草业学报 ›› 2023, Vol. 32 ›› Issue (5): 127-137.DOI: 10.11686/cyxb2022205
• 研究论文 • 上一篇
叶婷1,3(), 吴晓娟2,3, 芦奕晓2,3, 刘生娟1,3, 姜卓慧1,3, 杨惠敏1,2,3()
收稿日期:
2022-05-06
修回日期:
2022-08-18
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
杨惠敏
作者简介:
E-mail: huimyang@lzu.edu.cn基金资助:
Ting YE1,3(), Xiao-juan WU2,3, Yi-xiao LU2,3, Sheng-juan LIU1,3, Zhuo-hui JIANG1,3, Hui-min YANG1,2,3()
Received:
2022-05-06
Revised:
2022-08-18
Online:
2023-05-20
Published:
2023-03-20
Contact:
Hui-min YANG
摘要:
混播比例是混播草地适应性和稳定性的主要调节因素,因气候和土壤条件的不同而表现区域特异性。在陇东黄土高原雨养条件下,亟需构建混播组合和比例适当的苜蓿混播草地。选用苜蓿-无芒雀麦(MB)和苜蓿-猫尾草(MP)组合,建立了3个混播比例(苜蓿∶禾草=7∶3、5∶5、3∶7)的混播草地,以3种牧草单播为对照,对牧草产量、种群密度动态进行了分析,探究不同混播组合和比例下混播草地的稳定性。结果表明,混播比例对MP和MB混播草地牧草产量和种群密度稳定性均有显著影响,群落结构稳定性随草地年龄增大逐年降低。MB的苜蓿和禾草单产量及草地总产量显著高于MP,但2和5龄时二者间差异不显著。随2种混播下苜蓿比例增大,2、4和5龄草地总产量先升高后降低,3龄草地总产量升高;草地中苜蓿相对产量相异度系数呈先降低后升高趋势(3龄MB例外),禾草相对产量相异度系数的变化趋势不一致。MP下苜蓿和禾草相对种群密度相异度系数随苜蓿比例增大而呈先降低后升高趋势,5∶5混播下群落结构稳定性最弱;MB模式下,仅5龄草地苜蓿和禾草相对种群密度相异度系数随苜蓿比例增大而呈升高趋势。综上,MB能显著提高产量,较好地维持群落稳定性。在陇东黄土高原地区,建议可优先实行7∶3苜蓿-无芒雀麦混播,并在第5年换茬或施肥。
叶婷, 吴晓娟, 芦奕晓, 刘生娟, 姜卓慧, 杨惠敏. 混播比例对两种苜蓿混播草地产量和种群密度稳定性的影响[J]. 草业学报, 2023, 32(5): 127-137.
Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures[J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137.
土层 Soil layer (cm) | 全磷 Total phosphorus (mg·g-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (mg·g-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (mg·g-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 0.6 | 19.2 | 4.6 | 272.5 | 1.0 | 2.6 | 23.3 |
10~20 | 0.5 | 20.2 | 5.7 | 101.6 | 0.9 | 3.0 | 21.1 |
20~30 | 0.6 | 12.7 | 5.5 | 84.5 | 0.7 | 2.6 | 17.3 |
30~60 | 0.3 | 5.5 | 7.3 | 124.3 | 0.7 | 2.3 | 18.7 |
60~90 | 0.3 | 1.9 | 7.6 | 94.5 | 0.7 | 3.0 | 21.9 |
表1 试验地土壤养分基本情况
Table 1 Basic nutritional status of soil at the experimental site
土层 Soil layer (cm) | 全磷 Total phosphorus (mg·g-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (mg·g-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (mg·g-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 0.6 | 19.2 | 4.6 | 272.5 | 1.0 | 2.6 | 23.3 |
10~20 | 0.5 | 20.2 | 5.7 | 101.6 | 0.9 | 3.0 | 21.1 |
20~30 | 0.6 | 12.7 | 5.5 | 84.5 | 0.7 | 2.6 | 17.3 |
30~60 | 0.3 | 5.5 | 7.3 | 124.3 | 0.7 | 2.3 | 18.7 |
60~90 | 0.3 | 1.9 | 7.6 | 94.5 | 0.7 | 3.0 | 21.9 |
种植模式Planting pattern | 牧草组合及比例Forage combination and mixing ratio | 播量Sowing rate (kg·hm-2) | 处理编号Code |
---|---|---|---|
混播Mixture | 苜蓿∶猫尾草7∶3 Alfalfa∶timothy 7∶3 | 10.5,4.5 | M7P3 |
苜蓿∶猫尾草5∶5 Alfalfa∶timothy 5∶5 | 7.5,7.5 | M5P5 | |
苜蓿∶猫尾草3∶7 Alfalfa∶timothy 3∶7 | 4.5,10.5 | M3P7 | |
苜蓿∶无芒雀麦7∶3 Alfalfa∶smooth bromegrass 7∶3 | 10.5,9.0 | M7B3 | |
苜蓿∶无芒雀麦5∶5 Alfalfa∶smooth bromegrass 5∶5 | 7.5,15.0 | M5B5 | |
