草业学报 ›› 2023, Vol. 32 ›› Issue (9): 198-212.DOI: 10.11686/cyxb2022409
• 研究论文 • 上一篇
收稿日期:
2022-10-17
修回日期:
2023-01-11
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
郑轶琦
作者简介:
E-mail: yiqi214@163.com基金资助:
Yi-nan JI(), Xue-feng REN, Tian-tian GOU, Guo-zhang ZANG, Yi-qi ZHENG()
Received:
2022-10-17
Revised:
2023-01-11
Online:
2023-09-20
Published:
2023-07-12
Contact:
Yi-qi ZHENG
摘要:
基于SSR分子标记研究河南省假俭草群体遗传多样性,结果表明所用引物共检测到99个等位基因,引物多态性信息含量为0.53~0.88,多态性条带百分率为98.75%,所选引物的多态性较高。分子方差分析(AMOVA)表明河南假俭草居群的遗传分化主要发生于居群内(86.96%),居群间存在较频繁的基因交流。聚类及Mantel检验结果表明地理距离与遗传距离间无相关性。群体遗传结构分析显示,141份假俭草材料分为3个亚群,与主坐标分析(PCoA)结果一致。冗余分析(RDA)结果表明最干旱月份降水量是影响河南省假俭草种群结构的主要因素。结合FDIST2和BayeScan两种方法共同检测到4个异常位点,异常位点检出比例为4.04%,环境关联分析检测到部分与环境因子关联的位点,今后可进一步开展转录组学研究,进行基因功能注释,系统地揭示假俭草的适应性进化机制。
吉轶楠, 任雪锋, 苟甜甜, 臧国长, 郑轶琦. 基于SSR标记的河南省假俭草群体遗传多样性研究[J]. 草业学报, 2023, 32(9): 198-212.
Yi-nan JI, Xue-feng REN, Tian-tian GOU, Guo-zhang ZANG, Yi-qi ZHENG. A study of genetic diversity in centipedegrass populations in Henan based on SSR markers[J]. Acta Prataculturae Sinica, 2023, 32(9): 198-212.
编号 Codes | 样本数量 Number of samples (No.) | 采集地点 Collection sites | 临近河流 Nearby rivers | 经度 Longitudes (E) | 纬度 Latitudes (N) | 海拔 Altitudes (m) |
---|---|---|---|---|---|---|
C1 | 5 | 河南省信阳市固始县王湾Wangwan, Gushi County, Xinyang City, Henan Province | 史河Shi River | 115°36′31″ | 32°10′11″ | 40 |
C2 | 20 | 河南省信阳市商城县涂寨Tuzhai, Shangcheng County, Xinyang City, Henan Province | 灌河Guan River | 115°23′46″ | 31°51′31″ | 70 |
C3 | 20 | 河南省信阳市光山县韩家贩Hanjiafan, Guangshan County, Xinyang City, Henan Province | 白露河Bailu River | 115°05′34″ | 31°45′53″ | 80 |
C4 | 20 | 河南省信阳市新县邱店村Qiudian Village, Xin County, Xinyang City, Henan Province | 潢河Huang River | 114°48′00″ | 31°45′20″ | 70 |
C5 | 20 | 河南省信阳市罗山县钱大湾Qiandawan, Luoshan County, Xinyang City, Henan Province | 竹竿河Zhugan River | 114°31′04″ | 31°53′18″ | 60 |
C6 | 16 | 河南省信阳市浉河区马家湾Majiawan, Shihe District, Xinyang City, Henan Province | 浉河Shi River | 114°08′29″ | 31°59′49″ | 90 |
C7 | 20 | 河南省驻马店市泌阳县西关台Xiguantai, Biyang County, Zhumadian City, Henan Province | 汝河Ru River | 113°30′01″ | 32°59′51″ | 120 |
C8 | 20 | 河南省南阳市桐柏县板桥村Banqiao Village, Tongbai County, Nanyang City, Henan Province | 三夹河Sanjia River | 113°12′56″ | 32°27′50″ | 150 |
表1 假俭草采集地概况
Table 1 General situation of collecting areas of centipedegrass
编号 Codes | 样本数量 Number of samples (No.) | 采集地点 Collection sites | 临近河流 Nearby rivers | 经度 Longitudes (E) | 纬度 Latitudes (N) | 海拔 Altitudes (m) |
---|---|---|---|---|---|---|
