草业学报 ›› 2022, Vol. 31 ›› Issue (8): 90-98.DOI: 10.11686/cyxb2022026
收稿日期:
2022-01-12
修回日期:
2022-02-28
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
刘小娥
作者简介:
E-mail: liuxiaoe81@126.com基金资助:
Shi-ping SU(), Xiao-e LIU(), Jie XI
Received:
2022-01-12
Revised:
2022-02-28
Online:
2022-08-20
Published:
2022-07-01
Contact:
Xiao-e LIU
摘要:
为了探讨三色堇对NaCl胁迫的生理响应机制及生长特性,探索三色堇对NaCl的最高耐受浓度,以三色堇为研究材料,采用0、25、50、100、150、200 mmol·L-1的NaCl对三色堇进行处理。结果表明,NaCl处理对三色堇渗透调节系统、抗氧化酶系统、光合色素、丙二醛(MDA)含量以及株高生长量有明显的影响。在处理后14 d,随处理浓度升高,可溶性糖(SS)、可溶性蛋白(SP)、游离脯氨酸(Pro)、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)、总叶绿素(Chl)表现出先升高后降低的趋势,MDA呈升高趋势,株高生长量呈降低趋势。隶属函数分析表明,当土壤中NaCl浓度≤150 mmol·L-1时对三色堇的生长无明显抑制作用,当浓度>150 mmol·L-1时,对生长抑制作用明显。因此,三色堇耐NaCl的最高浓度为150 mmol·L-1,超过此浓度,代谢调节系统和抗氧化酶系统会受到严重影响,Chl降解加剧,光合系统遭到严重破坏,三色堇的生长受到严重的影响。
苏世平, 刘小娥, 席杰. 三色堇对NaCl胁迫的生理响应[J]. 草业学报, 2022, 31(8): 90-98.
Shi-ping SU, Xiao-e LIU, Jie XI. Physiological response of Viola tricolor to NaCl stress[J]. Acta Prataculturae Sinica, 2022, 31(8): 90-98.
浓度 Concentration (mmol·L-1) | 预处理 Pretreatment | 盐胁迫 NaCl treatment | ||||||
---|---|---|---|---|---|---|---|---|
0 d | 1 d | 2 d | 3 d | 4 d | 1 d | 7 d | 14 d | |
0 (CK) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 0 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
50 | 0 | 25 | 50 | 50 | 50 | 50 | 50 | 50 |
100 | 0 | 25 | 50 | 100 | 100 | 100 | 100 | 100 |
150 | 0 | 25 | 50 | 100 | 150 | 150 | 150 | 150 |
200 | 0 | 25 | 50 | 100 | 150 | 200 | 200 | 200 |
表1 NaCl浓度处理递增表
Table 1 Concentration increasing order of NaCl treatments
浓度 Concentration (mmol·L-1) | 预处理 Pretreatment | 盐胁迫 NaCl treatment | ||||||
---|---|---|---|---|---|---|---|---|
0 d | 1 d | 2 d | 3 d | 4 d | 1 d | 7 d | 14 d | |
0 (CK) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 0 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
50 | 0 | 25 | 50 | 50 | 50 | 50 | 50 | 50 |
100 | 0 | 25 | 50 | 100 | 100 | 100 | 100 | 100 |
150 | 0 | 25 | 50 | 100 | 150 | 150 | 150 | 150 |
200 | 0 | 25 | 50 | 100 | 150 | 200 | 200 | 200 |
浓度 Concentration (mmol·L-1) | SS | SP | Pro | CAT | POD | SOD | Chl | MDA | Δi | UA | CR |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000 | 0.132 | 0.128 | 0.053 | 0.085 | 0.185 | 0.822 | 1.000 | 0.455 | 0.318 | 5 |
25 | 0.769 | 0.634 | 0.115 | 0.630 | 0.514 | 0.791 | 0.963 | 0.776 | 1.000 | 0.688 | 2 |
50 | 1.000 | 1.000 | 0.000 | 0.755 | 1.000 | 1.000 | 1.000 | 0.615 | 0.757 | 0.792 | 1 |
100 | 0.622 | 0.610 | 0.080 | 1.000 | 0.532 | 0.265 | 0.191 | 0.353 | 0.424 | 0.453 | 3 |
150 | 0.549 | 0.242 | 1.000 | 0.182 | 0.273 | 0.262 | 0.134 | 0.117 | 0.134 | 0.322 | 4 |