苜蓿∶无芒雀麦3∶7 Alfalfa∶smooth bromegrass 3∶7 | 4.5,21.0 | M3B7 | |
单播Monoculture | 100%苜蓿Pure alfalfa | 15.0 | M |
100%猫尾草Pure timothy | 15.0 | P | |
100%无芒雀麦Pure smooth bromegrass | 30.0 | B |
表2 种植模式、混播组合和比例
Table 2 Planting pattern, combination and mixing ratio
种植模式Planting pattern | 牧草组合及比例Forage combination and mixing ratio | 播量Sowing rate (kg·hm-2) | 处理编号Code |
---|---|---|---|
混播Mixture | 苜蓿∶猫尾草7∶3 Alfalfa∶timothy 7∶3 | 10.5,4.5 | M7P3 |
苜蓿∶猫尾草5∶5 Alfalfa∶timothy 5∶5 | 7.5,7.5 | M5P5 | |
苜蓿∶猫尾草3∶7 Alfalfa∶timothy 3∶7 | 4.5,10.5 | M3P7 | |
苜蓿∶无芒雀麦7∶3 Alfalfa∶smooth bromegrass 7∶3 | 10.5,9.0 | M7B3 | |
苜蓿∶无芒雀麦5∶5 Alfalfa∶smooth bromegrass 5∶5 | 7.5,15.0 | M5B5 | |
苜蓿∶无芒雀麦3∶7 Alfalfa∶smooth bromegrass 3∶7 | 4.5,21.0 | M3B7 | |
单播Monoculture | 100%苜蓿Pure alfalfa | 15.0 | M |
100%猫尾草Pure timothy | 15.0 | P | |
100%无芒雀麦Pure smooth bromegrass | 30.0 | B |
因素 Effector | 苜蓿产量Alfalfa yield | 禾草产量Grass yield | 总产量Total yield | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
年龄Age | 128.802 | <0.001 | 205.109 | <0.001 | 395.374 | <0.001 |
混播组合Combination | 2.528 | 0.116 | 34.782 | <0.001 | 20.373 | <0.001 |
混播比例Mixing ratio | 226.270 | <0.001 | 221.625 | <0.001 | 149.782 | <0.001 |
年龄×混播组合Age×combination | 9.419 | <0.001 | 104.355 | <0.001 | 14.403 | <0.001 |
年龄×混播比例Age×mixing ratio | 36.332 | <0.001 | 21.239 | <0.001 | 36.686 | <0.001 |
混播组合×混播比例Combination×mixing ratio | 1.588 | 0.186 | 13.213 | <0.001 | 2.264 | 0.070 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.821 | <0.001 | 45.838 | <0.001 | 2.372 | 0.011 |
表3 年龄、混播组合、混播比例及其交互作用对牧草产量的影响
Table 3 Effects of age, combination, mixing ratio and the interactions on forage yield
因素 Effector | 苜蓿产量Alfalfa yield | 禾草产量Grass yield | 总产量Total yield | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
年龄Age | 128.802 | <0.001 | 205.109 | <0.001 | 395.374 | <0.001 |
混播组合Combination | 2.528 | 0.116 | 34.782 | <0.001 | 20.373 | <0.001 |
混播比例Mixing ratio | 226.270 | <0.001 | 221.625 | <0.001 | 149.782 | <0.001 |
年龄×混播组合Age×combination | 9.419 | <0.001 | 104.355 | <0.001 | 14.403 | <0.001 |
年龄×混播比例Age×mixing ratio | 36.332 | <0.001 | 21.239 | <0.001 | 36.686 | <0.001 |
混播组合×混播比例Combination×mixing ratio | 1.588 | 0.186 | 13.213 | <0.001 | 2.264 | 0.070 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.821 | <0.001 | 45.838 | <0.001 | 2.372 | 0.011 |
图2 单播和混播下2~5龄苜蓿(a)、禾草(b)产量和草地(c)总产量M: 苜蓿Alfalfa; P: 猫尾草Timothy; B: 无芒雀麦Smooth bromegrass. 字母数字组合代表混播组合及比例。不同小写字母表示同一年龄不同混播比例间差异显著(P<0.05),下同。Letters with numbers show different combinations and mixing ratios. Different lowercase letters indicate significant differences among mixing ratios at the same age (P<0.05). The same below.