C1 | 5 | 河南省信阳市固始县王湾Wangwan, Gushi County, Xinyang City, Henan Province | 史河Shi River | 115°36′31″ | 32°10′11″ | 40 |
C2 | 20 | 河南省信阳市商城县涂寨Tuzhai, Shangcheng County, Xinyang City, Henan Province | 灌河Guan River | 115°23′46″ | 31°51′31″ | 70 |
C3 | 20 | 河南省信阳市光山县韩家贩Hanjiafan, Guangshan County, Xinyang City, Henan Province | 白露河Bailu River | 115°05′34″ | 31°45′53″ | 80 |
C4 | 20 | 河南省信阳市新县邱店村Qiudian Village, Xin County, Xinyang City, Henan Province | 潢河Huang River | 114°48′00″ | 31°45′20″ | 70 |
C5 | 20 | 河南省信阳市罗山县钱大湾Qiandawan, Luoshan County, Xinyang City, Henan Province | 竹竿河Zhugan River | 114°31′04″ | 31°53′18″ | 60 |
C6 | 16 | 河南省信阳市浉河区马家湾Majiawan, Shihe District, Xinyang City, Henan Province | 浉河Shi River | 114°08′29″ | 31°59′49″ | 90 |
C7 | 20 | 河南省驻马店市泌阳县西关台Xiguantai, Biyang County, Zhumadian City, Henan Province | 汝河Ru River | 113°30′01″ | 32°59′51″ | 120 |
C8 | 20 | 河南省南阳市桐柏县板桥村Banqiao Village, Tongbai County, Nanyang City, Henan Province | 三夹河Sanjia River | 113°12′56″ | 32°27′50″ | 150 |
编号 Codes | 年平均温 Annual mean temperature (Bio 1, ℃) | 等温性 Isothermality (×100,Bio 3, ℃) | 最热月最高温度 Max temperature of warmest month (Bio 5, ℃) | 温度年变化范围 Temperature annual range (Bio 7, ℃) | 最干燥季平均气温 Mean temperature of driest quarter (Bio 9, ℃) | 年降水量 Annual precipitation (Bio 12, mm) | 最干旱月份的降水量 Precipitation of driest month (Bio 14, mm) |
---|---|---|---|---|---|---|---|
C1 | 15.80 | 26.35 | 31.40 | 32.80 | 4.13 | 1071.00 | 22.00 |
C2 | 15.90 | 27.17 | 31.50 | 32.70 | 4.42 | 1144.00 | 24.00 |
C3 | 15.87 | 27.62 | 31.50 | 32.80 | 4.37 | 1151.00 | 23.00 |
C4 | 15.77 | 26.79 | 31.40 | 32.60 | 4.28 | 1136.00 | 21.00 |
C5 | 15.73 | 26.93 | 31.40 | 32.80 | 4.20 | 1109.00 | 20.00 |
C6 | 15.40 | 27.23 | 31.00 | 32.90 | 3.92 | 1083.00 | 18.00 |
C7 | 15.21 | 29.03 | 31.30 | 34.30 | 3.30 | 888.00 | 14.00 |
C8 | 15.14 | 27.79 | 30.80 | 33.10 | 3.62 | 955.00 | 14.00 |
表2 提取的假俭草居群的环境变量
Table 2 Environmental variables extracted from the populations of centipedegrass
编号 Codes | 年平均温 Annual mean temperature (Bio 1, ℃) | 等温性 Isothermality (×100,Bio 3, ℃) | 最热月最高温度 Max temperature of warmest month (Bio 5, ℃) | 温度年变化范围 Temperature annual range (Bio 7, ℃) | 最干燥季平均气温 Mean temperature of driest quarter (Bio 9, ℃) | 年降水量 Annual precipitation (Bio 12, mm) | 最干旱月份的降水量 Precipitation of driest month (Bio 14, mm) |
---|---|---|---|---|---|---|---|
C1 | 15.80 | 26.35 | 31.40 | 32.80 | 4.13 | 1071.00 | 22.00 |
C2 | 15.90 | 27.17 | 31.50 | 32.70 | 4.42 | 1144.00 | 24.00 |
