草业学报 ›› 2021, Vol. 30 ›› Issue (3): 15-27.DOI: 10.11686/cyxb2020154
张伟1,2(), 宜树华3,4(), 秦彧1, 上官冬辉1, 秦炎1,2
收稿日期:
2020-04-07
修回日期:
2020-04-27
出版日期:
2021-03-20
发布日期:
2021-03-09
通讯作者:
宜树华
作者简介:
Corresponding author. E-mail: yis@ntu.edu.cn基金资助:
Wei ZHANG1,2(), Shu-hua YI3,4(), Yu QIN1, Dong-hui SHANGGUAN1, Yan QIN1,2
Received:
2020-04-07
Revised:
2020-04-27
Online:
2021-03-20
Published:
2021-03-09
Contact:
Shu-hua YI
摘要:
地表温度直接影响地表感热、潜热及辐射能量传输过程,是研究寒区植被生态水文过程的重要参数。以疏勒河源区高寒草甸为研究对象,利用无人机搭载普通及热红外相机获取6块样地植被盖度及地表温度数据,用以评估热红外相机在高寒草甸地表温度监测中的应用精度,分析高寒草甸地表温度变化特征,并结合气象因子及植被盖度数据,探究地表温度的影响因素。结果表明:热红外影像地表温度与地面实测值具有较高一致性(R2 ≈ 0.75),平均误差5 ℃以内;高寒草甸地表温度在9: 00-18: 00时段内表现为快速升温达到峰值继而波动下降的趋势,观测期内(7月4日-8月17日)未表现出显著日际变化趋势;气象因子中,太阳辐射和空气温度与地表温度呈显著正相关,起到增温作用,而空气湿度抑制地表增温,表现为显著负相关;连续降水降低裸土温度,植被覆盖度与地表温度呈现出正相关变化趋势。无人机热红外遥感技术可以快速、精准获取高分辨率地表温度数据,为高寒草甸干旱监测、土壤水分及蒸散发等反演提供数据支持。
张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27.
Wei ZHANG, Shu-hua YI, Yu QIN, Dong-hui SHANGGUAN, Yan QIN. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography[J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27.
项目 Items | 可见光相机 RGB camera | 热红外相机 Thermal infrared camera |
---|---|---|
飞行高度 Flight height (m) | 30 | 40 |
像元分辨率 Pixel resolution (cm) | 1.31×1.31 | 7.55×7.55 |
覆盖范围 Coverage area (m) | 52.50×39.37 | 48.32×38.66 |
表1 可见光与热红外相机飞行参数
Table 1 Flight parameters of RGB and thermal infrared cameras
项目 Items | 可见光相机 RGB camera | 热红外相机 Thermal infrared camera |
---|---|---|
飞行高度 Flight height (m) | 30 | 40 |
像元分辨率 Pixel resolution (cm) | 1.31×1.31 | 7.55×7.55 |
覆盖范围 Coverage area (m) | 52.50×39.37 | 48.32×38.66 |
气象因子Meteorological factors | 样地 1 Plot 1 | 样地 2 Plot 2 | 样地 3 Plot 3 | 样地 4 Plot 4 | 样地 5 Plot 5 | 样地 6Plot 6 |
---|---|---|---|---|---|---|
太阳辐射Solar radiation | 0.75** | 0.73** | 0.67** | 0.72** | 0.79** | 0.72** |
空气温度Air temperature | 0.65** | 0.70** | 0.64** | 0.68** | 0.69** | 0.80** |
空气湿度Air humidity | -0.69** | -0.69** | -0.64** | -0.71** | -0.72** | -0.82** |
降水Precipitation | -0.17 | -0.15 | -0.16 | -0.17 | -0.17 | -0.10 |
表2 地表温度与气象因子相关系数
Table 2 Correlation coefficient of surface temperature and meteorological factors
气象因子Meteorological factors | 样地 1 Plot 1 | 样地 2 Plot 2 | 样地 3 Plot 3 | 样地 4 Plot 4 | 样地 5 Plot 5 | 样地 6Plot 6 |
---|---|---|---|---|---|---|
太阳辐射Solar radiation | 0.75** | 0.73** | 0.67** | 0.72** | 0.79** | 0.72** |
空气温度Air temperature | 0.65** | 0.70** | 0.64** | 0.68** | 0.69** | 0.80** |
空气湿度Air humidity | -0.69** | -0.69** | -0.64** | -0.71** | -0.72** | -0.82** |
降水Precipitation | -0.17 | -0.15 | -0.16 | -0.17 | -0.17 | -0.10 |
1 | Yao T D, Chen F H, Cui P, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bulletin of the Chinese Academy of Sciences, 2017, 32(9): 924-931. |
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极. 中国科学院院刊, 2017, 32(9): 924-931. | |
2 | Wang C H, Zhou S W, Tang X P, et al. Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years. Scientia Geographica Sinica, 2011, 31(4): 470-477. |
王传辉, 周顺武, 唐晓萍, 等. 近48 年青藏高原强降水量的时空分布特征. 地理科学, 2011, 31(4): 470-477. | |
3 | Yang Y H. Ecological processes in alpine ecosystems under changing environment. Chinese Journal of Plant Ecology, 2018, 42(1): 1-5. |
