草业学报 ›› 2023, Vol. 32 ›› Issue (7): 160-174.DOI: 10.11686/cyxb2022316
• 研究论文 • 上一篇
收稿日期:
2022-08-09
修回日期:
2022-10-31
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
王长庭
作者简介:
E-mail: wangct@swun.edu.cn基金资助:
Xiao-qin LIAO(), Chang-ting WANG(), Dan LIU, Guo TANG, Jun MAO
Received:
2022-08-09
Revised:
2022-10-31
Online:
2023-07-20
Published:
2023-05-26
Contact:
Chang-ting WANG
摘要:
植物根系是固定和支撑植物体的重要器官,是草地生态系统重要的碳库之一。分析植物不同直径大小根系在不同浓度氮磷配施下的形态特征和生理功能,有利于了解高寒草甸植物根系生长特征、碳分配格局和养分循环。本研究在川西北高寒草甸采用微根管技术原位监测4个氮(N)、磷(P)梯度(CK:0 g·m-2;NP10:N 5 g·m-2+P 5 g·m-2;NP20:N 10 g·m-2+P 10 g·m-2;NP30:N 15 g·m-2+P 15 g·m-2)根系动态(现存量、生产量、死亡量和周转率)的变化特征及其与环境因子间的相互关系。结果表明:1)土层间根系总现存量差异显著, 0~10 cm土层施肥(NP10、NP20、NP30)显著降低了直径≤0.3 mm根系现存量,且NP30显著降低了总根系和直径>0.3 mm根系现存量;10~20 cm土层NP20总根系和直径>0.3 mm根系现存量显著高于其他处理(P<0.05)。2)土层间根系总生产量和死亡量差异显著,0~10 cm土层,直径≤0.3 mm根系生产量和死亡量在处理间无显著差异,直径>0.3 mm根系在NP30死亡量显著增加;10~20 cm土层,直径≤0.3 mm根系生产量和死亡量在施肥处理下显著低于CK,直径>0.3 mm根系生产量和死亡量均在NP20、NP30显著高于CK(P<0.05)。3)土层及处理间根系周转速率无显著差异,但整体上直径≤0.3 mm根系周转速率高于直径>0.3 mm根系。4)结构方程模型进一步表明:根系现存量和生产量受土壤养分[全碳(TC);全氮(TN)]和根系直径大小的直接影响,土壤养分对根系周转率有正效应。综上:氮磷配施梯度对地下总根系现存量和死亡量影响显著,低、中氮磷(NP10、NP20)配施会降低植物对直径≤0.3 mm根系生物量的分配,投入更多的资源促进直径>0.3 mm根系的生长;高施肥(NP30)会使植物减少各直径大小根系生物量的分配,增加其死亡量,从而降低根系碳的积累。
廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174.
Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow[J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174.
土层 Soil layer (cm) | 处理 Treatment | 土壤紧实度 SC (%) | 土壤含水率 SWC (%) | 全碳 TC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | C∶N | C∶P | N∶P |
---|---|---|---|---|---|---|---|---|---|
0~10 | CK | 126.00±16.44Aa | 36.67±2.15Aa | 62.75±1.45Aab | 5.59±0.16Ab | 1.13±0.03Aa | 11.22±0.07Aa | 55.43±2.37Ab | 4.94±0.24Ab |
NP10 | 109.33±2.96Ba | 32.61±0.40Aa | 67.87±3.68Aa | 6.31±0.12Aa | 0.93±0.00Aa | 10.09±0.48Aa | 45.14±2.57Abc | 4.47±0.14Abc | |
NP20 | 161.00±2.08Aa | 34.85±0.18Aa | 56.78±1.47Ab | 5.63±0.16Aab | 1.01±0.08Aa | 10.78±0.75Aa | 72.48±3.98Aa | 6.74±0.13Aa | |
NP30 | 155.00±17.34Aa | 34.23±1.00Aa | 66.79±1.30Aab | 5.68±0.14Aab | 1.11±0.09Aa | 10.27±0.44Aa | 42.39±1.85Bc | 4.12±0.00Bc | |
10~20 | CK | 115.66±12.99Ab | 36.50±0.28Aa | 51.10±1.52Bb | 5.07±0.14Aa | 1.13±0.03Aa | 10.09±0.49Aa | 56.34±3.21Aa | 5.62±0.51Aa |
NP10 | 242.33±8.68Aa | 34.85±0.91Aab | 44.42±1.27Bc | 4.33±0.12Bb | 1.04±0.02Aa | 10.81±0.15Aa | 56.80±5.90Aa | 5.24±0.52Aa | |
NP20 | 195.33±13.04Aa | 32.91±0.47Bb | 51.00±1.33Bb | 4.71±0.16Bab | 0.92±0.11Aa | 11.77±0.47Aa | 60.36±3.96Aa | 5.17±0.55Ba | |
NP30 | 121.66±23.94Ab | 32.26±0.83Ab | 56.66±0.40Ba | 5.10±0.19Aa | 1.02±0.06Aa | 11.13±0.34Aa | 55.50±3.40Aa | 4.97±0.17Aa |
表1 氮磷配施对土壤理化性质的影响
Table 1 Effect of combined application of nitrogen and phosphorus on soil physical and chemical properties (mean±SE, n=3)
