草业学报 ›› 2022, Vol. 31 ›› Issue (6): 50-60.DOI: 10.11686/cyxb2021161
李洋1,2(), 王毅2,3, 韩国栋1(), 孙建2(), 汪亚峰2
收稿日期:
2021-04-27
修回日期:
2021-06-16
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
韩国栋,孙建
作者简介:
E-mail: sunjian@itpcas.ac.cn基金资助:
Yang LI1,2(), Yi WANG2,3, Guo-dong HAN1(), Jian SUN2(), Ya-feng WANG2
Received:
2021-04-27
Revised:
2021-06-16
Online:
2022-06-20
Published:
2022-05-11
Contact:
Guo-dong HAN,Jian SUN
摘要:
青藏高原是我国重要的生态安全屏障,探究地下微生物驱动土壤生化过程,生物量碳氮含量特征及其控制要素,对高寒生态系统功能维持具有重要意义。本研究通过对青藏高原高寒草甸和高寒草原两种草地类型样带调查和研究,探讨了不同高寒草地生态系统类型土壤微生物量碳(MBC)和土壤微生物量氮(MBN)含量特征及其与气候、植物群落和土壤理化性质的关系。结果表明,高寒草甸比高寒草原具有更高的土壤MBC和MBN含量;生长季降水量(GSP)与两种草地类型的MBC和MBN含量呈显著正相关(P<0.01);而生长季均温(GST)仅与高寒草原MBN含量呈显著负相关(P<0.01)。结构方程模型显示,在生长季降水量的影响下,土壤全氮是影响高寒草甸土壤MBC和MBN的主导因子,土壤有机碳是影响高寒草原MBC和MBN的主导因子。研究结果可为高寒草地生态系统可持续管理提供理论参考。
李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60.
Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60.
图1 不同草地类型土壤微生物生物量碳氮含量特征**表示在0.01水平上差异显著。** indicates significant differences at the 0.01 level.
Fig.1 Characteristics of soil microbial biomass carbon and nitrogen of different grassland types
图2 高寒草甸(a)和高寒草原(b)微生物生物量碳氮、气候、群落多样性及土壤理化性质之间的相关性MBC,土壤微生物生物量碳含量;MBN,土壤微生物生物量氮含量;SM,土壤含水量;SBD,土壤容重;BGB,地下生物量;AGB,地上生物量;SAN,土壤速效氮含量;STN,土壤全氮含量;SAP,土壤速效磷含量;STP,土壤全磷含量;SOC,土壤有机碳含量;DOC,土壤可溶性有机碳含量;D,Simpson指数;E,Pielou指数;H′,Shannon-wiener指数。 MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; SM, soil moisture; SBD, soil bulk density; BGB, belowground biomass; AGB, aboveground biomass; SAN, soil available nitrogen; STN, soil total nitrogen; SAP, soil available phosphorus; STP, soil total phosphorus; SOC, soil organic carbon; DOC, dissolved organic carbon; D, Simpson diversity index; E, Pielou’s evenness index; H′, Shannon diversity index.
Fig.2 Correlation among microbial biomass carbon and nitrogen, climate, community diversity and soil physicochemical properties in the alpine meadow (a) and the alpine steppe (b)
草地类型Types | 微生物量Microbial index | 气候Climate factors | 斜率Slope | 截距Intercept | R2 | P |
---|---|---|---|---|---|---|
高寒草甸Alpine meadow | MBC | GSP | 1.55 | -3.08 | 0.49 | <0.01 |
GST | -0.91 | 8.02 | 0.03 | 0.24 | ||
MBN | GSP | 1.36 | -3.16 | 0.50 | <0.01 | |
GST | -0.44 | 5.82 | 0.01 | 0.51 | ||
高寒草原Alpine steppe | MBC | GSP | 1.87 | -4.91 | 0.44 | <0.01 |
GST | -1.60 | 8.51 | 0.06 | 0.05 | ||
MBN | GSP | 1.42 | -3.47 | 0.35 | <0.01 | |
GST | -2.05 | 8.56 | 0.14 | <0.01 |
表1 不同草地类型微生物量碳氮与气候因子回归及相关性分析
Table 1 Regression and correlation analysis between microbial biomass carbon and nitrogen and climate factors in different grassland types
草地类型Types | 微生物量Microbial index | 气候Climate factors | 斜率Slope | 截距Intercept | R2 | P |
---|---|---|---|---|---|---|
高寒草甸Alpine meadow | MBC | GSP | 1.55 | -3.08 | 0.49 | <0.01 |
GST | -0.91 | 8.02 | 0.03 | 0.24 | ||
MBN | GSP | 1.36 | -3.16 | 0.50 | <0.01 | |
GST | -0.44 | 5.82 | 0.01 | 0.51 | ||
高寒草原Alpine steppe | MBC | GSP | 1.87 | -4.91 | 0.44 | <0.01 |
GST | -1.60 | 8.51 | 0.06 | 0.05 | ||
MBN | GSP | 1.42 | -3.47 | 0.35 | <0.01 | |
GST | -2.05 | 8.56 | 0.14 | <0.01 |
图4 土壤理化性质和植物群落特征指标主成分分析BGB,地下生物量;AGB,地上生物量;SM,土壤含水量;SBD,土壤容重;SAN,土壤速效氮含量;STN,土壤全氮含量;SAP,土壤速效磷含量;STP,土壤全磷含量;SOC,土壤有机碳含量;DOC,土壤可溶性有机碳含量。a, c分别为高寒草甸和高寒草原群落多样性指标主成分分析;b, d分别为高寒草甸和高寒草原土壤理化性质主成分分析。BGB, belowground biomass; AGB, aboveground biomass; SM, soil moisture; SBD, soil bulk density; SAN, soil available nitrogen; STN, soil total nitrogen; SAP, soil available phosphorus; STP, soil total phosphorus; SOC, soil organic carbon; DOC, dissolved organic carbon. a, c indicate principal component analysis of community diversity indicators in alpine meadow and alpine steppe; b, d indicate principal component analysis of soil physical and chemical properties in alpine meadow and alpine steppe.