C3 | 15.87 | 27.62 | 31.50 | 32.80 | 4.37 | 1151.00 | 23.00 |
C4 | 15.77 | 26.79 | 31.40 | 32.60 | 4.28 | 1136.00 | 21.00 |
C5 | 15.73 | 26.93 | 31.40 | 32.80 | 4.20 | 1109.00 | 20.00 |
C6 | 15.40 | 27.23 | 31.00 | 32.90 | 3.92 | 1083.00 | 18.00 |
C7 | 15.21 | 29.03 | 31.30 | 34.30 | 3.30 | 888.00 | 14.00 |
C8 | 15.14 | 27.79 | 30.80 | 33.10 | 3.62 | 955.00 | 14.00 |
引物名称 Primer name | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5′-3′) | 反向引物碱基序列 Reverse primers sequence (5′-3′) |
---|---|---|---|
TJIB.EO-51 | (TTG)11 | TGTAGTGCCGAGCAATTGAG | GCTGGCCAACCTGTAGAGAG |
TJIB.EO-82 | (TTC)13 | AGAGCAGTACTAGGCCGCAC | GCTCATCTCCATGGTTCGAT |
TJIB.EO-06 | (GCC)5 | GGTGGCGTTGTTTGCTATCT | CTGCTTCTTCTGCTTTCCGT |
TJIB.EO-66 | (ATC)14 | GCGCCTTCTCCTCTAACTCT | TTCTGTTGCGGAACTCCTCT |
TJIB.EO-31 | (CAC)13 | GCGACGAGATGAGAATGAGA | CTAGGTGGGAGGATGCGAG |
TJIB.EO-40 | (CGT)5 | CACCTGCTCAAGCACCATC | TCAAGGAACGAAACGAAACC |
TJIB.EO-90 | (CTAC)18 | GGCCACACTGCTTTAACCAT | TCGCGGTAAATCTTTTCGAC |
TJIB.EO-65 | (CCT)7 | TGAGAGAACCCTCATAACACAGA | GGAAAGGCTGTCTATGCTGC |
TJIB.EO-29 | (CAA)5 | AACAACAGCAACAGCAGCAG | ATTTTCGACCGGGTTAGCTT |
TJIB.EO-92 | (TCC)10 | CTGGCATCTCTTCTGGCAC | GAGGAGGAGGAGGAGGACAG |
表3 本研究所采用的 SSR 引物序列
Table 3 Sequences of SSR primers used in the study
引物名称 Primer name | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5′-3′) | 反向引物碱基序列 Reverse primers sequence (5′-3′) |
---|---|---|---|
TJIB.EO-51 | (TTG)11 | TGTAGTGCCGAGCAATTGAG | GCTGGCCAACCTGTAGAGAG |
TJIB.EO-82 | (TTC)13 | AGAGCAGTACTAGGCCGCAC | GCTCATCTCCATGGTTCGAT |
TJIB.EO-06 | (GCC)5 | GGTGGCGTTGTTTGCTATCT | CTGCTTCTTCTGCTTTCCGT |
TJIB.EO-66 | (ATC)14 | GCGCCTTCTCCTCTAACTCT | TTCTGTTGCGGAACTCCTCT |
TJIB.EO-31 | (CAC)13 | GCGACGAGATGAGAATGAGA | CTAGGTGGGAGGATGCGAG |
TJIB.EO-40 | (CGT)5 | CACCTGCTCAAGCACCATC | TCAAGGAACGAAACGAAACC |
TJIB.EO-90 | (CTAC)18 | GGCCACACTGCTTTAACCAT | TCGCGGTAAATCTTTTCGAC |
TJIB.EO-65 | (CCT)7 | TGAGAGAACCCTCATAACACAGA | GGAAAGGCTGTCTATGCTGC |
TJIB.EO-29 | (CAA)5 | AACAACAGCAACAGCAGCAG | ATTTTCGACCGGGTTAGCTT |
TJIB.EO-92 | (TCC)10 | CTGGCATCTCTTCTGGCAC | GAGGAGGAGGAGGAGGACAG |
位点 Locus | 多态性信息含量 PIC | 观测等位基因数Observed number of alleles | 有效等位基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity |
---|---|---|---|---|---|---|---|
TJIB.EO-51 | 0.88 | 12.00 | 8.75 | 2.31 | 0.89 | 0.72 | 0.89 |
TJIB.EO-82 | 0.72 | 9.00 | 4.20 | 1.62 | 0.76 | 0.89 | 0.77 |
TJIB.EO-06 | 0.87 | 10.00 | 8.16 | 2.17 | 0.88 | 0.77 | 0.88 |
TJIB.EO-66 | 0.84 | 10.00 | 7.05 | 2.09 | 0.86 | 0.48 | 0.86 |