土层 Soil layer (cm) | 处理 Treatment | 土壤紧实度 SC (%) | 土壤含水率 SWC (%) | 全碳 TC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | C∶N | C∶P | N∶P |
---|---|---|---|---|---|---|---|---|---|
0~10 | CK | 126.00±16.44Aa | 36.67±2.15Aa | 62.75±1.45Aab | 5.59±0.16Ab | 1.13±0.03Aa | 11.22±0.07Aa | 55.43±2.37Ab | 4.94±0.24Ab |
NP10 | 109.33±2.96Ba | 32.61±0.40Aa | 67.87±3.68Aa | 6.31±0.12Aa | 0.93±0.00Aa | 10.09±0.48Aa | 45.14±2.57Abc | 4.47±0.14Abc | |
NP20 | 161.00±2.08Aa | 34.85±0.18Aa | 56.78±1.47Ab | 5.63±0.16Aab | 1.01±0.08Aa | 10.78±0.75Aa | 72.48±3.98Aa | 6.74±0.13Aa | |
NP30 | 155.00±17.34Aa | 34.23±1.00Aa | 66.79±1.30Aab | 5.68±0.14Aab | 1.11±0.09Aa | 10.27±0.44Aa | 42.39±1.85Bc | 4.12±0.00Bc | |
10~20 | CK | 115.66±12.99Ab | 36.50±0.28Aa | 51.10±1.52Bb | 5.07±0.14Aa | 1.13±0.03Aa | 10.09±0.49Aa | 56.34±3.21Aa | 5.62±0.51Aa |
NP10 | 242.33±8.68Aa | 34.85±0.91Aab | 44.42±1.27Bc | 4.33±0.12Bb | 1.04±0.02Aa | 10.81±0.15Aa | 56.80±5.90Aa | 5.24±0.52Aa | |
NP20 | 195.33±13.04Aa | 32.91±0.47Bb | 51.00±1.33Bb | 4.71±0.16Bab | 0.92±0.11Aa | 11.77±0.47Aa | 60.36±3.96Aa | 5.17±0.55Ba | |
NP30 | 121.66±23.94Ab | 32.26±0.83Ab | 56.66±0.40Ba | 5.10±0.19Aa | 1.02±0.06Aa | 11.13±0.34Aa | 55.50±3.40Aa | 4.97±0.17Aa |
项目Item | 现存量Standing crop | 生产量Production | 死亡量Mortality | 周转率Turnover |
---|---|---|---|---|
处理Treatment (T) | 14.771*** | 11.383*** | 6.811*** | 3.226* |
土层Soil layer (S) | 1419.057*** | 311.049*** | 440.862*** | 0.605 |
直径等级Diameter class (D) | 198.509*** | 36.325*** | 59.704*** | 11.280*** |
处理×土层 T×S | 14.316*** | 9.961*** | 7.211*** | 1.148 |
处理×直径等级 T×D | 2.091 | 2.460* | 1.151 | 1.595 |
土层×直径等级 S×D | 130.872*** | 21.276*** | 27.598*** | 0.890 |
处理×土层×直径等级 T×S×D | 2.178* | 1.483 | 0.480 | 0.830 |
表2 氮磷配施梯度下根系现存量、生产量、死亡量和周转率的多因素方差分析
Table 2 Multi-way ANOVA of root standing crop, production, mortality and turnover under nitrogen and phosphorus fertilization gradients
项目Item | 现存量Standing crop | 生产量Production | 死亡量Mortality | 周转率Turnover |
---|---|---|---|---|
处理Treatment (T) | 14.771*** | 11.383*** | 6.811*** | 3.226* |
土层Soil layer (S) | 1419.057*** | 311.049*** | 440.862*** | 0.605 |
直径等级Diameter class (D) | 198.509*** | 36.325*** | 59.704*** | 11.280*** |
处理×土层 T×S | 14.316*** | 9.961*** | 7.211*** | 1.148 |
处理×直径等级 T×D | 2.091 | 2.460* | 1.151 | 1.595 |
土层×直径等级 S×D | 130.872*** | 21.276*** | 27.598*** | 0.890 |
处理×土层×直径等级 T×S×D | 2.178* | 1.483 | 0.480 | 0.830 |
图4 氮磷配施梯度下根系特征的差异不同小写字母代表不同处理间差异显著,不同大写字母表示土层间差异显著(P<0.05)。The different lowercase letters represent significant differences among different treatments, the different capital letters indicate significant differences between soil layers.