Fig.4 Principal component analysis of soil physicochemical properties and plant community characteristics
图5 气候、植物群落和土壤关键因子对不同草地类型土壤微生物量碳(MBC)和氮(MBN)的效应图上表示的均为显著影响的路径(P<0.05),绿色实线表示正效应。GSP,生长季降水量; a,高寒草甸;b,高寒草原。All the paths shown in the figure had significant effects (P<0.05). The solid green line represents a positive effect. GSP, growing season precipitation; a, alpine meadow; b, alpine steppe.
Fig.5 Effects of climate, plant community and key factors on soil microbial biomass carbon (MBC) and nitrogen (MBN) in different grassland types
1 | Zhou L X, Ding M M. Soil microbial characteristics as bioindicators of soil health. Biodiversity Science, 2007, 15(2): 162-171. |
周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用. 生物多样性, 2007, 15(2): 162-171. | |
2 | Glassman S I, Weihe C, Li J, et al. Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11994-11999. |
3 | Bhatnagar J M, Peay K G, Treseder K K. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecological Monographs, 2018, 88(3): 1-16. |
4 | Powlson D S, Prookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 1987, 19(2): 159-164. |
5 | He Z L, Yang X E, Baligar V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils. Advances in Agronomy, 2003, 78: 89-138. |
6 | Zhang D X, Han Z Q, Li D P, et al.Effects of returning maize straw into field on dynamic change of soil microbial biomass C, N and P under different promoted decay condition. Chinese Journal of Applied Ecology, 2005, 16(10): 1903-1908. |
张电学, 韩志卿, 李东坡, 等. 不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响. 应用生态学报, 2005, 16(10): 1903-1908. | |
7 | Lin X G. Principles and methods of soil microbiology research. Beijing: Higher Education Press, 2010. |
林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010. | |
8 | He Y T, Dong Y S, Qi Y C, et al. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors. Progress in Geography, 2010, 29(11): 1350-1359. |
何亚婷, 董云社, 齐玉春, 等. 草地生态系统土壤微生物量及其影响因子研究进展. 地理科学进展, 2010, 29(11): 1350-1359. | |
9 | Qi Y C, Dong Y S, Geng Y B, et al. The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 2003, 22(4): 342-352. |
齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环研究进展. 地理科学进展, 2003, 22(4): 342-352. | |
10 | Yao T, Ma L P, Zhang D G. Research progress on microbiological ecology of rangeland in China. Pratacultural Science, 2005, 22(11): 5-11. |
姚拓, 马丽萍, 张德罡. 我国草地土壤微生物生态研究进展及浅评. 草业科学, 2005, 22(11): 5-11. | |
11 | Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 2010, 11(2): 266-277. |
12 | Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry, 2006, 38(7): 1851-1860. |
13 | Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. |
14 | Garcia-Pichel F, Loza V, Marusenko Y, et al. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science, 2013, 340(6140): 1574-1577. |
15 | Curd E E, Martiny J, Li H, et al. Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 2018, 9(1): 1-16. |
16 | Nemergut D R, Schmidt S K, Fukami T, et al. Patterns and processes of microbial community assembly. Microbiology & Molecular Biology Reviews, 2013, 77(3): 342-356. |
17 | Liu B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitud communies along an altitudinal gradient in east side of Helan Mountain. Ecology and Environmental Sciences, 2010, 19(4): 883-888. |
刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征.生态环境学报, 2010, 19(4): 883-888. | |
18 | Zhang L H, Xie Z K, Zhao R F, et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 2018, 127: 87-95. |
19 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
