草业学报 ›› 2023, Vol. 32 ›› Issue (11): 199-211.DOI: 10.11686/cyxb2023043
• 综合评述 • 上一篇
闫慧芳1,2,3(), 聂宇婷1,2,3, 丛丽丽1,2,3, 张昭1,2,3, 崔凯伦1,2,3, 吕艳贞1,2,3, 柴茂峰1,2,3()
收稿日期:
2023-02-12
修回日期:
2023-03-13
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
柴茂峰
作者简介:
E-mail: chimu2100@126.com基金资助:
Hui-fang YAN1,2,3(), Yu-ting NIE1,2,3, Li-li CONG1,2,3, Zhao ZHANG1,2,3, Kai-lun CUI1,2,3, Yan-zhen LYU1,2,3, Mao-feng CHAI1,2,3()
Received:
2023-02-12
Revised:
2023-03-13
Online:
2023-11-20
Published:
2023-09-27
Contact:
Mao-feng CHAI
摘要:
草种子是建植人工草地、改良退化草地生态环境、保障草地畜牧业生产潜力的最根本物质基础,种子活力高低将直接影响草业生产和发展。种子活力检测技术研究一直是国内外种子科技领域的重点,然而,其在草种子中的研究还不够深入。目前,草种子活力检测技术包括有损检测和无损检测两类。对草种子活力检测主要技术进行了综述,介绍了基于种子发芽行为、生理生化特性的有损检测技术以及基于光学特性、外观特征的无损检测技术,并对无损检测技术在草种子活力检测中的应用前景与发展趋势进行了展望,以期能够为准确测定草种子活力提供参考。
闫慧芳, 聂宇婷, 丛丽丽, 张昭, 崔凯伦, 吕艳贞, 柴茂峰. 草种子活力检测技术研究进展[J]. 草业学报, 2023, 32(11): 199-211.
Hui-fang YAN, Yu-ting NIE, Li-li CONG, Zhao ZHANG, Kai-lun CUI, Yan-zhen LYU, Mao-feng CHAI. Advances in technologies to detect the seed vigor of grasses[J]. Acta Prataculturae Sinica, 2023, 32(11): 199-211.
物种Species | 温度Temperature (℃) | 湿度Humidity (%) | 时间Duration (h) | 参考文献References |
---|---|---|---|---|
紫花苜蓿M. sativa | 45 | 100 | 84 | [ |
燕麦Avena sativa | 42 | 100 | 36 | [ |
草地早熟禾Poa pratensis | 44 | 100 | 60 | [ |
狗牙根Cynodon dactylon | 41 | 100 | 48 | [ |
匍匐翦股颖Agrostis stolonifera | 43 | 100 | 72 | [ |
海滨雀稗Paspalum vaginatum | 41 | 100 | 60 | [ |
老芒麦Elymus sibiricus | 45 | 100 | 48 | [ |
鸭茅Dactylis glomerata | 45 | 100 | 84 | [ |
箭筈豌豆Vicia sativa | 41 | 100 | 60 | [ |
高羊茅F. arundinacea | 40 | 100 | 72 | [ |
马棘Indigofera pseudotinctoria | 43 | 100 | 72 | [ |
表1 采用人工加速老化法检测不同草种子活力的最适条件
Table 1 Optimum condition for detecting seed vigor of different grasses by artificial accelerated aging method
物种Species | 温度Temperature (℃) | 湿度Humidity (%) | 时间Duration (h) | 参考文献References |
---|---|---|---|---|
紫花苜蓿M. sativa | 45 | 100 | 84 | [ |
燕麦Avena sativa | 42 | 100 | 36 | [ |
草地早熟禾Poa pratensis | 44 | 100 | 60 | [ |
狗牙根Cynodon dactylon | 41 | 100 | 48 | [ |
匍匐翦股颖Agrostis stolonifera | 43 | 100 | 72 | [ |
海滨雀稗Paspalum vaginatum | 41 | 100 | 60 | [ |
老芒麦Elymus sibiricus | 45 | 100 | 48 | [ |
鸭茅Dactylis glomerata | 45 | 100 | 84 | [ |
箭筈豌豆Vicia sativa | 41 | 100 | 60 | [ |
高羊茅F. arundinacea | 40 | 100 | 72 | [ |
马棘Indigofera pseudotinctoria | 43 | 100 | 72 | [ |
检测依据 Detection basis | 检测技术 Detection technology | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
基于种子发芽行为的草种子活力有损检测技术Destructive detection technology of seed vigor in grass based on seed germination behavior | 人工加速老化法Artificial accelerated aging method | 短期、快速、可靠Short-term, fast and reliable | 种间差异大,反映耐贮藏性;不可逆损伤Large difference between species, reflecting seed storage tolerance, irreversible destruction |
低温萌发法Low-temperature germination method | 操作简单,较全面反映种子活力综合表现Simple operation and reflecting the comprehensive performance of seed vigor | 样本消耗,不可逆损伤Sample consumption and irreversible destruction | |
胚根突出法Radicle protrusion method | 操作简单、重复性好、节约时间Simple operation, good repeatability and time saving | 样本消耗,不可逆损伤Sample consumption and irreversible destruction | |
基于生理生化特性的草种子活力有损检测技术Destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | TTC染色法TTC staining method | 操作简单、快速省时、结果准确性高Simple operation, fast speed and time saving, and high accuracy of results | 不可逆损伤,结果受人员操作、取样标准、样品处理方式影响较大Irreversible destruction. Detection results are greatly affected by personnel operation, sampling standard and sample treatment method |
呼吸强度测定法Respiratory intensity measurement | 灵敏性高High sensitivity | 专一性太强Too much specificity | |
ATP含量测定法ATP content assay | 灵敏性高High sensitivity | 专一性太强Too much specificity | |
基于光学特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on optical characteristics | 近红外光谱检测技术Near-infrared spectroscopy detection technology | 无损、成本低、无污染、速度快、耗时短、检测方便、重复性好Non-destruction, low cost, non-pollution, fast speed, short-time consumption, convenient detection and good repeatability | 检测结果受水分、温度、样本差异等因素干扰Detection results are affected by water, temperature, sample difference and other factors |