杨元合. 全球变化背景下的高寒生态过程. 植物生态学报, 2018, 42(1): 1-5. | |
4 | Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 2012, 67(1): 3-12. |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. | |
5 | Wang G, Wang Y, Li Y, et al. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena, 2007, 70: 506-514. |
6 | Gao Q Z, Wan Y F, Li Y, et al. Spatial and temporal pattern of alpine grassland condition and its response to human activities in Northern Tibet, China. The Rangeland Journal, 2010, 32(2): 165-173. |
7 | Li J, Du Y G, Zhang F W, et al. Mattic epipedon impact on water conservation in alpine meadow. Acta Agrestia Sinica, 2012, 20(5): 836-841. |
李婧, 杜岩功, 张法伟, 等. 草毡表层演化对高寒草甸水源涵养功能的影响. 草地学报, 2012, 20(5): 836-841. | |
8 | Xu C, Zhang L B, Du J Q, et al. Impact of alpine meadow degradation on soil water conservation in the source region of three rivers. Acta Ecologica Sinica, 2013, 33(8): 2388-2399. |
徐翠, 张林波, 杜加强, 等. 三江源区高寒草甸退化对土壤水源涵养功能的影响. 生态学报, 2013, 33(8): 2388-2399. | |
9 | Qin Y, Chen J, Yi S. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 84: 287-291. |
10 | Shen Y P. Key results from summary for policymakers of IPCC WGI AR4. Journal of Glaciology and Geocryology, 2007, 29(1): 156. |
沈永平. IPCC WGI 第四次评估报告关于全球气候变化的科学要点. 冰川冻土, 2007, 29(1): 156. | |
11 | Lu Q, Wu S H, Zhao D S. Variations in alpine grassland cover and its correlation with climate variables on the Qinghai-Tibet Plateau in 1982-2013. Scientia Geographica Sinica, 2017, 37(2): 135-143. |
陆晴, 吴绍洪, 赵东升. 1982~2013年青藏高原高寒草地覆盖变化及与气候之间的关系. 地理科学, 2017, 37(2): 135-143. | |
12 | Li C. Ground temperature of Qinghai-Xizang plateau and precipitation of flood seasons. Journal of Chengdu Institute of Meteorology, 1995, 10(2): 175-181. |
李超. 青藏高原0.8 m地温异常与我国汛期降水的关系. 成都气象学院学报, 1995, 10(2): 175-181. | |
13 | Du J, Hu J, Zhou B Q, et al. Response of shallow geotemperature to climatic change over Tibet from 1971 to 2005. Journal of Glaciology and Geocryology, 2008, 30(5): 745-751. |
杜军, 胡军, 周保琴, 等. 西藏浅层地温对气候变暖的响应. 冰川冻土, 2008, 30(5): 745-751. | |
14 | Zhang H P, Zhang Z F, Wang Q C, et al. Variation characteristics of shallow soil temperature in Qinghai Province in last 40 years. Chinese Journal of Agrometeorology, 2013, 34(2): 146-152. |
张焕平, 张占峰, 汪青春, 等. 近40 年青海浅层地温的变化特征. 中国农业气象, 2013, 34(2): 146-152. | |
15 | Zhang T, Barry R G, Gilichinsky D, et al. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Climatic Change, 2001, 49(1/2): 41-76. |
16 | Zhou T, Zhang Y S, Gao H F, et al. Relationship between vegetation index and ground surface temperature on the Tibetan Plateau alpine grassland. Journal of Glaciology and Geocryology, 2015, 37(1): 58-69. |
周婷, 张寅生, 高海峰, 等. 青藏高原高寒草地植被指数变化与地表温度的相互关系. 冰川冻土, 2015, 37(1): 58-69. | |
17 | Tanner C B. Plant temperatures. Agronomy Journal, 1963, 55(2): 210-211. |
18 | Idso S B. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 1982, 27(1/2): 59-70. |
19 | Idso S B, Pinter J P J, Reginato R J. Non-water-stressed baselines: The importance of site selection for air temperature and air vapour pressure deficit measurements. Agricultural and Forest Meteorology, 1990, 53(1): 73-80. |