Fig.2 Forage yield of alfalfa (a) and grass (b) and total yield (c) in 2-5-year monocultures and mixtures
因素Effector | F | P |
---|---|---|
年龄Age | 28.382 | <0.001 |
混播组合Combination | 1.055 | 0.116 |
混播比例Mixing ratio | 0.257 | 0.775 |
年龄×混播组合Age×combination | 22.079 | 0.001 |
年龄×混播比例Age×mixing ratio | 2.117 | 0.068 |
混播组合×混播比例Combination×mixing ratio | 0.424 | 0.657 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.651 | 0.001 |
表4 年龄、混播组合、混播比例及其交互作用对相对产量总和的影响
Table 4 Effects of age, combination, mixing ratio and the interactions on relative yield total
因素Effector | F | P |
---|---|---|
年龄Age | 28.382 | <0.001 |
混播组合Combination | 1.055 | 0.116 |
混播比例Mixing ratio | 0.257 | 0.775 |
年龄×混播组合Age×combination | 22.079 | 0.001 |
年龄×混播比例Age×mixing ratio | 2.117 | 0.068 |
混播组合×混播比例Combination×mixing ratio | 0.424 | 0.657 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.651 | 0.001 |
因素 Effector | 相对产量相异度系数CD-RY | 相对种群密度相异度系数CD-RPD | ||||||
---|---|---|---|---|---|---|---|---|
苜蓿Alfalfa | 禾草Grass | 苜蓿Alfalfa | 禾草Grass | |||||
F | P | F | P | F | P | F | P | |
年龄Age | 11.650 | <0.001 | 7.395 | 0.002 | 17.919 | <0.001 | 44.296 | <0.001 |
混播组合Combination | 37.023 | <0.001 | 31.748 | <0.001 | 5.199 | 0.029 | 1.915 | 0.175 |
混播比例Mixing ratio | 29.553 | <0.001 | 4.865 | 0.003 | 1.591 | 0.218 | 9.010 | 0.001 |
年龄×混播组合Age×combination | 5.049 | 0.009 | 15.047 | <0.001 | 4.368 | 0.020 | 0.468 | 0.630 |
年龄×混播比例Age×mixing ratio | 9.787 | <0.001 | 0.552 | 0.699 | 1.125 | 0.360 | 5.670 | 0.001 |
混播组合×混播比例Combination×mixing ratio | 19.152 | <0.001 | 5.746 | 0.007 | 4.900 | 0.013 | 10.728 | <0.001 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 9.553 | <0.001 | 4.227 | 0.006 | 1.153 | 0.384 | 4.897 | 0.003 |
表5 年龄、混播组合、混播比例及其交互作用对牧草相异度系数的影响
Table 5 Effects of age, combination, mixing ratio and the interactions on forage dissimilarity coefficient (CD)
因素 Effector | 相对产量相异度系数CD-RY | 相对种群密度相异度系数CD-RPD | ||||||
---|---|---|---|---|---|---|---|---|
苜蓿Alfalfa | 禾草Grass | 苜蓿Alfalfa | 禾草Grass | |||||
F | P | F | P | F | P | F | P | |
年龄Age | 11.650 | <0.001 | 7.395 | 0.002 | 17.919 | <0.001 | 44.296 | <0.001 |
混播组合Combination | 37.023 | <0.001 | 31.748 | <0.001 | 5.199 | 0.029 | 1.915 | 0.175 |
混播比例Mixing ratio | 29.553 | <0.001 | 4.865 | 0.003 | 1.591 | 0.218 | 9.010 | 0.001 |
年龄×混播组合Age×combination | 5.049 | 0.009 | 15.047 | <0.001 | 4.368 | 0.020 | 0.468 | 0.630 |
年龄×混播比例Age×mixing ratio | 9.787 | <0.001 | 0.552 | 0.699 | 1.125 | 0.360 | 5.670 | 0.001 |
混播组合×混播比例Combination×mixing ratio | 19.152 | <0.001 | 5.746 | 0.007 | 4.900 | 0.013 | 10.728 | <0.001 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 9.553 | <0.001 | 4.227 | 0.006 | 1.153 | 0.384 | 4.897 | 0.003 |
图4 混播下3~5龄苜蓿(a)和禾草(b)相对产量相异度系数
Fig.4 Relative yield based dissimilarity coefficient (CD-RY) of alfalfa (a) and grass (b) in 3-5-year mixtures grassland
图5 混播下3~5龄苜蓿(a)和禾草(b)相对种群密度相异度系数
Fig.5 Relative population density based dissimilarity coefficient (CD-RPD) of alfalfa (a) and grass (b) in 3-5-year mixtures grassland