多光谱成像技术Multispectral imaging technology | 无损、分辨率高、效率高、污染少、耗时短、可重复性好Non-destruction, high resolution, high efficiency, less pollution, short-time consumption and good repeatability | 需选取特征波长以去除图像噪声Characteristic wavelength should be selected to remove image noise | |
X光光谱检测技术X-ray spectrum detection technology | 无损、效率高、准确率高Non-destruction, high efficiency and high accuracy | 检测设备成本高,X光具辐射性,推广使用困难High cost of detection equipment and radioactive X-ray make it difficult to popularize and use | |
光声光谱检测技术Photoacoustic spectroscopy detection technology | 灵敏度高、精确度高High sensitivity and high accuracy | 应用较少Less application | |
色选技术Color sorting technology | 无损、无污染、简洁、快速Non-destruction, non-pollution, simpleness and fast speed | 应用较少Less application | |
激光散斑技术Laser speckle techniques | 无损、无污染Non-destruction and non-pollution | 需克服样本差异性Sample differences are needed to be overcome | |
叶绿素荧光检测技术Chlorophyll fluorescence sorting method | 无损、无污染、效率高 Non-destruction, non-pollution and high efficiency | 样本叶绿素过高/过低导致检测结果欠佳Too high/too low chlorophyll in samples result in poor detection results | |
基于生理生化特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | 电导率法Conductivity method | 简单、快速Simpleness and fast speed | 复现性差,检测结果受环境因素(种子预处理、水质等)影响较大Poor reproducibility. Detection results are greatly affected by environmental factors (seed pretreatment, water quality, etc.) |
基于生理生化特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | 电子鼻检测技术Electronic nose detection technology | 无损、效率高、快速 Non-destruction, high efficiency and fast speed | 检测设备成本高High cost of detection equipment |
H2O2流速检测技术Detection technology of H2O2 flow rate | 无损Non-destruction | 检测结果受试剂用量、种子实验区域、检测技术影响Detection results are affected by reagent dosage, seed experiment area and detection technology | |
可调谐半导体激光吸收光谱技术Tunable diode laser absorption spectroscopy | 无损、灵敏度和分辨率高、实时性强,检测极限高、成本相对低Non-destruction, high sensitivity and resolution, high real time, high detection limit and relatively low cost | 尚处于实验室阶段,与农业实际检测存在差距It is still in the laboratory stage, and there is a gap with the actual agricultural detection | |
基于外观特征的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on appearance characteristics | 种子物理性状测定法Determination of seed physical properties | 无损、直观Non-destruction and perceptual intuition | 不确定性,受种子批收获条件、贮藏条件影响The uncertainty is affected by harvest conditions and storage conditions of seed batch |
机器视觉检测技术Machine vision inspection technology | 无损、快速Non-destruction and fast speed | 对种子检测环境要求高,需不断试验以确定拍摄区域High requirements for seed detection environment. Continuous experiments are needed to determine the shooting area |
表2 不同种子活力检测技术比较
Table 2 Comparison of different seed vigor detection technologies
检测依据 Detection basis | 检测技术 Detection technology | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
基于种子发芽行为的草种子活力有损检测技术Destructive detection technology of seed vigor in grass based on seed germination behavior | 人工加速老化法Artificial accelerated aging method | 短期、快速、可靠Short-term, fast and reliable | 种间差异大,反映耐贮藏性;不可逆损伤Large difference between species, reflecting seed storage tolerance, irreversible destruction |
低温萌发法Low-temperature germination method | 操作简单,较全面反映种子活力综合表现Simple operation and reflecting the comprehensive performance of seed vigor | 样本消耗,不可逆损伤Sample consumption and irreversible destruction | |
胚根突出法Radicle protrusion method | 操作简单、重复性好、节约时间Simple operation, good repeatability and time saving | 样本消耗,不可逆损伤Sample consumption and irreversible destruction | |
基于生理生化特性的草种子活力有损检测技术Destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | TTC染色法TTC staining method | 操作简单、快速省时、结果准确性高Simple operation, fast speed and time saving, and high accuracy of results | 不可逆损伤,结果受人员操作、取样标准、样品处理方式影响较大Irreversible destruction. Detection results are greatly affected by personnel operation, sampling standard and sample treatment method |