20 | Zhang L W, Zhang Z J, Liu H J, et al. Research on water deficit diagnosis of maize based on canopy temperature. Agricultural Research in the Arid Areas, 2017, 35(3): 94-98. |
张立伟, 张智郡, 刘海军, 等. 基于冠层温度的玉米缺水诊断研究. 干旱地区农业研究, 2017, 35(3): 94-98. | |
21 | Patel N R, Anapashsha R, Kumar S, et al. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing, 2009, 30(1): 23-39. |
22 | Gao Z, Gao W, Chang N B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation & Geoinformation, 2011, 13(3): 495-503. |
23 | Tang R, Li Z L, Tang B. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 2010, 114(3): 540-551. |
24 | Chu C M, Ma S C, Zhang S J, et al. Summary of the study on land surface temperature measurement. Electronic Design Engineering, 2014, 22(6): 187-189. |
储呈敏, 马尚昌, 张素娟, 等. 地表温度测量方法研究综述.电子设计工程, 2014, 22(6): 187-189. | |
25 | Chang R. The summary of the land surface temperature measurement. Journal of Shanxi Agricultural Sciences, 2015, 43(10): 1384-1388. |
常蓉. 地表温度测定方法概述. 山西农业科学, 2015, 43(10): 1384-1388. | |
26 | Zhang Z T, Bian J, Han W T, et al. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 250-260. |
张智韬, 边江, 韩文霆, 等. 剔除土壤背景的无人机热红外遥感诊断棉花水分胁迫. 农业机械学报, 2018, 49(10): 250-260. | |
27 | Tian H H, Feng L, Zhao M M, et al. Analysis of meticulous features of urban surface temperature based on UAV thermal thermography. Remote Sensing Technology and Application, 2019, 34(3): 553-563. |
田慧慧, 冯莉, 赵璊璊, 等. 无人机热红外城市地表温度精细特征研究. 遥感技术与应用, 2019, 34(3): 553-563. | |
28 | Wu Z F, Wang Y N, Kong F H, et al. Analysis of the thermal characteristics of selected urban surfaces in a typical residential area based on infrared thermography. Acta Ecologica Sinica, 2016, 36(17): 5421-5431. |
吴志丰, 王业宁, 孔繁花, 等. 基于热红外影像数据的典型居住区常见地表类型热特征分析. 生态学报, 2016, 36(17): 5421-5431. | |
29 | Berni J A J, Zarco-Tejada P J, Suarez L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. |
30 | Smigaj M, Gaulton R, Suárez, et al. Canopy temperature from an unmanned aerial vehicle as an indicator of tree stress associated with red band needle blight severity. Forest Ecology and Management, 2019, 433: 699-708. |
31 | Rahaghi A I, Lemmin U, Sage D, et al. Achieving high-resolution thermal imagery in low-contrast lake surface waters by aerial remote sensing and image registration. Remote Sensing of Environment, 2019, 221: 773-783. |
32 | Zarco-Tejada P J, González-Dugo V, Berni J A J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 2012, 117: 322-337. |
33 | Hu D Y, Qiao K, Wang X L, et al. Experimental study on monitoring agricultural drought using airborne thermal infrared camera. Journal of Capital Normal University (Natural Sciences Edition), 2017, 38(3): 78-85. |
胡德勇, 乔琨, 王兴玲, 等. 机载热红外相机应用于农业干旱监测的实验研究. 首都师范大学学报 (自然科学版), 2017, 38(3): 78-85. | |
34 | Zhang Z T, Bian J, Han W T, et al. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. |
张智韬, 边江, 韩文霆, 等. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84. | |
35 | Wu J K, Chen J W, Wu H, et al. Comparative study of evapotranspiration in an alpine meadow in the upper reach of Shule River basin. Scientia Geographica Sinica, 2013, 33(1): 97-103. |
吴锦奎, 陈军武, 吴灏, 等. 疏勒河上游高寒草甸蒸散对比研究. 地理科学, 2013, 33(1): 97-103. | |