Fig.4 Differences of root characteristics under different nitrogen and phosphorus fertilizer gradients
土层 Soil layer (cm) | 处理 Treatment | 直径≤0.3 mm根系 Root system with diameter≤0.3 mm | 直径>0.3 mm根系 Root system with diameter>0.3 mm | 总根系 Total root |
---|---|---|---|---|
0~10 | CK | 1.39±0.19Aa | 0.54±0.02Aa | 0.91±0.22Aa |
NP10 | 1.81±0.15Aa | 1.13±0.23Aa | 1.35±0.12Aa | |
NP20 | 1.66±0.11Aa | 1.42±0.32Aa | 1.44±0.25Aa | |
NP30 | 1.58±0.11Aa | 1.12±0.06Aa | 1.29±0.07Aa | |
10~20 | CK | 2.21±0.46Aa | 0.54±0.31Aa | 1.69±0.41Aa |
NP10 | 2.23±0.48Aa | 1.29±0.44Aa | 1.82±0.52Aa | |
NP20 | 1.72±0.37Aa | 1.17±0.36Aa | 1.35±0.36Aa | |
NP30 | 1.17±0.33Aa | 1.20±0.22Aa | 1.15±0.22Aa |
表3 不同施肥梯度处理下高寒草甸根系周转率
Table 3 Root turnover of alpine meadow under different fertilization treatments (mean±SE, n=3) (a-1)
土层 Soil layer (cm) | 处理 Treatment | 直径≤0.3 mm根系 Root system with diameter≤0.3 mm | 直径>0.3 mm根系 Root system with diameter>0.3 mm | 总根系 Total root |
---|---|---|---|---|
0~10 | CK | 1.39±0.19Aa | 0.54±0.02Aa | 0.91±0.22Aa |
NP10 | 1.81±0.15Aa | 1.13±0.23Aa | 1.35±0.12Aa | |
NP20 | 1.66±0.11Aa | 1.42±0.32Aa | 1.44±0.25Aa | |
NP30 | 1.58±0.11Aa | 1.12±0.06Aa | 1.29±0.07Aa | |
10~20 | CK | 2.21±0.46Aa | 0.54±0.31Aa | 1.69±0.41Aa |
NP10 | 2.23±0.48Aa | 1.29±0.44Aa | 1.82±0.52Aa | |
NP20 | 1.72±0.37Aa | 1.17±0.36Aa | 1.35±0.36Aa | |
NP30 | 1.17±0.33Aa | 1.20±0.22Aa | 1.15±0.22Aa |
图6 土壤理化性质与根系特征的相关性*:P<0.05;**:P<0.01;***:P<0.001;颜色接近白色,表示相关性低,颜色越深,表示相关性高The color is close to white, indicating low correlation, and darker the color, indicating high correlation;ST:现存量Standing crop;PR:生产量Production;MO:死亡量Mortality;TU:周转率 Turnover;SC:土壤紧实度 Soil compaction;SWC:土壤含水率 Soil water content;TC:全碳 Total carbon;TN:全氮 Total nitrogen;TP:全磷 Total phosphorus。下同。The same below.
Fig.6 Pearson correlation analysis between soil physicochemical properties and root characteristics
图7 根系特征与环境因子结构方程模型CHI: 卡方值 Chi-Square; DF: 自由度 Degrees of freedom; GFI: 适配度指数Goodness-of-fit index; AGFI: 调整后适配度指数Adjusted goodness-of-fit index; RMSEA: 近似误差均方根Root mean square error of approximation.