200 | 0.534 | 0.000 | 0.333 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.096 | 6 |
表2 NaCl处理下各指标的隶属函数得分
Table 2 Membership function score of V. tricolor under NaCl treatment
浓度 Concentration (mmol·L-1) | SS | SP | Pro | CAT | POD | SOD | Chl | MDA | Δi | UA | CR |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000 | 0.132 | 0.128 | 0.053 | 0.085 | 0.185 | 0.822 | 1.000 | 0.455 | 0.318 | 5 |
25 | 0.769 | 0.634 | 0.115 | 0.630 | 0.514 | 0.791 | 0.963 | 0.776 | 1.000 | 0.688 | 2 |
50 | 1.000 | 1.000 | 0.000 | 0.755 | 1.000 | 1.000 | 1.000 | 0.615 | 0.757 | 0.792 | 1 |
100 | 0.622 | 0.610 | 0.080 | 1.000 | 0.532 | 0.265 | 0.191 | 0.353 | 0.424 | 0.453 | 3 |
150 | 0.549 | 0.242 | 1.000 | 0.182 | 0.273 | 0.262 | 0.134 | 0.117 | 0.134 | 0.322 | 4 |
200 | 0.534 | 0.000 | 0.333 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.096 | 6 |
1 | Zhang J L, Flower T J, Wang S M. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326: 45-60. |
2 | Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684. |
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684. | |
3 | Liang X Y, Gu Y Y, Li M, et al. Study on the morphological and physiological differences of different salt tolerant peanut varieties under salt stress. Journal of Peanut Science, 2018, 47(1): 19-26. |
梁晓艳, 顾寅钰, 李萌, 等.盐胁迫下不同耐盐性花生品种形态及生理差异研究. 花生学报, 2018, 47(1): 19-26. | |
4 | Franco-Navarro, Rosales M A, Cubero-Font P, et al. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO2. The Plant Journal, 2019, 99(5): 815-831. |
5 | Wang D Q, Guo P C, Dong X Y. Study on toxic effect of chlorine on crops. Chinese Journal of Soil Science, 1990(6): 258-261. |
王德清, 郭鹏程, 董翔云. 氯对作物毒害作用的研究. 土壤通报, 1990(6): 258-261. | |
6 | Zhang M Q, Chen R K. Studies on the mechabism for effect of NaCl stress on sugarcane growth. Sugarcane, 1994, 1(3): 8-12. |
张木清, 陈如凯. NaCl胁迫对甘蔗生长影响的机理研究. 甘蔗, 1994, 1(3): 8-12. | |
7 | Mikela P, Kirkainen J, Somersalo S. Effects of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 2000, 43(3): 471-475. |
8 | Lu S W, Qi F, Li T L. Effect of NaCl and PEG iso-osmotic stresses on photosynthetic characteristics and sucrose metabolizing in tomato leaf. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 136-141. |
鲁少尉, 齐飞, 李天来. NaCl及等渗PEG胁迫对番茄叶片光合特性及蔗糖代谢的影响. 华北农学报, 2012, 27(3): 136-141. | |
9 | Guo N N, Chen X L, Zhang J, et al. Changes in antioxidase activity and osmotic adjusting substance of Tamarix chinensis seedling under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(8): 1620-1625. |
郭楠楠, 陈学林, 张继, 等. 柽柳组培苗抗氧化酶及渗透调节物质对NaCl胁迫的响应. 西北植物学报, 2015, 35(8): 1620-1625. | |