36 | Wu J K, Zhang S Q, Wu H, et al. Actual evapotranspiration in Suli alpine meadow in Northeastern edge of Qinghai-Tibet Plateau, China. Advances in Meteorology, 2015(3): 1-10. |
37 | Chang Y, Ding Y, Zhao Q, et al. Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: A case study of the upper reach of the Shule River basin, China. Hydrological Processes, 2017, 31(3): 514-524. |
38 | Qin Y, Yi S, Ding Y, et al. Effects of small-scale patchiness of alpine grassland on ecosystem carbon and nitrogen accumulation and estimation in Northeastern Qinghai-Tibetan Plateau. Geoderma, 2018, 318: 52-63. |
39 | Chen J J, Yi S H, Qin Y, et al. Responses of alpine grassland landscape in the source region of Shule River basin to topographical factors and frozen ground types. Chinese Journal of Applied Ecology, 2014, 25(6): 1599-1606. |
陈建军, 宜树华, 秦彧, 等. 疏勒河源区高寒草地景观对地形因子和冻土类型的响应. 应用生态学报, 2014, 25(6): 1599-1606. | |
40 | Chen S, Liu W, Qin X, et al. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River basin. Environmental Research Letters, 2012, 7(4): 045406. |
41 | Qin Y, Yi S, Ren S, et al. Responses of typical grasslands in a semi-arid basin on the Qinghai-Tibetan Plateau to climate change and disturbances. Environmental Earth Sciences, 2014, 71(3): 1421-1431. |
42 | Li N J, Yi S H, Qin Y, et al. Effects of tillage on surface moisture and temperature of alpine meadow. Pratacultural Science, 2012, 29(6): 883-888. |
李乃杰, 宜树华, 秦彧, 等. 翻耕对半干旱区高寒草甸地表水热条件的影响. 草业科学, 2012, 29(6): 883-888. | |
43 | Yi S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. International Journal of Remote Sensing, 2017, 38(8/9/10): 2686-2697. |
44 | Yi S H, Chen J J, Yu Q, et al. The burying and grazing effects of plateau pika on alpine grassland are small: A pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences, 2016, 13(22): 6273-6284. |
45 | Du J X, Yi S H, Qin Y, et al. Distribution and cause of plateau pika (Ochotona curzoniae) burrows in Henan Mongolian Autonomous county, Qinghai Province. Journal of Anhui Agricultural University, 2019, 46(3): 415-419. |
杜嘉星, 宜树华, 秦彧, 等. 青海省河南蒙古族自治县高原鼠兔洞口空间分布格局及其成因研究. 安徽农业大学学报, 2019, 46(3): 415-419. | |
46 | Chen J J, Yi S H, Qin Y, et al. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai-Tibetan Plateau. International Journal of Remote Sensing, 2016, 37(8): 1922-1936. |
47 | Yi S, Zhou Z, Ren S, et al. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 2011, 6(4): 045403. |
48 | Qin Y, Yi S H, Chen J J, et al. Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 74: 351-355. |
49 | Chang Y P, Zhang S Q, Zhao Q D. Comparative study on land surface temperature retrieval on alpine mountainous cold regions: A case study of upper reach of Shule River basin. Remote Sensing Information, 2017, 31(4): 122-128. |
苌亚平, 张世强, 赵求东. 高寒山区地表温度反演算法对比——以疏勒河上游流域为例. 遥感信息, 2017, 31(4): 122-128. | |
50 | Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land & Resources, 2004(3): 28-32, 36, 41. |
覃志豪, 李文娟, 徐斌, 等. 陆地卫星 TM6 波段范围内地表比辐射率的估计. 国土资源遥感, 2004(3): 28-32, 36, 41. | |
51 | Yang W P, Li C C, Yang H, et al. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 68-75. |
杨文攀, 李长春, 杨浩, 等. 基于无人机热红外与数码影像的玉米冠层温度监测. 农业工程学报, 2018, 34(17): 68-75. | |