呼吸强度测定法Respiratory intensity measurement | 灵敏性高High sensitivity | 专一性太强Too much specificity | |
ATP含量测定法ATP content assay | 灵敏性高High sensitivity | 专一性太强Too much specificity | |
基于光学特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on optical characteristics | 近红外光谱检测技术Near-infrared spectroscopy detection technology | 无损、成本低、无污染、速度快、耗时短、检测方便、重复性好Non-destruction, low cost, non-pollution, fast speed, short-time consumption, convenient detection and good repeatability | 检测结果受水分、温度、样本差异等因素干扰Detection results are affected by water, temperature, sample difference and other factors |
多光谱成像技术Multispectral imaging technology | 无损、分辨率高、效率高、污染少、耗时短、可重复性好Non-destruction, high resolution, high efficiency, less pollution, short-time consumption and good repeatability | 需选取特征波长以去除图像噪声Characteristic wavelength should be selected to remove image noise | |
X光光谱检测技术X-ray spectrum detection technology | 无损、效率高、准确率高Non-destruction, high efficiency and high accuracy | 检测设备成本高,X光具辐射性,推广使用困难High cost of detection equipment and radioactive X-ray make it difficult to popularize and use | |
光声光谱检测技术Photoacoustic spectroscopy detection technology | 灵敏度高、精确度高High sensitivity and high accuracy | 应用较少Less application | |
色选技术Color sorting technology | 无损、无污染、简洁、快速Non-destruction, non-pollution, simpleness and fast speed | 应用较少Less application | |
激光散斑技术Laser speckle techniques | 无损、无污染Non-destruction and non-pollution | 需克服样本差异性Sample differences are needed to be overcome | |
叶绿素荧光检测技术Chlorophyll fluorescence sorting method | 无损、无污染、效率高 Non-destruction, non-pollution and high efficiency | 样本叶绿素过高/过低导致检测结果欠佳Too high/too low chlorophyll in samples result in poor detection results | |
基于生理生化特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | 电导率法Conductivity method | 简单、快速Simpleness and fast speed | 复现性差,检测结果受环境因素(种子预处理、水质等)影响较大Poor reproducibility. Detection results are greatly affected by environmental factors (seed pretreatment, water quality, etc.) |
基于生理生化特性的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on physiological and biochemical characteristics | 电子鼻检测技术Electronic nose detection technology | 无损、效率高、快速 Non-destruction, high efficiency and fast speed | 检测设备成本高High cost of detection equipment |
H2O2流速检测技术Detection technology of H2O2 flow rate | 无损Non-destruction | 检测结果受试剂用量、种子实验区域、检测技术影响Detection results are affected by reagent dosage, seed experiment area and detection technology | |
可调谐半导体激光吸收光谱技术Tunable diode laser absorption spectroscopy | 无损、灵敏度和分辨率高、实时性强,检测极限高、成本相对低Non-destruction, high sensitivity and resolution, high real time, high detection limit and relatively low cost | 尚处于实验室阶段,与农业实际检测存在差距It is still in the laboratory stage, and there is a gap with the actual agricultural detection | |
基于外观特征的草种子活力无损检测技术Non-destructive detection technology of seed vigor in grass based on appearance characteristics | 种子物理性状测定法Determination of seed physical properties | 无损、直观Non-destruction and perceptual intuition | 不确定性,受种子批收获条件、贮藏条件影响The uncertainty is affected by harvest conditions and storage conditions of seed batch |
机器视觉检测技术Machine vision inspection technology | 无损、快速Non-destruction and fast speed | 对种子检测环境要求高,需不断试验以确定拍摄区域High requirements for seed detection environment. Continuous experiments are needed to determine the shooting area |
1 | Lyu Y Y. The mechanism of seed deterioration and vigour testing methods for forage species. Lanzhou: Lanzhou University, 2018. |
吕燕燕. 牧草种子劣变的机理及活力检测方法研究. 兰州: 兰州大学, 2018. | |
2 | Chen Z X, Yuan H. Advances in seed vigor determination methods. Seed Technology, 2019, 37(16): 25-27. |
陈泽贤, 袁辉. 种子活力测定方法研究进展. 种子科技, 2019, 37(16): 25-27. | |
3 | Wang Y H, Wang X G, Lian J J, et al. Optimization of the accelerated ageing condition for Kentucky bluegrass seeds. Acta Agrestia Sinica, 2008, 16(6): 600-604. |
王玉红, 王新国, 廉佳杰, 等. 草地早熟禾种子加速老化方法研究. 草地学报, 2008, 16(6): 600-604. | |