TJIB.EO-31 | 0.80 | 10.00 | 5.66 | 1.88 | 0.82 | 0.99 | 0.83 |
TJIB.EO-40 | 0.53 | 6.00 | 2.54 | 1.11 | 0.61 | 0.99 | 0.61 |
TJIB.EO-90 | 0.83 | 12.00 | 6.64 | 2.07 | 0.85 | 0.37 | 0.85 |
TJIB.EO-65 | 0.80 | 9.00 | 5.60 | 1.93 | 0.82 | 0.97 | 0.83 |
TJIB.EO-29 | 0.69 | 11.00 | 3.59 | 1.70 | 0.72 | 0.26 | 0.72 |
TJIB.EO-92 | 0.88 | 10.00 | 8.96 | 2.24 | 0.89 | 0.62 | 0.89 |
平均值Mean value | 0.78 | 9.90 | 6.12 | 1.91 | 0.81 | 0.71 | 0.81 |
标准差Standard deviation | 0.10 | 1.64 | 2.20 | 0.36 | 0.09 | 0.27 | 0.09 |
表4 引物扩增结果
Table 4 Primers amplification results
位点 Locus | 多态性信息含量 PIC | 观测等位基因数Observed number of alleles | 有效等位基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity |
---|---|---|---|---|---|---|---|
TJIB.EO-51 | 0.88 | 12.00 | 8.75 | 2.31 | 0.89 | 0.72 | 0.89 |
TJIB.EO-82 | 0.72 | 9.00 | 4.20 | 1.62 | 0.76 | 0.89 | 0.77 |
TJIB.EO-06 | 0.87 | 10.00 | 8.16 | 2.17 | 0.88 | 0.77 | 0.88 |
TJIB.EO-66 | 0.84 | 10.00 | 7.05 | 2.09 | 0.86 | 0.48 | 0.86 |
TJIB.EO-31 | 0.80 | 10.00 | 5.66 | 1.88 | 0.82 | 0.99 | 0.83 |
TJIB.EO-40 | 0.53 | 6.00 | 2.54 | 1.11 | 0.61 | 0.99 | 0.61 |
TJIB.EO-90 | 0.83 | 12.00 | 6.64 | 2.07 | 0.85 | 0.37 | 0.85 |
TJIB.EO-65 | 0.80 | 9.00 | 5.60 | 1.93 | 0.82 | 0.97 | 0.83 |
TJIB.EO-29 | 0.69 | 11.00 | 3.59 | 1.70 | 0.72 | 0.26 | 0.72 |
TJIB.EO-92 | 0.88 | 10.00 | 8.96 | 2.24 | 0.89 | 0.62 | 0.89 |
平均值Mean value | 0.78 | 9.90 | 6.12 | 1.91 | 0.81 | 0.71 | 0.81 |
标准差Standard deviation | 0.10 | 1.64 | 2.20 | 0.36 | 0.09 | 0.27 | 0.09 |
居群编号 Population code | 观测等位 基因数 Observed number of alleles | 有效等位 基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数 Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态位点数 Number of polymorphic loci | 多态位点百 分率Percentage of polymorphic loci (%) |
---|---|---|---|---|---|---|---|---|
C1 | 4.30±1.77 | 3.56±1.58 | 1.24±0.54 | 0.64±0.24 | 0.58±0.35 | 0.71±0.27 | 9.00 | 90.00 |
C2 | 6.80±2.70 | 3.85±1.53 | 1.48±0.45 | 0.70±0.12 | 0.68±0.26 | 0.72±0.12 | 10.00 | 100.00 |
C3 | 6.70±2.26 | 4.52±1.53 | 1.59±0.39 | 0.75±0.10 | 0.76±0.26 | 0.77±0.10 | 10.00 | 100.00 |
C4 | 7.90±2.42 | 4.97±1.68 | 1.73±0.41 | 0.77±0.11 | 0.70±0.23 | 0.79±0.11 | 10.00 | 100.00 |
C5 | 6.40±2.76 | 4.01±1.91 | 1.45±0.50 | 0.69±0.16 | 0.68±0.36 | 0.71±0.16 | 10.00 | 100.00 |
C6 | 6.60±1.65 | 4.04±1.42 | 1.51±0.37 | 0.72±0.12 | 0.60±0.33 | 0.74±0.12 | 10.00 | 100.00 |
C7 | 6.00±2.67 | 3.47±1.30 | 1.34±0.46 | 0.66±0.15 | 0.79±0.32 | 0.68±0.15 | 10.00 | 100.00 |