10 | Yao J, Liu X B, Cui X, et al. Effects of NaCl stress on substances linked to osmotic adjustment and on photosynthetic physiology of Melilotoides ruthenica in the seedling stage. Acta Prataculturae Sinica, 2015, 24(5): 91-99. |
姚佳, 刘信宝, 崔鑫, 等. 不同NaCl胁迫对苗期扁蓿豆渗透调节物质及光合生理的影响, 草业学报, 2015, 24(5): 91-99. | |
11 | Wang J P, Wang S T, Yue J M, et al. Physiological response of Cinamomum camphora seedlings to NaCl stress. Science of Soil and Water Conservation, 2016, 14(5): 82-89. |
王金平, 王舒甜, 岳健敏, 等. 香樟幼苗对NaCl胁迫的生理响应. 中国水土保持科学, 2016, 14(5): 82-89. | |
12 | Xing J C, Dong J, Wang M W, et al. Effects of NaCl stress on growth of Portulaca oleracea and underlying mechanisms. Brazilian Journal of Botany,2019, 42: 217-226. |
13 | Sharma P, Dubey R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 2007, 26(11): 2027-2038. |
14 | Jia X P, Deng Y M, Sun X B, et al. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
贾新平, 邓衍明, 孙晓波, 等. 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 2015, 24(12): 204-212. | |
15 | Zhang Z H, Wang H, Tang Z H, et al. High NaHCO3 stress causes direct injury to Nicotiana tabacum roots. Journal of Plant Interactions, 2014, 9(1): 56-61. |
16 | Long C Y, Deng H M, Su M J, et al. Effects of three salt stresses on growth, physiology and biochemistry of Cirsium japonicum. Pratacultural Science, 2017, 34(12): 2484-2492. |
龙聪颖, 邓辉茗, 苏明洁, 等. 3种盐胁迫对蓟幼苗生长及生理生化的影响. 草业科学, 2017, 34(12): 2484-2492. | |
17 | Urbinati G, Nota P, Frattarelli A, et al. Morpho-physiological responses of sea buckthorn (Hippophae rhamnoides) to NaCl stress. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology, 2020, 154(6): 827-834. |
18 | Wang L, Hu B Z. Biological characteristics and cultivation management of Viola tricolor L. Journal of Northeast Agricultural University, 2008, 39(6): 132-135. |
王磊, 胡宝忠. 三色董(Viola tricolor L.)生物学特性及栽培管理. 东北农业大学学报, 2008, 39(6): 132-135. | |
19 | Endo T. Biochemical and genetical investigations of flower color in swiss giant pansy, Viola×wittrockiana gams. Ⅲ. The Japanese Journal of Genetics, 1959, 34(4): 116-124. |
20 | Zhu Y X, Han C Y, Bai Z H. Effect of drought stress on physiological indices of potted pansy. Journal of Henan Agricultural Sciences, 2013, 42(8): 109-111. |
朱永兴, 韩春叶, 白志怀. 干旱胁迫对盆栽三色堇生理指标的影响. 河南农业科学, 2013, 42(8): 109-111. | |
21 | Liu H C, Jia W Q, Zhu T T. Effects of salt stress on CAT, POD and the cell membrane permeability of Viola tricolor. Journal of Henan Agricultural Sciences, 2010, 23(4): 98-100. |
刘会超, 贾文庆, 朱婷婷. 盐胁迫对三色堇CAT、POD活性及细胞质膜透性的影响. 河南农业科学, 2010, 23(4): 98-100. | |
22 | You Y, Jia W Q. Effect of NaCl stress on SOD, POD and chlorophyll content in Viola tricolor. Northern Horticulture, 2012(6): 64-66. |
尤扬, 贾文庆. NaCl胁迫对三色董SOD, POD及叶绿素含量的影响. 北方园艺, 2012(6): 64-66. | |