4 | Zhang W M, Zheng W Y, Yao D N, et al. Comparative study on methods for testing seed vigor of turfgrass. Grassland and Turf, 2004(3): 48-51. |
张文明, 郑文寅, 姚大年, 等. 草坪草种子活力测定方法的比较研究. 草原与草坪, 2004(3): 48-51. | |
5 | Sun J H, Chen J H. A study of vigour testing methods for alfalfa seeds. Pratacultural Science, 1990, 7(4): 53-57. |
孙建华, 陈江辉. 紫花苜蓿种子活力的不同方法测定. 草业科学, 1990, 7(4): 53-57. | |
6 | Mao P S, Li Y F. Study on optimizing the accelerated ageing condition of alfalfa seeds. Seed, 2010, 29(10): 10-14. |
毛培胜, 李寅菲. 紫花苜蓿种子人工加速老化方法研究. 种子, 2010, 29(10): 10-14. | |
7 | Han L L, Mao P S. Optimizing the accelerated aging condition of the oat seeds. Seed, 2007, 26(11): 31-34. |
韩亮亮, 毛培胜. 燕麦种子人工加速老化条件的筛选优化. 种子, 2007, 26(11): 31-34. | |
8 | Liu S Y, Sun Y. Screening and optimizing accelerated aging condition of three kinds of turfgrass. Acta Agrestia Sinica, 2012, 20(5): 894-898. |
刘士瑶, 孙彦. 3种草坪草种子人工加速老化的条件筛选和优化. 草地学报, 2012, 20(5): 894-898. | |
9 | Yan H F, Mao P S. Optimizing the accelerated ageing condition of Siberian wildrye seeds. Seed, 2013, 32(7): 1-6. |
闫慧芳, 毛培胜. 老芒麦种子人工加速老化条件的筛选比较. 种子, 2013, 32(7): 1-6. | |
10 | Weng L, Mao P S, Tan J. The screening of artificial accelerated aging conditions for Dactylis glomerata and green bristlegrass seeds. Seed, 2013, 32(9): 92-97. |
翁玲, 毛培胜, 谭捷. 鸭茅、狗尾草种子人工加速老化条件的筛选. 种子, 2013, 32(9): 92-97. | |
11 | Mo Q, Lv Y Y, Wang Y R. Optimized accelerated aging test for common vetch. Acta Prataculturae Sinica, 2017, 26(11): 131-138. |
莫青, 吕燕燕, 王彦荣. 箭筈豌豆种子人工加速老化条件筛选的研究. 草业学报, 2017, 26(11): 131-138. | |
12 | Han J G, Mao P S, Pu X C, et al. A study on the seed vigour of tall fescue. Acta Agrestia Sinica, 1995, 3(4): 269-275. |
韩建国, 毛培胜, 浦心春, 等. 草坪型高羊茅种子活力的研究. 草地学报, 1995, 3(4): 269-275. | |
13 | Liu H, Mao P S, Kong L Q, et al. Standardization of germination and accelerated aging testing of the Indigofera pseudotinctoria seeds. Pratacultural Science, 2010, 27(2): 144-147. |
刘贺, 毛培胜, 孔令琪, 等. 马棘种子发芽及人工加速老化测定标准化研究. 草业科学, 2010, 27(2): 144-147. | |
14 | Cao D D, Wu W, Chen S Y, et al. Seed vigor testing by low temperature germination in early rice. Journal of Zhejiang University (Agriculture & Life Sciences), 2019, 45(6): 657-666. |
曹栋栋, 吴伟, 陈珊宇, 等. 低温发芽测定早稻种子活力. 浙江大学学报(农业与生命科学版), 2019, 45(6): 657-666. | |
15 | Xu X M, Lyu P H, Zhao Y J, et al. On seed vigor of Astragaius sinicus with different colors through low temperature germination. Journal of Beijing University of Agriculture, 2021, 36(2): 16-19. |
徐小萌, 吕鹏辉, 赵阳佳, 等. 利用低温萌发试验评价不同颜色紫云英种子的活力. 北京农学院学报, 2021, 36(2): 16-19. | |
16 | Lyu P H, Zhang Z D, Wang Y, et al. Preliminary study on seed vigor of red clover seeds with different colors. Journal of Agricultural Science and Technology, 2021, 23(3): 58-65. |
吕鹏辉, 张震东, 王晔, 等. 不同颜色红三叶种子活力的初步研究. 中国农业科技导报, 2021, 23(3): 58-65. | |
17 | Pan J, Li R, Guo Y X, et al. Comparative study of seed vigor test in Medicago sativa. Pratacultural Science, 2017, 34(5): 1042-1048. |
潘佳, 李荣, 郭耘欣, 等. 紫花苜蓿种子活力测定方法的比较. 草业科学, 2017, 34(5): 1042-1048. | |
18 | Matthews S, Powell A. Towards automated single counts of radicle emergence to predict seed and seedling vigour. Seed Testing International, 2011(142): 44-48. |
19 | Mao P S, Zhang X Y, Sun Y, et al. Relationship between the length of the lag period of germination and the emergence performance of oat (Avena sativa) seeds. Seed Science and Technology, 2013, 41(2): 281-291. |
20 | Liu J G. Study on suitability of electrical conductivity and radicle emergence testing methods to determine seed vigor of three grass species. Lanzhou: Lanzhou University, 2021. |
刘菁戈. 电导率和胚根突破法用于3种禾草种子活力测定的适用性研究. 兰州: 兰州大学, 2021. | |
21 | Lv Y Y, Wang Y R, Powell A A. Frequent individual counts of radicle emergence and mean just germination time predict seed vigour of Avena sativa and Elymus nutans. Seed Science and Technology, 2016, 44(1): 189-198. |