C8 | 4.40±1.96 | 3.11±1.18 | 1.15±0.50 | 0.61±0.22 | 0.76±0.36 | 0.63±0.23 | 10.00 | 100.00 |
平均值Mean value | 6.14±2.27 | 3.94±1.52 | 1.44±0.45 | 0.69±0.15 | 0.69±0.31 | 0.72±0.16 | 9.88 | 98.75 |
表5 假俭草居群的遗传多样性
Table 5 Genetic diversity of centipedegrass populations (mean±SD)
居群编号 Population code | 观测等位 基因数 Observed number of alleles | 有效等位 基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数 Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态位点数 Number of polymorphic loci | 多态位点百 分率Percentage of polymorphic loci (%) |
---|---|---|---|---|---|---|---|---|
C1 | 4.30±1.77 | 3.56±1.58 | 1.24±0.54 | 0.64±0.24 | 0.58±0.35 | 0.71±0.27 | 9.00 | 90.00 |
C2 | 6.80±2.70 | 3.85±1.53 | 1.48±0.45 | 0.70±0.12 | 0.68±0.26 | 0.72±0.12 | 10.00 | 100.00 |
C3 | 6.70±2.26 | 4.52±1.53 | 1.59±0.39 | 0.75±0.10 | 0.76±0.26 | 0.77±0.10 | 10.00 | 100.00 |
C4 | 7.90±2.42 | 4.97±1.68 | 1.73±0.41 | 0.77±0.11 | 0.70±0.23 | 0.79±0.11 | 10.00 | 100.00 |
C5 | 6.40±2.76 | 4.01±1.91 | 1.45±0.50 | 0.69±0.16 | 0.68±0.36 | 0.71±0.16 | 10.00 | 100.00 |
C6 | 6.60±1.65 | 4.04±1.42 | 1.51±0.37 | 0.72±0.12 | 0.60±0.33 | 0.74±0.12 | 10.00 | 100.00 |
C7 | 6.00±2.67 | 3.47±1.30 | 1.34±0.46 | 0.66±0.15 | 0.79±0.32 | 0.68±0.15 | 10.00 | 100.00 |
C8 | 4.40±1.96 | 3.11±1.18 | 1.15±0.50 | 0.61±0.22 | 0.76±0.36 | 0.63±0.23 | 10.00 | 100.00 |
平均值Mean value | 6.14±2.27 | 3.94±1.52 | 1.44±0.45 | 0.69±0.15 | 0.69±0.31 | 0.72±0.16 | 9.88 | 98.75 |
位点 Locus | 近交系数 Inbreeding coefficient (Fis) | 居群内近交系数 Inbreeding coefficient with population (Fit) | 居群间分化系数 Fixation index (Fst) | 基因流 Number of effective migrants (Nm) |
---|---|---|---|---|
TJIB.EO-51 | 0.12 | 0.18 | 0.07 | 3.32 |
TJIB.EO-82 | -0.35 | -0.15 | 0.15 | 1.37 |
TJIB.EO-06 | 0.04 | 0.14 | 0.11 | 1.98 |
TJIB.EO-66 | 0.40 | 0.48 | 0.13 | 1.64 |
TJIB.EO-31 | -0.30 | -0.19 | 0.09 | 2.65 |
TJIB.EO-40 | -0.69 | -0.59 | 0.06 | 4.04 |
TJIB.EO-90 | 0.49 | 0.58 | 0.18 | 1.11 |
TJIB.EO-65 | -0.42 | -0.16 | 0.18 | 1.12 |
TJIB.EO-29 | 0.48 | 0.66 | 0.35 | 0.46 |
TJIB.EO-92 | 0.21 | 0.31 | 0.12 | 1.80 |
平均值Mean value | 0.00 | 0.15 | 0.14 | 1.49 |
表6 假俭草居群SSR位点F统计
Table 6 F-statistics of SSR in populations of centipedegrass
位点 Locus | 近交系数 Inbreeding coefficient (Fis) | 居群内近交系数 Inbreeding coefficient with population (Fit) | 居群间分化系数 Fixation index (Fst) | 基因流 Number of effective migrants (Nm) |
---|---|---|---|---|
TJIB.EO-51 | 0.12 | 0.18 | 0.07 | 3.32 |
TJIB.EO-82 | -0.35 | -0.15 | 0.15 | 1.37 |
TJIB.EO-06 | 0.04 | 0.14 | 0.11 | 1.98 |
TJIB.EO-66 | 0.40 | 0.48 | 0.13 | 1.64 |