1 | Ren J Z, Zhang Y J. Grassland resources in the south of China and its development strategy. Journal of China Institute of Metrology, 2002, 13(3): 11-17. |
任继周, 张英俊. 中国南方草地资源及其发展战略. 中国计量学院学报, 2002, 13(3): 11-17. | |
2 | Rolando J L, Dubeux J C B, Ramirez D A, et al. Land use effects on soil fertility and nutrient cycling in the Peruvian High-Andean Puna grasslands. Soil Science Society of America Journal, 2018, 82(2): 463-474. |
3 | Hadidi M, Ibarz A, Pagan J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chemistry, 2020, 309: 125786. |
4 | Chen L, He F, Long R C, et al. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. Journal of Integrative Plant Biology, 2021, 63(11): 1937-1951. |
5 | Liu M G, Wang Z K, Mu L, et al. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agricultural Water Management, 2021, 248: 106764. |
6 | Ali G, Wang Z K, Li X R, et al. Deep soil water deficit and recovery in alfalfa fields of the Loess Plateau of China. Field Crops Research, 2021, 260: 107990. |
7 | Wang J, Liu W Z, Zhong L P, et al. Spatial variability of soil moisture and aboveground biomass of Medicago sativa under long term continuous planting. Acta Prataculturae Sinica, 2009, 18(4): 41-46. |
王俊, 刘文兆, 钟良平, 等. 长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性. 草业学报, 2009, 18(4): 41-46. | |
8 | Lin H L, Dong S K. Effective analysis of interspecific in mixed grassland of cultivated perennial grasses in alpine region of Qinghai-Tibetan plateau of China. Acta Prataculturae Sinica, 2003, 12(3): 79-82. |
林慧龙, 董世魁. 高寒地区多年生禾草混播草地种间竞争效应分析. 草业学报, 2003, 12(3): 79-82. | |
9 | Zhao J Q. The sustainable utilization study of 18 introduced excellent cultivars mixture pastures productivity and community stability. Lanzhou: Lanzhou University, 2007. |
赵俊权. 18种引进优良牧草混播草地生产力和群落稳定性及可持续利用研究. 兰州: 兰州大学, 2007. | |
10 | Rodriguez C, Mrtensson L M D, Jensen E S, et al. Combining crop diversification practices can benefit cereal production in temperate climates. Agronomy for Sustainable Development, 2021, 41(4): 48. |
11 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
12 | Yang H M, Unkovich M, McNeill A, et al. Symbiotic N2 fixation and nitrate utilisation in irrigated lucerne (Medicago sativa) systems. Biology and Fertility of Soils, 2011, 47(4): 377-385. |
13 | Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. |
段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. | |
14 | Lu Y X, Mu L, Yang H M. Advances in improved soil fertility with legume-grass mixtures. Chinese Journal of Grassland, 2019, 41(1): 94-100. |
芦奕晓, 牟乐, 杨惠敏. 豆科与禾本科牧草混播改良土壤的研究进展. 中国草地学报, 2019, 41(1): 94-100. | |
15 | Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1/2): 305-312. |
16 | Li H B. The dynamic process of plant responses to heterogeneous nutrient environments and the strategies of root management for nutrient acquisition. Beijing: Chinese Agriculture University, 2014. |
李洪波. 植物响应养分空间异质性分布的动态过程及调控根系获取养分的策略研究. 北京: 中国农业大学, 2014. | |
17 | Chen W L, Koide R T, Eissenstat D M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. Journal of Ecology, 2017, 106(1): 148-156. |