23 | Peng H T, Gao Y, Du H M, et al. Effects of heat stress on related physiological indexes of pansy cultivar seedlings. Journal of Shanghai Jiaotong University (Agricultural Science), 2012, 30(6): 66-71. |
彭华婷, 高悦, 杜红梅, 等. 高温胁迫对大花三色董幼苗相关生理指标的影响. 上海交通大学学报(农业科学版), 2012, 30(6): 66-71. | |
24 | Chen H Z, Du X H, Mu J Y, et al. Physiological response of Viola tricolor L. and Viola cornuta to high temperature stress. Jiangsu Agricultural Sciences, 2017, 45(6): 124-126. |
陈宏志, 杜晓华, 穆金艳, 等. 大花三色堇和角堇对高温胁迫的生理响应. 江苏农业科学, 2017, 45(6): 124-126. | |
25 | Qi Y Y, Du X H, Wang M Y, et al. Physiological response of Viola tricolor L. and Viola cornuta to low temperature stress and hardiness. Jiangsu Agricultural Sciences, 2017, 45(15): 115-118. |
齐阳阳, 杜晓华, 王梦叶, 等. 大花三色堇和角堇对低温胁迫的生理响应及其抗寒性. 江苏农业科学, 2017, 45(15): 115-118. | |
26 | Jiang C, Wang J J, Li J M, et al. Effect of Cr6+ on the seed germination and chlorophyll content of Viola tricolor. Northern Horticulture, 2018(19): 78-82. |
姜成, 王景佳, 李佳美, 等.重金属铬(Cr6+)对三色堇种子萌发及叶绿素含量的影响. 北方园艺, 2018(19): 78-82. | |
27 | Liu J X, Wang J C, Jia H Y. Differences between physiological responses of Avena nuda seedlings to salt and alkali stresses. Journal of Soil and Water Conservation, 2015, 29(5): 331-336. |
刘建新, 王金成, 贾海燕.燕麦幼苗对盐胁迫和碱胁迫的生理响应差异. 水土保持学报, 2015, 29(5): 331-336. | |
28 | Li H S. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2001:134-170. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001: 134-170. | |
29 | Gao J F. Guidance of plant physiology experiments. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
30 | Wei B X. Distribution and cause analysis of saline-alkaline soils in China. Technology of Soil and Water Conservation, 2012, 150(6): 27-28. |
魏博娴. 中国盐碱土的分布与成因分析. 水土保持应用技术, 2012, 150(6): 27-28. | |
31 | Anokye E, Lowor S T, Dogbatse J A, et al. Potassium application positively modulates physiological responses of cocoa seedlings to drought stress. Agronomy, 2021, 11(3): 1-19. |
32 | Al-Farsi S M, Nawaz A, Anees-ur-Rehman, et al. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop and Pasture Science, 2020, 71: 411-428. |
33 | Heyno E, Mary V, Schopfer P, et al. Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes. Planta, 2011, 234(1): 35-45. |
34 | Agastian P, Kingsley S J, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 2000, 38(2): 287-290. |
35 | Lv X Y, You T Y, Zhao J, et al. Morphology and physiological responses of Chenopodium album L. under salt stress. Plant Physiology Journal, 2012, 48(5): 477-484. |
吕秀云, 油天钰, 赵娟, 等. 盐胁迫下藜的形态结构与生理响应. 植物生理学报, 2012, 48(5): 477-484. | |