22 | Hui W S, Wang K Y. The study of survey to the seed vigor of Sorghum sudanense. Journal of Grassland and Forage Science, 2009(5): 5-6, 16. |
惠文森, 王康英. 苏丹草种子活力TTC测定试验. 草业与畜牧, 2009(5): 5-6, 16. | |
23 | Yi J, Cao Z C, An Y L. Study on the determination method of seed vigor of Astragalus adsurgens. Inner Mongolia Prataculture, 1993(2): 46-49. |
易津, 曹自成, 安永亮. 沙打旺种子活力测定方法的研究. 内蒙古草业, 1993(2): 46-49. | |
24 | Jin X M, Chen H, Zhang Z F. Study on TTC determination method of perennial ryegrass seed vigor. Crop Research, 2008, 22(1): 45-46. |
金小马, 陈慧, 张志飞. 多年生黑麦草种子活力TTC测定方法研究. 作物研究, 2008, 22(1): 45-46. | |
25 | Ching T M. Respiration of forage seed in hermetically sealed cans. Agronomy Journal, 1961, 53(1): 6-8. |
26 | Yu Z, Xi L B, Lin B H. Discussion on the seed vigor and determination methods of several perennial legumes. Seed, 1989(6): 41-43. |
玉柱, 西力布, 林柏和. 几种多年生豆科牧草种子活力及测定方法的探讨. 种子, 1989(6): 41-43. | |
27 | Marshall A H, Naylor R E L. Seed vigour and field establishment in Italian ryegrass (Lolium multiflorum Lam.). Seed Science and Technology, 1985, 13: 781-794. |
28 | Sun L P, Ning B, Bao L X. Study on the determination method of forage seed vigor. Grassland of China, 1991(3): 67-71. |
孙丽萍, 宁布, 包来晓. 牧草种子活力测定方法的研究. 中国草地, 1991(3): 67-71. | |
29 | Mao P S, Han J G, Sheng Y B. Comparison of vigour test methods in tall fescue seed harvested at different time. Acta Agrestia Sinica, 1999, 7(2): 121-128. |
毛培胜, 韩建国, 盛亦兵. 不同收获期高羊茅种子活力测定方法的比较研究. 草地学报, 1999, 7(2): 121-128. | |
30 | Ching T M. Adenosine triphosphate content and seed vigour. Plant Physiology, 1973, 51(2): 400-402. |
31 | Song L, Wang Q, Wang C Y, et al. Effect of γ-irradiation on rice seed vigor assessed by near-infrared spectroscopy. Journal of Stored Products Research, 2015, 62: 46-51. |
32 | Xia Y, Xu Y F, Li J B, et al. Recent advances in emerging techniques for non-destructive detection of seed viability: A review. Artificial Intelligence in Agriculture, 2019(1): 35-47. |
33 | Yin J H, Mao P S, Huang Y, et al. Analysis of vigour level of deteriorated oat seeds containing different moisture with near infrared spectroscopy. Infrared, 2010, 31(7): 39-44. |
阴佳鸿, 毛培胜, 黄莺, 等. 不同含水量劣变燕麦种子活力的近红外光谱分析. 红外, 2010, 31(7): 39-44. | |
34 | Wang X M, He X, Zhang H, et al. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
王雪萌, 何欣, 张涵, 等. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子. 草业学报, 2022, 31(7): 197-208. | |
35 | Qu Z J, Jia L Q, Qi H N, et al. Research advances in non-destructive detection methods of seed vigor. Journal of Zhejiang A & F University, 2020, 37(2): 382-390. |
瞿志杰, 贾良权, 祁亨年, 等. 种子活力无损检测方法研究进展. 浙江农林大学学报, 2020, 37(2): 382-390. | |
36 | Yuan J, Zheng W, Qi H N, et al. Progress in research of optical non-destructive test technology for seed vigor. Crops, 2020(5): 9-16. |
袁俊, 郑雯, 祁亨年, 等. 种子活力光学无损检测技术研究进展. 作物杂志, 2020(5): 9-16. | |
37 | Qiu G J, Lv E L, Lu H Z, et al. Single-kernel FT-NIR spectroscopy for detecting supersweet corn (Zea mays L. Saccharata Sturt) seed viability with multivariate data analysis. Sensors, 2018, 18(4): 1010. |
38 | Han L L, Mao P S, Wang X G, et al. Study on vigour test of oat seeds with near infrared reflectance spectroscopy. Journal of Infrared and Millimeter Waves, 2008, 27(2): 86-90. |
韩亮亮, 毛培胜, 王新国, 等. 近红外光谱技术在燕麦种子活力测定中的应用研究. 红外与毫米波学报, 2008, 27(2): 86-90. | |
39 | Yue J M, Cong X X, Li M L. Application of multispectral imaging technology in seed quality detection. Seed, 2021, 40(10): 129-135. |
岳佳铭, 丛晓翔, 李曼莉. 多光谱成像技术在种子质量检测研究中的应用. 种子, 2021, 40(10): 129-135. | |
40 | Yang L J. Herbage seed quality testing based on multispectral imaging analysis. Lanzhou: Lanzhou University, 2021. |
杨凌杰. 基于多光谱成像的草种质量检测. 兰州: 兰州大学, 2021. | |
41 | Wang X, Zhang H, Song R, et al. Non-destructive identification of naturally aged alfalfa seeds via multispectral imaging analysis. Sensors, 2021, 21(17): 5804. |
42 | Zhang S, Zeng H, Ji W, et al. Non-destructive testing of alfalfa seed vigor based on multispectral imaging technology. Sensors, 2022, 22(7): 2760. |