Fig.7 The structural equation model of root characteristics and environmental factor
1 | Sun Y F, Wan H W, Zhao Y J, et al. Spatial patterns and drivers of root turnover in grassland ecosystems in China. Chinese Journal of Plant Ecology, 2018, 42(3): 337-348. |
孙元丰, 万宏伟, 赵玉金, 等. 中国草地生态系统根系周转的空间格局和驱动因子. 植物生态学报, 2018, 42(3): 337-348. | |
2 | Wu Y B, Che R X, Ma S, et al. Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. |
吴伊波, 车荣晓, 马双, 等. 高寒草甸植被细根生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. | |
3 | Tang G, Hu L, Song X Y, et al. Response of plant roots in different diameter classes to changing precipitation in an alpine meadow. Acta Ecologica Sinica, 2022, 42(15): 6250-6264. |
唐国, 胡雷, 宋小艳, 等. 高寒草甸植物群落不同根序根系特征对降雨量变化的响应. 生态学报, 2022, 42(15): 6250-6264. | |
4 | Xu M H, Liu M, Zhai D T, et al. Effects of experimental warming on the root biomass of an alpine meadow on the Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 2016, 36(21): 6812-6822. |
徐满厚, 刘敏, 翟大彤, 等. 模拟增温对青藏高原高寒草甸根系生物量的影响. 生态学报, 2016, 36(21): 6812-6822. | |
5 | Li P, Li Z B, Lu K X. Relationship between herbaceous root system and vertical soil sediment yield in loess area. Journal of Plant Ecology, 2006(2): 302-306. |
李鹏, 李占斌, 鲁克新. 黄土区草本植被根系与土壤垂直侵蚀产沙关系研究. 植物生态学报, 2006(2): 302-306. | |
6 | Mccormack M L, Dickie I A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207(3): 505-518. |
7 | Wang W, Mo Q, Han X, et al. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biology and Fertility of Soils, 2019, 55(7): 723-736. |
8 | Luo Y Q, Zhao X Y, Wang T, et al. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207. |
罗永清, 赵学勇, 王涛, 等. 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 2017, 26(2): 197-207. | |
9 | Yu S Q, Wang J B, Hao Q W, et al. Fine root lifespan and influencing factors of four tree species with different life forms. Acta Ecologica Sinica, 2020, 40(9): 3040-3047. |
于水强, 王静波, 郝倩葳, 等. 四种不同生活型树种细根寿命及影响因素. 生态学报, 2020, 40(9): 3040-3047. | |
10 | Wu Y, Deng Y, Zhang J, et al. Root size and soil environments determine root lifespan: Evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013(28): 493-501. |
11 | Ruess R W, Cleve K V, Yarie J, et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Canadian Journal of Forest Research, 1996, 26(8): 1326-1336. |
12 | Goebel M, Hobbie S E, Bulaj B, et al. Decomposition of the finest root branching orders: Linking belowground dynamics to fine-root function and structure. Ecological Monographs, 2011, 81(1): 89-102. |
13 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. | |
14 | Wang X Z, Jiang H L, Xu K W, et al. Influence of phosphorus addition on shoot and root growth patterns of Medicago sativa. Journal of Lanzhou University (Natural Sciences), 2013, 49(1): 87-91, 99. |
王先之, 蒋海亮, 许可旺, 等. 磷添加对紫花苜蓿幼苗地上部及根系生长模式的影响. 兰州大学学报(自然科学版), 2013, 49(1): 87-91, 99. | |
15 | Tang L T, Mao R, Wang C T, et al. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
唐立涛, 毛睿, 王长庭, 等. 氮磷添加对高寒草甸植物群落根系特征的影响. 草业学报, 2021, 30(9): 105-116. | |
16 | Wang C T, Wang G X, Liu W, et al. Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow. Acta Ecologica Sinica, 2013, 33(10): 3103-3113. |
王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10): 3103-3113. | |
17 | Wang J, Gao Y, Zhang Y, et al. Asymmetry in above and belowground productivity responses to N addition in a semiarid temperate steppe. Global Change Biology, 2019, 25(9): 2958-2969. |
18 | Bai W M, Wang Z W, Chen Q S, et al. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 2008, 22(4): 583-591. |
19 | Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. |
20 | Dessureault-Rompré J, Zebarth B J, Georgallas A, et al. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma, 2010, 157(3/4): 97-108. |