20 | Guo J X, Zhu T C, Ma W M, et al. The study relationship between microorganisms and ecology environment in Leymus chinesis grassland. Acta Agrestia Sinica, 1996, 4(4): 240-245. |
郭继勋, 祝廷成, 马文明, 等. 东北羊草草原土壤微生物与生态环境的关系. 草地学报, 1996, 4(4): 240-245. | |
21 | Kang J. Soil microbial biomass carbon and nitrogen in different grassland types on western slopes of the Helan Mountains, China. Lanzhou: Lanzhou University, 2006. |
康健. 贺兰山西坡不同草地类型土壤微生物碳、氮特征. 兰州: 兰州大学, 2006. | |
22 | Sun J, Ma B, Lu X. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 2018, 29(2): 337-348. |
23 | Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomass in Tibetan grasslands. Journal of Arid Environments, 2009, 73(1): 91-95. |
24 | Liu B Y, Sun J, Liu M, et al. The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau. PeerJ, 2019, 7: 1-17. |
25 | Sun J, Zhou T C, Liu M, et al. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 2020, 29(1): 50-64. |
26 | Sun J, Zhang Z C, Dong S K. Adaptive management of alpine grassland ecosystems over Tibetan Plateau. Pratacultural Science, 2019, 36(4): 933-938. |
孙建, 张振超, 董世魁. 青藏高原高寒草地生态系统的适应性管理. 草业科学, 2019, 36(4): 933-938. | |
27 | Zou S, Lv F C. Two special vegetation types in Tibetan Plateau: Alpine grassland and alpine meadow. Geography Teaching, 2016, 2: 4-7, 46. |
邹珊, 吕富成. 青藏高原两种特殊的植被类型: 高寒草原和高寒草甸. 地理教学, 2016, 2: 4-7, 46. | |
28 | Qin X J, Sun J, Wang X D. Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecological Indicators, 2018, 84: 507-514. |
29 | Sun J, Wang H M. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological indicators: Integrating, monitoring, assessment and management, 2016, 60: 1070-1076. |
30 | Wang Y, Sun J, Ye C C, et al. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 434-443. |
王毅, 孙建, 叶冲冲, 等. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能. 植物生态学报, 2021, 45(5): 434-443. | |
31 | Li S Y, Sun J, Wang Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 2020, 37(12): 2389-2402. |
李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 2020, 37(12): 2389-2402. | |
32 | Zhou G L, Cheng Y X, Ma Q Q, et al. Effects of grazing intensity on community structure and the soil’s physical and chemical properties in an alpine meadow on the Eastern Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1022-1031, 918. |
周国利, 程云湘, 马青青, 等. 牦牛放牧强度对青藏高原东缘高寒草甸群落结构与土壤理化性质的影响. 草业科学, 2019, 36(4): 1022-1031, 918. | |
33 | Chen Z Y, Xie Y X, Liu M. Responses of aboveground biomass and species richness to environmental factors in a fenced alpine grassland. Pratacultural Science, 2019, 36(4): 1000-1009. |
陈智勇, 谢迎新, 刘苗. 围栏封育高寒草地植物地上生物量和物种多样性对关键调控因子的响应. 草业科学, 2019, 36(4): 1000-1009. | |
34 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
35 | Zhang Y, Ni J P, Zhou C, et al. Effects of configuration mode of crop-mulberry system in purple arid hillside field on SMBC and SMBN in the Three Gorges Reservoir. Chinese Journal of Eco-Agriculture, 2014, 22(7): 766-773. |
张洋, 倪九派, 周川, 等. 三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响. 中国生态农业学报, 2014, 22(7): 766-773. | |
36 | Qu C C, Chen X M, Han Z Q, et al. Effects of bioorganic fertilizer application on soil physical properties and microbial biomass carbon and nitrogen in fluvoaquic soil. Bulletin of Soil and Water Conservation, 2018, 38(5): 70-76. |
曲成闯, 陈效民, 韩召强, 等. 生物有机肥对潮土物理性状及微生物量碳、氮的影响. 水土保持通报, 2018, 38(5): 70-76. | |
37 | Deng J, Zhang D, Zhang W, et al. Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the Loess Hilly Region of China. Acta Ecologica Sinica, 2019, 39(15): 5527-5535. |
邓健, 张丹, 张伟, 等. 黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征. 生态学报, 2019, 39(15): 5527-5535. | |
38 | Li X Z, Qu Q H. Soil microbial biomass carbon and nitrogen in Mongolian grassland. Acta Pedologica Sinica, 2002, 39(1): 91-98. |