43 | Cong X X. Study on the determination of perennial ryegrass seed vigor by multispectral imaging technology. Beijing: China Agricultural University, 2020. |
丛晓翔. 利用多光谱成像技术测定多年生黑麦草种子活力的研究. 北京: 中国农业大学, 2020. | |
44 | Yang D F. Research on detection method of maize vigor based on soft X-ray and computer intelligence. Crops, 2013(3): 136-140. |
杨冬风. 基于软X-射线造影和机器智能的玉米种子活力检测方法研究. 作物杂志, 2013(3): 136-140. | |
45 | Su Z Y, Liu Y Q, Tan J L, et al. Studies on the relations between seed structure and seed quality of pepper. Journal of Hunan Agricultural University, 1996, 22(2): 139-142. |
苏争艳, 刘永庆, 谭金莲, 等. 辣椒种子结构与生活力关系的研究. 湖南农业大学学报, 1996, 22(2): 139-142. | |
46 | Li H H, Lu W, Du C W, et al. Study on rapid and non-destructive detection of rice seed vigor based on photoacoustic spectroscopy combined with LS-SVR. Chinese Journal of Lasers, 2015, 42(11): 280-289. |
李欢欢, 卢伟, 杜昌文, 等. 基于光声光谱结合LS-SVR的稻种活力快速无损检测方法研究. 中国激光, 2015, 42(11): 280-289. | |
47 | Pardo G P, Pacheco A D, Tomás S A, et al. Characterization of aged lettuce and chard seeds by photothermal techniques. International Journal of Thermophysics, 2018, 39(10): 118. |
48 | Klein J D, Wood L A, Geneve R L. Hydrogen peroxide and color sorting improves germination and vigor of eastern gamagrass (Tripsacum dactyloides) seeds. Acta Horticulturae, 2008(782): 93-98. |
49 | Hu W F, Wang X M, Tang Q Y, et al. Effects of different sorting methods on seed vigor of rice. Hybrid Rice, 2018, 33(4): 58-63. |
胡伟凤, 王晓敏, 唐启源, 等. 不同分选方式对水稻种子活力的影响. 杂交水稻, 2018, 33(4): 58-63. | |
50 | Wu P, Song S H, Zhang H J, et al. Effects of upgrading and priming treatments on the quality of Chinese radish seed. Heilongjiang Agricultural Science, 2020(1): 96-99. |
吴萍, 宋顺华, 张海军, 等. 精选和引发处理对萝卜种子质量的影响. 黑龙江农业科学, 2020(1): 96-99. | |
51 | Xu X. Comparison of seed vitality of different sweet corn varieties and selection of suitable selection methods. Tianjin: Tianjin Agricultural University, 2018. |
许昍. 不同品种甜玉米种子活力特性差异比较及适宜精选方法的选择. 天津: 天津农学院, 2018. | |
52 | Lin X H, Yi J, Qiao F. Correlation analysis between seed vigor and biomass of sudangrass. Inner Mongolia Prataculture, 1999(Supple1): 42-44. |
林小虎, 易津, 乔枫. 苏丹草种子活力与生物产量相关性分析. 内蒙古草业, 1999(增刊1): 42-44. | |
53 | Anuradha R, Balamurugan P, Srimathi P, et al. Influence of seed coat colour variations on seed quality in Bengalgram CV. CO 4 (Cicer arietinum L). Legume Research, 2009, 32(2): 136-138. |
54 | Zou J X, Jin H, Piao R Z, et al. Seed germination and callus induction in Leymus chinensis of different seed colors. Journal of Anhui Agricultural Science, 2012, 40(3): 1501-1503. |
邹吉祥, 金华, 朴仁哲, 等. 不同颜色羊草种子对其发芽率及愈伤组织诱导的影响研究. 安徽农业科学, 2012, 40(3): 1501-1503. | |
55 | Stanisavljevic R, Velijevic N, Strbanovic R, et al. Seed quality of vetch (Vicia sativa) affected by different seed colors and sizes after various storage periods. International Journal of Agriculture and Biology, 2018, 20(12): 2655-2660. |
56 | Zhang Z D, Lu Z J, Lv P H, et al. Study on the relationship of seed color and seed vigor of Melilotus officinali. Journal of Beijing University of Agriculture, 2020, 35(4): 26-30. |
张震东, 卢子健, 吕鹏辉, 等. 草木樨种子颜色与种子活力的关系研究. 北京农学院学报, 2020, 35(4): 26-30. | |
57 | Feng N Y. Research on the laser speckle signal processing method. Wuhan: Huazhong University of Science & Technology, 2012. |
冯能云. 激光散斑信号处理方法研究. 武汉: 华中科技大学, 2012. | |
58 | Moreira J, Cardoso R R, Braga R A. Quality test protocol to dynamic laser speckle analysis. Optics & Lasers in Engineering, 2014, 61: 8-13. |
59 | Wang F P, Zeng Q R, Ye S C, et al. Experiments of soybean vitality detection using laser speckle. Applied Laser, 2013, 33(4): 452-455. |
王凤鹏, 曾全荣, 叶尚臣, 等. 基于激光散斑的大豆活力检测实验研究. 应用激光, 2013, 33(4): 452-455. | |
60 | Zhao Y Q, Xiao J. Speckle seed vigor detection based on time contrast analysis. South China Agriculture, 2017, 11(24): 116-120. |
赵瑛琦, 肖江. 基于时间对比分析法的散斑种子活力检测. 南方农业, 2017, 11(24): 116-120. | |