52 | Li C, Liu H T, Chi R L, et al. Comparative study of grass land surface temperature and near-surface air temperature. Optical Technique, 2009, 35(4): 635-639. |
李超, 刘厚通, 迟如利, 等. 草地下垫面地表温度与近地面气温的对比研究. 光学技术, 2009, 35(4): 635-639. | |
53 | Li S X, Nan Z T, Zhao L. Impact of freezing and thawing on energy exchange between the system and environment. Journal of Glaciology and Geocryology, 2012, 24(2): 109-115. |
李述训, 南卓铜, 赵林. 冻融作用对系统与环境间能量交换的影响. 冰川冻土, 2012, 24(2): 109-115. | |
54 | Zhang H M, Wang J J, Han W T, et al. Crop canopy temperature extraction based on thermal infrared remote sensing images. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 210-217. |
张宏鸣, 王佳佳, 韩文霆, 等. 基于热红外遥感影像的作物冠层温度提取. 农业机械学报, 2019, 50(4): 210-217. | |
55 | Ba Y. A preliminary study on the variation of surface temperature under different coverage of grassland. Meteorology Journal of Inner Mongolia, 2005(4): 27-29. |
巴彦. 草地不同盖度条件下地温变化规律初探. 内蒙古气象, 2005(4): 27-29. | |
56 | Ren J Q, Liu Y X, Wang L W, et al. Spatiotemporal variation of surface temperature in Jilin Province and its influencing factors. Chinese Agricultural Science Bulletin, 2020, 36(5): 103-109. |
任景全, 刘玉汐, 王丽伟, 等. 吉林省地表温度时空变化及影响因素研究. 中国农学通报, 2020, 36(5): 103-109. | |
57 | Zhang W, Ji R. Analysis of spatio-temporal variation and factors influencing surface temperature in Liaoning Province. Acta Ecologica Sinica, 2019, 39(18): 6772-6784. |
张威, 纪然. 辽宁省地表温度时空变化及影响因素. 生态学报, 2019, 39(18): 6772-6784. | |
58 | Liu X, Jing Y S, Wang C L. Temporal and spatial distribution characteristics of bare land and grass surface temperature. Chinese Journal of Agrometeorology, 2011, 32(1): 28-34. |
刘霞, 景元书, 王春林. 广东省裸地和草地地表温度时空分布特征. 中国农业气象, 2011, 32(1): 28-34. | |
59 | Song Y T, Wu Y N, Zhang F J, et al. Effect of grassland vegetation shortness and sparseness on soil temperature in shallow layers. Journal of Dalian Nationalities University, 2016, 18(1): 7-10. |
宋彦涛, 乌云娜, 张凤杰, 等. 草地植被低矮稀疏化对土壤温度的影响. 大连民族大学学报, 2016, 18(1): 7-10. |
[1] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[2] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[3] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[4] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[5] | 马海霞, 张德罡, 陈瑾, 郭春秀, 董永平, 马源, 康玉坤, 陈璐, 杜凯, 陈建纲. 祁连山东段高寒草甸土壤持水能力在小尺度不同坡面位置的分异特征[J]. 草业学报, 2020, 29(1): 28-37. |
[6] | 张灵菲, 卫万荣, 石高宇, 张卫国. 高寒草甸植物群落结构对高原鼠兔种群密度的影响[J]. 草业学报, 2019, 28(3): 93-100. |
[7] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[8] | 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究[J]. 草业学报, 2019, 28(11): 114-123. |
[9] | 张文娥, 蒋成芳, 王龙刚, 沈禹颖. 陇东旱塬区冬小麦粮草兼用农户意愿及影响因素实证分析——基于甘肃省庆阳市323个农户的调查[J]. 草业学报, 2018, 27(8): 1-10. |
[10] | 张大才, 朱玉怀, 李双智. 东达山高寒草甸8种植物气孔特征沿土壤水分梯度的变化[J]. 草业学报, 2018, 27(7): 36-46. |
[11] | 李佳琪, 赵敏, 魏斌, 胡廷花, 于应文. 蘑菇圈形成对高寒草甸群落植被结构及稳定性的作用[J]. 草业学报, 2018, 27(4): 1-9. |
[12] | 申小云, 霍宾, 闽小莹, 吴婷, 廖建军, 蔡平, 张毓, 何玉邦, 孙建青, 吴永林. 普氏原羚自然栖息地草地矿物质营养的评价[J]. 草业学报, 2018, 27(3): 108-115. |
[13] | 方昭, 张少康, 刘海威, 焦峰, 张军. 黄土丘陵区草本群落生物量空间分布格局及其影响因素[J]. 草业学报, 2018, 27(2): 26-35. |
[14] | 李积兰, 李希来, 马福俊. 黄河上游高寒草甸矮嵩草生理特征对流域不同生境的响应[J]. 草业学报, 2018, 27(1): 62-72. |
[15] | 张卫红, 苗彦军, 赵玉红, 王向涛, 徐雅梅, 魏学红, 孙磊. 高原鼠兔对西藏邦杰塘高寒草甸的影响[J]. 草业学报, 2018, 27(1): 115-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||