18 | Silva L S D, Sollenberger L E, Mullenix M K, et al. Soil carbon and nitrogen stocks in nitrogen-fertilized grass and legume-grass forage systems. Nutrient Cycling in Agroecosystems, 2022, 122: 105-117. |
19 | Zhang Y L, Zhang L J. A study on forage yield dynamics of Medicago varia/Bromus inermis mixture and single grassland. Chinese Journal of Grassland, 2006, 28(5): 23-28. |
张永亮, 张丽娟. 苜蓿、无芒雀麦混播及单播草地产草量动态研究. 中国草地学报, 2006, 28(5): 23-28. | |
20 | Berti M T, Lukaschewsky J, Samarappuli D P. Intercropping alfalfa into silage maize can be more profitable than maize silage followed by spring-seeded alfalfa. Agronomy, 2021, 11(6): 1196. |
21 | Zheng W, Zhu J Z, Jianaerguli, et al. Effects of different mixed sowing patterns on production performance of legume-grass mixture. Chinese Journal of Grassland, 2011, 33(5): 45-52. |
郑伟, 朱进忠, 加娜尔古丽, 等. 不同混播方式对豆禾混播草地生产性能的影响. 中国草地学报, 2011, 33(5): 45-52. | |
22 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixes sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
23 | Zhang H H, Shi S L, Wu B, et al. A study of yield interactions in mixed sowing of alfalfa and three perennial grasses. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
张辉辉, 师尚礼, 武蓓, 等. 苜蓿与3种多年生禾草混播效应研究. 草业学报, 2022, 31(2): 159-170. | |
24 | Qi J, Zheng W, Zhang X H, et al. Determination and comparison of the production performance of pastures among different spatial structure of legume-grass mixtures. Pratacultural Science, 2016, 33(1): 116-128. |
祁军, 郑伟, 张鲜花, 等. 不同豆禾混播模式的草地生产性能. 草业科学, 2016, 33(1): 116-128. | |
25 | Wang P, Zhou D W, Zhang B T. Coexistence and inter-specific competition in grass-legume mixture. Acta Ecologica Sinica, 2009, 29(5): 2560-2567. |
王平, 周道玮, 张宝田. 禾-豆混播草地种间竞争与共存. 生态学报, 2009, 29(5): 2560-2567. | |
26 | Goldberg D E, Barton A M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. The American Naturalist, 1992, 139(4): 771-801. |
27 | Meza K, Vanek S J, Sueldo Y, et al. Grass-legume mixtures show potential to increase above-and belowground biomass production for Andean forage-based fallows. Agronomy, 2022, 12(1): 142. |
28 | Liu Q Y, Yun L, Chen Y F, et al. The dynamic analysis of forage yield and interspecific competition in alfalfa-grass mixed pasture. Acta Prataculturae Sinica, 2022, 31(3): 181-191. |
刘启宇, 云岚, 陈逸凡, 等. 苜蓿-禾草混播草地牧草产量及种间竞争关系的动态研究. 草业学报, 2022, 31(3): 181-191. | |
29 | Aponte A, Samarappuli D, Berti M T. Alfalfa-grass mixtures in comparison to grass and alfalfa monocultures. Agronomy Journal, 2019, 111(2): 628-638. |
30 | Zheng W, Jianaerguli, Tang G R, et al. Determination and comparison of community stability in different legume-grass mixes. Acta Prataculturae Sinica, 2015, 24(3): 155-167. |
郑伟, 加娜尔古丽, 唐高溶, 等. 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 2015, 24(3): 155-167. | |
31 | Zhang Y L, Yu T F, Hao F, et al. Effects of fertilization and mixed sowing ratio on the production performance of grass-alfalfa mixed forage. Chinese Journal of Grassland, 2020, 42(6): 115-124. |
张永亮, 于铁峰, 郝凤, 等. 施肥与混播比例对豆禾混播牧草生产性能的影响. 中国草地学报, 2020, 42(6): 115-124. | |