36 | Li Z Y, Cong R C, Yang Q S, et al. Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings. Acta Ecologica Sinica, 2017, 37(24): 8511-8517. |
李子英, 丛日春, 杨庆山, 等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响. 生态学报, 2017, 37(24): 8511-8517. | |
37 | Ma L Q, Han Z H, Zhou E F, et al. Effect of salt stress on protective enzyme system of membrane in Malus zumi and M. baccata. Journal of Fruit Science, 2006, 23(4): 495-499. |
马丽清, 韩振海, 周二峰, 等. 盐胁迫对珠美海棠和山定子膜保护酶系统的影响. 果树学报, 2006, 23(4): 495-499. | |
38 | Juknys R, Vitkauskaite G, Racaite M, et al. The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology, 2012, 7(2): 299-306. |
39 | Xu Y, Xiao H Y, Zheng N J, et al. Progress on responding of free amino acid in plants to salt stress. Environmental Science & Technology, 2016, 39(7): 40-47. |
徐宇, 肖化云, 郑能建, 等. 植物组织中游离氨基酸在盐胁迫下响应的研究进展. 环境科学与技术, 2016, 39(7): 40-47. | |
40 | Zhang L P, Wang X F, Shi Q H, et al. Differences of physiological responses of cucumber seedlings to NaCl and NaHCO3 stress. Chinese Journal of Applied Ecology, 2008, 19(8): 1854-1859. |
张丽平, 王秀峰, 史庆华, 等. 黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异. 应用生态学报, 2008, 19(8): 1854-1859. |
[1] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[2] | 董秋丽,夏方山,李晓禹,王明亚,毛培胜,朱慧森,佟莉蓉,杜利霞. 抗坏血酸引发对NaCl胁迫燕麦种子活力的影响[J]. 草业学报, 2018, 27(4): 202-208. |
[3] | 张利霞, 常青山, 侯小改, 刘伟, 李晓鹏, 高宇航, 张秀丽, 丁生运, 肖瑞雪, 张耀, 邓永恒. NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J]. 草业学报, 2017, 26(11): 167-175. |
[4] | 常青山, 张利霞, 杨伟, 周姗姗, 黄青哲, 吕凤娟, 黄玥, 葛淑慧, 张天蒙. 外源NO对NaCl胁迫下夏枯草幼苗抗氧化能力及光合特性的影[J]. 草业学报, 2016, 25(7): 121-130. |
[5] | 寇江涛, 康文娟, 苗阳阳, 师尚礼. 外源2,4-表油菜素内酯对NaCl胁迫下紫花苜蓿幼苗光合特性及离子吸收、运输和分配的影响[J]. 草业学报, 2016, 25(4): 91-103. |
[6] | 旷宇, 南志标, 田沛. 内生真菌和水引发对NaCl胁迫条件下中华羊茅种子萌发的影响[J]. 草业学报, 2016, 25(2): 160-168. |
[7] | 王玉萍, 王映霞, 白向利, 王小青, 张峰. 硅对NaCl胁迫下甜瓜种子萌发及幼苗生长的影响[J]. 草业学报, 2015, 24(5): 108-116. |
[8] | 蔡丹红, 严成, 魏岩. 荒漠半灌木白滨藜种子的萌发特性及其生态意义[J]. 草业学报, 2015, 24(10): 131-138. |
[9] | 刘凤歧, 刘杰淋, 朱瑞芬, 张悦, 郭勇, 韩贵清, 唐凤兰. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价[J]. 草业学报, 2015, 24(1): 183-189. |
[10] | 孟亚雄,王世红,汪军成,徐先良,赖勇,司二静,马小乐,李葆春,杨轲,王化俊. CoCl2对NaCl胁迫下大麦生长及幼苗生理指标的影响[J]. 草业学报, 2014, 23(3): 160-166. |
[11] | 徐严,魏小红,李兵兵,曹丽,唐志敏. 外源NO对NaCl胁迫下紫花苜蓿种子萌发及幼苗氧化损伤的影响[J]. 草业学报, 2013, 22(5): 145-154. |
[12] | 王卫栋,杨培志,张攀,韩博,张志强,曹玉曼,呼天明. 共生根瘤菌对NaCl胁迫下紫花苜蓿抗氧化和渗透调节能力的影响[J]. 草业学报, 2013, 22(5): 120-127. |
[13] | 彭云玲,李伟丽,王坤泽,王汉宁. NaCl胁迫对玉米耐盐系与盐敏感系萌发和幼苗生长的影响[J]. 草业学报, 2012, 21(4): 62-71. |
[14] | 王玉萍,董雯,张鑫,杨茜,张峰. 水杨酸对盐胁迫下花椰菜种子萌发及幼苗生理特性的影响[J]. 草业学报, 2012, 21(1): 213-219. |
[15] | 刘爱荣,张远兵, 方园园, 李伟, 陈志扬. 盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响[J]. 草业学报, 2011, 20(6): 52-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||