61 | Jalink H, van der Schoor R, Limare A, et al. Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance. Seed Science Research, 1998, 8(4): 437-443. |
62 | Kenanolu B B. Chlorophyll fluorescence sorting method to improve quality of capsicum pepper seed lost produced from different maturity fruits. HortScience, 2013, 48(8): 965-968. |
63 | Deleuran L, Olesen M H, Boelt B. Spinach seed quality: Potential for combining seed size grading and chlorophyll fluorescence sorting. Seed Science Research, 2013, 23(4): 271-278. |
64 | Tao Q B, Sun J P, Nie Y T, et al. Evaluation of seed vigor and prediction of field seedling emergence of Chinese milk vetch (Astragalus sinicus L.) by conductivity method. Chinese Journal of Grassland, 2022, 44(4): 95-103. |
陶奇波, 孙继鹏, 聂宇婷, 等. 电导率法评价紫云英种子活力并预测田间出苗表现. 中国草地学报, 2022, 44(4): 95-103. | |
65 | Zeng X H, Zhang R L. Non-destructive methods for determination of Stylosanthes guianensis seed vigor. Chinese Journal of Tropical Agriculture, 2008, 28(4): 21-25. |
曾秀华, 张如莲. 圭亚那柱花草种子活力的非破坏性测定方法. 热带农业科学, 2008, 28(4): 21-25. | |
66 | Wang Y, Yi J, Cao Z C. Determination of seed vigor of four species of Astragalus. Inner Mongolia Prataculture, 1993(2): 38-41, 62. |
王禹, 易津, 曹自成. 岩黄芪属四种牧草种子活力的测定. 内蒙古草业, 1993(2): 38-41, 62. | |
67 | Wei D, Wang Y R, Sun J H. A study of the relationship between standard germination, electrical conductivity and field performance in Vicia faba. Journal of Gansu Sciences, 1995(2): 13-16. |
卫东, 王彦荣, 孙建华. 蚕豆种子的标准发芽率、电导率、活力指数与田间质量表现的关系. 甘肃科学学报, 1995(2): 13-16. | |
68 | Mao P S, Han J G. Effects of storage treatments on seed vigor of sibiricus wildrye. Pratacultural Science, 2003, 20(4): 16-19. |
毛培胜, 韩建国. 贮藏处理对老芒麦种子活力的影响. 草业科学, 2003, 20(4): 16-19. | |
69 | Ching T M, Schoolcraft I. Physiological and chemical differences in aged seeds. Crop Science, 1968, 8(4): 407-409. |
70 | Wang Y R, Yu L, Liu Y L, et al. Relationship between seed viability and membrane permeability during seed deterioration in several forage species. Acta Prataculturae Sinica, 2002, 11(3): 85-91. |
王彦荣, 余玲, 刘友良, 等. 数种牧草种子劣变的生活力与膜透性的关系. 草业学报, 2002, 11(3): 85-91. | |
71 | Sun Q J, Lv Y Y, Han Y H, et al. Study of the semipermeable characteristics of Sorghum bicolor×Sorghum sudanense seeds. Acta Prataculturae Sinica, 2018, 27(5): 162-169. |
孙秋瑾, 吕燕燕, 韩云华, 等. 高丹草种子半透特性的研究. 草业学报, 2018, 27(5): 162-169. | |
72 | Yan X J, Wang Y R. Location of semipermeable layer and permeability of seed in Sorghum sudanense. Acta Prataculturae Sinica, 2008, 17(5): 54-59. |
颜欣娟, 王彦荣. 苏丹草种子半透层定位与透性研究. 草业学报, 2008, 17(5): 54-59. | |
73 | Zhou J. The characterization and formation of semi-permeable layer in eight kinds of grass species seeds. Lanzhou: Lanzhou University, 2013. |
周晶. 八种禾草种子半透层特性及其发育形成研究. 兰州: 兰州大学, 2013. | |
74 | He X Q. Seed coat permeability and location of semipermeable layer in seeds of several grass species. Lanzhou: Lanzhou University, 2011. |
何学青. 数种禾草种皮透性及种子半透层定位研究. 兰州: 兰州大学, 2011. | |
75 | Lv Y Y, He X Q, Hu X W, et al. The seed semipermeable layer and its relation to seed quality assessment in four grass species. Frontiers in Plant Science, 2017, 8: 1175. |
76 | Zhou J, Wang Y R, Jahufer Z. Location and chemical composition of semi-permeable layer of forage seeds. Bangladesh Journal of Botany, 2013, 42(1): 23-29. |
77 | Chen W L, Xing D, He Y H. Determination the vigor of rice seed with different degrees of aging with ultraweak chemiluminescence during early imbibition. Acta Botanica Sinica, 2002, 44(11): 1376-1379. |
陈文利, 邢达, 何永红. 用超弱化学发光法快速测定不同老化程度水稻种子的活力. 植物学报, 2002, 44(11): 1376-1379. | |
78 | Wei L G, Zhang X C, Zhao B, et al. Electronic nose technology and its application in the activity detection of wheat grain. Research on Agricultural Mechanization, 2010, 32(6): 150-152. |
伟利国, 张小超, 赵博, 等. 电子鼻技术及其在小麦活性检测中的应用. 农机化研究, 2010, 32(6): 150-152. | |