21 | Shen Z B, Qi Z Y, Jin J. Effect of phosphorus application on morphological characters of root under drought stress at different reproductive stages in soybean. Soybean Science, 2007(4): 528-532. |
申忠宝, 齐志勇, 金剑. 大豆不同生殖生长期干旱胁迫条件下施磷对根系形态性状的影响. 大豆科学, 2007(4): 528-532. | |
22 | Li F, Pan X H. The research development of morphological and physiological characteristics of plant root system under phosphorus deficiency. Chinese Agricultural Science Bulletin, 2002(5): 65-69, 76. |
李锋, 潘晓华. 植物适应缺磷胁迫的根系形态及生理特征研究进展. 中国农学通报, 2002(5): 65-69, 76. | |
23 | Mei L, Wang Z Q, Cheng Y H, et al. A review: Factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica, 2004(5): 704-710. |
梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展. 植物生态学报, 2004(5): 704-710. | |
24 | Pregitzer K S, Jared L D, Burton A J, et al. Fine root architecture of nine north American trees. Ecological Monographs, 2002, 72(2): 293-309. |
25 | Cormier N, Twilley R R, Ewel K C, et al. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia, 2015, 750(1): 69-87. |
26 | Shi J W, Qin Q, Chen J W. Estimating fine root longevity among different branching order root for Caragana korshinskii plantation using Minirhizotron. Acta Ecologica Sinica, 2015, 35(12): 4045-4052. |
史建伟, 秦晴, 陈建文. 柠条人工林细根不同分枝根序寿命估计. 生态学报, 2015, 35(12): 4045-4052. | |
27 | Yu G, Lu C X, Xie G D. Soil conservation capacity of alpine meadow ecosystem and its economic value in the Northern Qinghai Tibetan Plateau. Journal of Beijing Forestry University, 2006(4): 57-61. |
于格, 鲁春霞, 谢高地. 青藏高原北缘地区高寒草甸土壤保持功能及其价值的实验研究. 北京林业大学学报, 2006(4): 57-61. | |
28 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
29 | Luo X P, Ade L J, Zi H B, et al. Response of soil microbial function diversity to snow cover gradient in alpine meadow soil of Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 2018, 40(5): 1016-1027. |
罗雪萍, 阿的鲁骥, 字洪标, 等. 高寒草甸土壤微生物功能多样性对积雪变化的响应. 冰川冻土, 2018, 40(5): 1016-1027. | |
30 | Wu Y, Zhang J, Deng Y, et al. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 9(215): 1057-1066. |
31 | Majdi H, öhrvik J. Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 2004, 10(2): 182-188. |
32 | Taylor H M, Huck M G, Klepper B, et al. Measurement of soil-grown roots in a rhizotron. Agronomy Journal, 1970, 62(6): 807-809. |
33 | Zhang W, Fu Y, Li J F, et al. Comparative study on Kjeldahl method and dumas combustion method for total nitrogen measurement in soil. Chinese Agricultural Science Bulletin, 2015, 31(35): 172-175. |
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究. 中国农学通报, 2015, 31(35): 172-175. | |
34 | Wu Y P, Li Y J, Zhao L H, et al. Determination of total phosphorus content and total potassium content in soil with continuous flow analytical method. Southwest China Journal of Agricultural Sciences, 2013, 26(5): 1941-1945. |
吴玉萍, 李应金, 赵立红, 等. 连续流动分析法测定土壤中全磷、全钾的含量. 西南农业学报, 2013, 26(5): 1941-1945. | |
35 | Li J, Pan P, Wang C T, et al. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
李洁, 潘攀, 王长庭, 等. 三江源区不同建植年限人工草地根系动态特征. 草业学报, 2021, 30(3): 28-40. | |
36 | Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 2014, 377(1/2): 43-61. |
37 | Zhou L P, Qi R S. Effect of unreasonable fertilizer on soil property and its controlling measures. Gansu Agriculture Science and Technology, 2017(1): 74-78. |
周丽萍, 戚瑞生. 不合理施肥对土壤性质的影响及其防治措施探讨. 甘肃农业科技, 2017(1): 74-78. | |
38 | Ren S R, Shao Y C, Gao B Y, et al. Effects of long-term located fertilization on heavy-metal content of soil. Journal of Soil and Water Conservation, 2005, 19(4): 96-99. |
任顺荣, 邵玉翠, 高宝岩, 等. 长期定位施肥对土壤重金属含量的影响. 水土保持学报, 2005, 19(4): 96-99. | |
39 | Pei Z Q, Zhou Y, Zheng Y R, et al. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1182-1191. |