李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 91-98. | |
39 | Sapkota M, Young J, Slaughter L, et al. Soil microbial biomass and composition from urban landscapes in a semiarid climate. Applied Soil Ecology, 2021, 158(1): 103810. |
40 | Wu J G, Ai L. Soil microbial activity and biomass C and N content in three typical ecosystems in Qi Lian mountains, China. Chinese Journal of Plant Ecology, 2008, 32(2): 465-476. |
吴建国, 艾丽. 祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量. 植物生态学报, 2008, 32(2): 465-476. | |
41 | Wei W D, Liu Y H. Characteristics analysis of soil microbial biomass carbon on degradated alpine grasslands. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(2): 205-210. |
魏卫东, 刘育红. 不同退化程度高寒草地土壤微生物量碳特征分析. 西北农业学报, 2014, 23(2): 205-210. | |
42 | Jiang Y M, Shi S L, Tian Y L, et al. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degress of degrad ation. Journal of Soil and Water Conservation, 2017, 31(3): 244-249. |
蒋永梅, 师尚礼, 田永亮, 等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征. 水土保持学报, 2017, 31(3): 244-249. | |
43 | Duckworth J, Jager T, Ashauer R. Automated, high-throughput measurement of size and growth curves of small organisms in well plates. Scientific Reports, 2019, 9(1): 17595-17599. |
44 | Yang T, Adams J M, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 2017, 215(2): 756-765. |
45 | Niu S L, Wu M Y, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. The New Phytologist, 2007, 177(1): 209-219. |
46 | Xu M P, Ren C J, Zhang W, et al. Responses mechanism of C∶N∶P stoichiometry of soil microbial biomass and soil enzymes to climate change. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454. |
许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制. 应用生态学报, 2018, 29(7): 2445-2454. | |
47 | Li R, Song W F. Factors affecting soil microbial biomass carbon in Hani terraced ecosystem. Acta Ecologica Sinica, 2020, 40(17): 6223-6232. |
李荣, 宋维峰. 哈尼梯田生态系统土壤微生物量碳的影响因素. 生态学报, 2020, 40(17): 6223-6232. | |
48 | Jackson R B. Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 2000, 10(2): 470-483. |
49 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. | |
50 | Yu L H, Wang J, Liao L R, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2020, 28(6): 1702-1710. |
喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 1702-1710. | |
51 | Guo Y J. Effects of nitrogen adding on plant community and soil nitrogen supply ability of alpine meadow in Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2015. |
郭雅婧. 氮素添加对青藏高原高寒草甸植被和土壤氮素供应能力的影响. 兰州: 兰州大学, 2015. | |
52 | Zhang J X, Cao G M. The nitrogen cycle in an alpine meadow ecosystem. Acta Ecologica Sinica, 1999, 19(4): 509-512. |
张金霞, 曹广民. 高寒草甸生态系统氮素循环. 生态学报, 1999, 19(4): 509-512. |
[1] | 王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22. |
[2] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[3] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[4] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[5] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[6] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[7] | 付刚, 王俊皓, 李少伟, 何萍. 藏北高寒草地牧草营养品质对放牧的响应机制[J]. 草业学报, 2021, 30(9): 38-50. |
[8] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[9] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[10] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[11] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[12] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
[13] | 郭剑波, 赵国强, 贾书刚, 董俊夫, 陈龙, 王淑平. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9): 85-93. |
[14] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[15] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||