79 | Zhang T, Sun Q, Yang L, et al. Vigor detection of sweet corn seeds by optimal sensor array based on electronic nose. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 275-281. |
80 | Demirkaya M. Relationships between antioxidant enzymes and physiological variationsoccur during ageing of pepper seeds. Horticulture, Environment, and Biotechnology, 2013, 54(2): 97-102. |
81 | Li J Z, Li M Q, Liu L, et al. Study on the relationship between H2O2 velocity and seed vigor of rice seeds. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 189-194. |
李俊周, 李梦琪, 刘磊, 等. 水稻种子H2O2流速和种子活力的关系研究. 华北农学报, 2017, 32(4): 189-194. | |
82 | Jia L Q, Qi H N, Hu W J, et al. Rapid nondestructive grading detection of maize seed vigor using TDLAS technique. Chinese Journal of Lasers, 2019, 46(9): 297-305. |
贾良权, 祁亨年, 胡文军, 等. 采用TDLAS技术的玉米种子活力快速无损分级检测. 中国激光, 2019, 46(9): 297-305. | |
83 | Zhang R L. Seed vigour test of forage species. Chinese Journal of Tropical Agriculture, 2004, 24(4): 53-58. |
张如莲. 牧草种子活力的检测方法. 热带农业科学, 2004, 24(4): 53-58. | |
84 | Walter L E, Jensen E H. Effect of environment during seed production on seedling vigor of two alfalfa varieties. Crop Science, 1970, 10: 635-638. |
85 | Allen L R, Donnelly E D. Effect of seed weight on emergence and seedling vigor in F4 Lines from Vicia sativa L.×V. angustifalia L. Crop Science, 1965, 5(2): 167-169. |
86 | Henson P R, Tayman L A. Seed weights of varieties of birdsfoot trefoil as affecting seedling growth. Crop Science, 1961, 1(4): 306. |
87 | McKersie B D, Tomes D T, Yamamoto S. Effect of seed size on germination, seedling vigour, electrolyte leakage and establishment of birdsfoot trefoil (Lotus corniculatus L.). Canadian Journal of Plant Science, 1981, 61: 337-343. |
88 | Pan X, Tan H J. Application of computer vision technology in maize seed automatic detection. Research on Agricultural Mechanization, 2019, 41(3): 228-231. |
潘霞, 谭会君. 计算机视觉技术在玉米种子自动检测中的应用. 农机化研究, 2019, 41(3): 228-231. | |
89 | Ye F L, Li L, Yang L M, et al. Scutellaria baicalensis Georgi seeds selection based on machine vision. Seed, 2016, 35(11): 100-104. |
叶凤林, 李琳, 杨丽明, 等. 基于机器视觉的黄芩种子精选技术研究. 种子, 2016, 35(11): 100-104. | |
90 | Liu M J, Xu X, Wang J H, et al. Seed viability testing model of sweet corn based on artificial neural network and binary logistic regression. Journal of China Agricultural University, 2018, 23(7): 1-10. |
刘敏洁, 许昍, 王建华, 等. 基于人工神经网络和二元逻辑回归的甜玉米种子生活力检测模型研究. 中国农业大学学报, 2018, 23(7): 1-10. | |
91 | Li Z, Liao T Q, Feng Q C, et al. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2218-2224. |
李振, 廖同庆, 冯青春, 等. 基于机器视觉的蔬菜种子活力指数检测算法研究及系统实现. 浙江农业学报, 2015, 27(12): 2218-2224. |
[1] | 杨志贵, 张建国, 李锦荣, 于红妍, 常丽, 宜树华, 吕燕燕, 张玉琢, 孟宝平. 内蒙古温性草原草地类型近20年时空动态变化研究[J]. 草业学报, 2023, 32(9): 1-16. |
[2] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[3] | 凤紫棋, 孙文义, 穆兴民, 高鹏, 赵广举, 陈帅. 南方山区杉木人工林林下草本植物多样性的影响因素[J]. 草业学报, 2023, 32(9): 17-26. |
[4] | 亢燕, 王耀辉, 牛天慧, 滕哲, 祁智, 杨佳. 羊草LcZIP1的铁转运功能鉴定[J]. 草业学报, 2023, 32(9): 173-180. |
[5] | 吉轶楠, 任雪锋, 苟甜甜, 臧国长, 郑轶琦. 基于SSR标记的河南省假俭草群体遗传多样性研究[J]. 草业学报, 2023, 32(9): 198-212. |
[6] | 田静, 曹彩霞, 黄莉莹, 吴娟燕, 张建国. 耐低营养乳酸菌筛选及对难青贮牧草发酵品质的影响[J]. 草业学报, 2023, 32(9): 222-230. |
[7] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[8] | 郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78. |
[9] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[10] | 宫珂, 靳瑰丽, 刘文昊, 马建, 刘智彪, 李嘉欣, 李莹. 模拟增温对无芒雀麦生长特性的影响[J]. 草业学报, 2023, 32(9): 93-103. |
[11] | 张慧龙, 杨秀春, 杨东, 陈昂, 张敏. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023, 32(8): 1-13. |
[12] | 窦玮豪, 宋桂龙, 韩烈保, 陈佳宝, 杨晓晖, 钱永强, 邹博坤, 陈雨峰, 梁小红. 混合草坪加强技术对足球场草坪质量和安全性能的影响研究[J]. 草业学报, 2023, 32(8): 104-114. |
[13] | 康燕霞, 姜渊博, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞. 红豆草与无芒雀麦混播草地生产力提升的水分调控模式研究[J]. 草业学报, 2023, 32(8): 115-128. |
[14] | 李雪敏, 李同宁, 吴芝雨, 武振国. 多情景模拟下内蒙古草地生态系统服务价值时空演变[J]. 草业学报, 2023, 32(8): 14-27. |
[15] | 刘继亮, 赵文智, 王永珍, 冯怡琳, 祁进贤, 李永元. 禁牧和放牧对祁连山高寒草原秋季大型和中型土壤节肢动物多样性的影响[J]. 草业学报, 2023, 32(8): 214-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||