裴智琴, 周勇, 郑元润, 等. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 2011, 35(11): 1182-1191. | |
40 | Zi H B, Dai D, Hu L, et al. Responses of soil microbial functional diversity to phosphorus addition in an alpine meadow on Northwestern plateau of Sichuan Province. Chinese Journal of Soil Science, 2017, 48(3): 647-655. |
字洪标, 代迪, 胡雷, 等. 川西北高寒草甸土壤微生物功能多样性对磷(P)添加的响应. 土壤通报, 2017, 48(3): 647-655. | |
41 | Wang W Y, Zhou H K, Yang L, et al. The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 2014, 29(2): 249-255. |
王文颖, 周华坤, 杨莉, 等. 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 2014, 29(2): 249-255. | |
42 | Tang L T. Effects of phosphorus addition on plant root characteristics and leaf traits in an alpine meadow of the Northwestern Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
唐立涛. 磷添加对川西北高寒草甸植物根系特征及叶片属性的影响. 成都: 西南民族大学, 2020. | |
43 | Zhang Y K, Zhang L F, Zhang X Z, et al. Effects of different range restorations on the root traits of vegetation in the alpine meadow. Journal of Lanzhou University (Natural Sciences), 2014, 50(1): 107-111. |
张燕堃, 张灵菲, 张新中, 等. 不同草地恢复措施对高寒草甸植物根系特征的影响. 兰州大学学报(自然科学版), 2014, 50(1): 107-111. | |
44 | Zhou M, Guo Y, Sheng J, et al. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 2022(234): 422-434. |
45 | Woodward F I, Osborne C P. The representation of root processes in models addressing the responses of vegetation to global change. New Phytologist, 2000, 147(1): 223-232. |
46 | Wu Y. Low nitrogen induced changes of morphological and anatomical characteristics and its effects on nitrogen uptake and distribution in rice. Wuhan: Huazhong Agricultural University, 2020. |
吴宇. 低氮诱导的水稻根系形态解剖结构变化及其对氮素吸收分配的影响. 武汉: 华中农业大学, 2020. | |
47 | Niu S L, Jiang G M. The importance of Legume in China grassland ecosystem and the advances in physiology and ecology studies. Chinese Bulletin of Botany, 2004, 21(1): 9-18. |
牛书丽, 蒋高明. 豆科植物在中国草原生态系统中的地位及其生理生态研究. 植物学通报, 2004, 21(1): 9-18. | |
48 | Gill R A, Burke I C, Lauenroth W K, et al. Longevity and turnover of roots in the shortgrass steppe: Influence of diameter and depth. Plant Ecology, 2002(159): 241-251. |
49 | Li W, Jin C, Guan D, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology and Biochemistry, 2015, 82: 112-118. |
50 | Zheng X, Yang Z X, Hao D M, et al. Response of Rumex hanus by roots to drought after rehydration. Arid Zone Research, 2022, 39(1): 240-249. |
郑旭, 杨志鑫, 郝东梅, 等. 盐碱地食叶草细根对干旱复水后的响应. 干旱区研究, 2022, 39(1): 240-249. | |
51 | Liu S L, Wang C T, Zhang C B, et al. A comparative study of root characteristics of three gramineous herbage species in the Northwest Sichuan Plateau. Acta Prataculturae Sinica, 2021, 30(3): 41-53. |
刘斯莉, 王长庭, 张昌兵, 等. 川西北高原3种禾本科牧草根系特征比较研究. 草业学报, 2021, 30(3): 41-53. | |
52 | Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3): 389-399. |
[1] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
[2] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[3] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[4] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[5] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[6] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[7] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[8] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[9] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[10] | 段媛媛, 张静, 王玲玲, 刘彩凤, 王乙茉, 周俗, 郭正刚. 高原鼠兔对高寒草甸植物物种多样性和功能多样性关系的影响[J]. 草业学报, 2022, 31(11): 25-35. |
[11] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[12] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[13] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[14] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[15] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||