32 | Jiang W T, Yuan G Y, Shen Y Y, et al. Effects of temperatures and mixed sowing ratios on growth and interspecific competition of Onobrychis viciaefolia and Elymus nutans community. Chinese Journal of Grassland, 2021, 43(4): 22-29. |
蒋汶桃, 苑广源, 沈禹颖, 等. 温度和混播比例对红豆草-垂穗披碱草群体生长及种间竞争的影响. 中国草地学报, 2021, 43(4): 22-29. | |
33 | Sturludóttir E, Brophy C, Berlanger G, et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass and Forage Science, 2014, 69(2): 229-240. |
34 | Li Q, Huang Y X, Zhong R Z, et al. Influence of Medicago sativa proportion on its individual nitrogen fixation efficiency and underlying physiological mechanism in legume-grass mixture grassland. Scientia Agriculture Sinica, 2020, 53(13): 2647-2656. |
李强, 黄迎新, 钟荣珍, 等. 豆-禾混播草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制. 中国农业科学, 2020, 53(13): 2647-2656. | |
35 | Ledgard S F, Steele K W. Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil, 1992, 141(1/2): 137-153. |
36 | Feng T X, De K J, Xiang X M, et al. Effects of different mixtures and proportions of Avena sativa and pea on forage yield and quality in alpine cold region. Acta Agrestia Sinica, 2022, 30(2): 487-494. |
冯廷旭, 德科加, 向雪梅, 等. 高寒地区燕麦与豌豆不同混播组合和比例对饲草产量及品质的影响. 草地学报, 2022, 30(2): 487-494. | |
37 | Li Q, Song Y T, Li G D, et al. Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil, 2015, 394(1/2): 271-285. |
38 | Duan L H, Liu X L, Han B, et al. Effects of native species reseeding on the community stability of alpine meadow in the Tibet Plateau. Acta Agrestia Sinica, 2021, 29(8): 1793-1800. |
段丽辉, 刘晓丽, 韩冰, 等. 乡土物种补播对青藏高原高寒草甸群落稳定性的影响. 草地学报, 2021, 29(8): 1793-1800. | |
39 | Chen J S, Zhu R F, Gao C, et al. Interspecific competition of mixed grassland of bromegrass (Bromus inermis L.) and alfalfa (Medicago sativa L.) . Acta Agrestia Sinica, 2013, 21(6): 1157-1161. |
陈积山, 朱瑞芬, 高超, 等. 苜蓿和无芒雀麦混播草地种间竞争研究. 草地学报, 2013, 21(6): 1157-1161. | |
40 | Tilman D. Causes, consequences and ethics of biodiversity. Nature, 2000, 405(6783): 208-211. |
41 | Wang S P, Lamy T, Hallett L M, et al. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography, 2019, 42(6): 1200-1211. |
[1] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[2] | 刘爱瑜, 王超, 吴占军, 赵寿培, 赵俐辰, 李晓宇, 张伟涛, 王乐天, 高玉红. 热应激对断奶绵羔羊生长性能、抗氧化性能和瘤胃菌群的影响[J]. 草业学报, 2023, 32(4): 173-182. |
[3] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[4] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[5] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[6] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[7] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[8] | 王静, 孔令莹, 徐建风, 康静, 沈振峰, 刘婷. 不同粒度猫尾草对羔羊体外发酵特性和微生物数量的影响[J]. 草业学报, 2023, 32(3): 224-233. |
[9] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[10] | 陈映霞, 杜雨, 王玉祥, 张博, 阿迪莱·阿布都热合曼. 生境对无芒雀麦幼穗分化进程及生殖格局的影响[J]. 草业学报, 2023, 32(1): 112-121. |
[11] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[12] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[13] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
[14] | 赵俊威, 李生仪, 孙延亮, 刘选帅, 马春晖, 张前兵. 不同氮磷水平下不同土层中紫花苜蓿细根周转特征[J]. 草业学报, 2022, 31(9): 118-128. |
[15] | 陈卫东, 张玉霞, 张庆昕, 刘庭玉, 王显国, 王东儒. 末次刈割时间对苜蓿根颈抗氧化系统及抗寒性的影响[J]. 草业学报, 2022, 31(9): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||