸液自毒作用的研究[J]. 草业学报, 2017, 26(8): 93-103. |
[10] | 潘高, 张合平, 刘鹏, 刘文胜. 锰胁迫对苍耳种子萌发及幼苗生理生化特性的影响[J]. 草业学报, 2017, 26(11): 157-166. |
[11] | 严莲英, 范成五, 赵振宇, 刘桂华, 胡岗, 秦松. 黔北轻污染耕地12种优势杂草重金属含量及富集特征[J]. 草业学报, 2017, 26(10): 237-244. |
[12] | 康霞, 葛莉, 栗孟飞, 甘延太, 李京耀, 王克鹏. 贯叶连翘引种驯化过程中生理生化特性、活性物质含量及抗氧化能力的变化[J]. 草业学报, 2016, 25(4): 104-110. |
[13] | 张树武, 徐秉良, 程玲娟, 薛应钰. 深绿木霉对白三叶草促生作用及生理生化特性的影响[J]. 草业学报, 2015, 24(2): 161-167. |
[14] | 郭郁频,米福贵,闫利军,任永霞,吕世杰,伏兵哲. 不同早熟禾品种对干旱胁迫的生理响应及抗旱性评价[J]. 草业学报, 2014, 23(4): 220-228. |
[15] | 高海宁,马国泰,李彩霞,陈勇,宋涛,张勇,焦扬. 菌剂对铬(Ⅵ)污染土壤中坪草幼苗生理生化的影响[J]. 草业学报, 2014, 23(4): 189-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||