TJIB.EO-31 | -0.30 | -0.19 | 0.09 | 2.65 |
TJIB.EO-40 | -0.69 | -0.59 | 0.06 | 4.04 |
TJIB.EO-90 | 0.49 | 0.58 | 0.18 | 1.11 |
TJIB.EO-65 | -0.42 | -0.16 | 0.18 | 1.12 |
TJIB.EO-29 | 0.48 | 0.66 | 0.35 | 0.46 |
TJIB.EO-92 | 0.21 | 0.31 | 0.12 | 1.80 |
平均值Mean value | 0.00 | 0.15 | 0.14 | 1.49 |
变异来源 Source of variation | 离差平方和 Sum of squares deviations | 方差分量估计 Estimation of variance components | 变异百分比 Percentage of variation (%) |
---|---|---|---|
居群间Among populations | 157.02 | 3.54 | 13.04 |
居群内Within populations | 498.50 | 22.43 | 86.96 |
表7 分子方差分析
Table 7 Molecular analysis of variance
变异来源 Source of variation | 离差平方和 Sum of squares deviations | 方差分量估计 Estimation of variance components | 变异百分比 Percentage of variation (%) |
---|---|---|---|
居群间Among populations | 157.02 | 3.54 | 13.04 |
居群内Within populations | 498.50 | 22.43 | 86.96 |
图7 RDA分析环境变量对遗传结构的相对贡献Bio 1为年平均温;Bio 3为等温性;Bio 5为最热月最高温度;Bio 7为温度年变化范围;Bio 9为最干燥季平均气温;Bio 12为年降水量;Bio 14为最干旱月份的降水量。Bio 1 is annual mean temperature; Bio 3 is isothermality; Bio 5 is max temperature of warmest month; Bio 7 is temperature annual range; Bio 9 is mean temperature of driest quarter; Bio 12 is annual precipitation; Bio 14 is precipitation of driest month.
Fig.7 The relative contribution of environmental variables to genetic structure was analyzed by RDA
环境变量 Environmental variables | 轴1 Axis 1 | 轴2 Axis 2 | 解释度 Explanation degree (%) | 贡献率 Contribution rate (%) |
---|---|---|---|---|
Bio 1 | -0.90** | 0.10 | 0.52 | 1.82 |
Bio 3 | 0.43 | -0.57* | 2.60 | 9.81 |
Bio 5 | -0.83** | -0.25 | 1.83 | 6.59 |
Bio 7 | 0.48 | -0.53* | 1.46 | 5.23 |
Bio 9 | -0.79** | 0.29 | 2.80 | 10.58 |
Bio 12 | -0.76** | 0.44 | 4.61 | 17.47 |
Bio 14 | -0.92** | 0.14 | 12.93 | 48.50 |
表8 各环境变量与排序轴的相关性、解释度及贡献率
Table 8 Correlation, degree of explanation and contribution rate of each environmental variables to the ranking axis
环境变量 Environmental variables | 轴1 Axis 1 | 轴2 Axis 2 | 解释度 Explanation degree (%) | 贡献率 Contribution rate (%) |
---|---|---|---|---|
Bio 1 | -0.90** | 0.10 | 0.52 | 1.82 |
Bio 3 | 0.43 | -0.57* | 2.60 | 9.81 |
Bio 5 | -0.83** | -0.25 | 1.83 | 6.59 |
Bio 7 | 0.48 | -0.53* | 1.46 | 5.23 |
Bio 9 | -0.79** | 0.29 | 2.80 | 10.58 |
Bio 12 | -0.76** | 0.44 | 4.61 | 17.47 |
Bio 14 | -0.92** | 0.14 | 12.93 | 48.50 |
位点Locus | Bio 1 | Bio 3 | Bio 5 | Bio 7 | Bio 9 | Bio 12 | Bio 14 |
---|---|---|---|---|---|---|---|
TJIB.EO-82-3 | - | - | - | 3.54 | - | - | - |
TJIB.EO-65-2 | 6.27 | 6.38 | 3.61 | 5.86 | 6.54 | 7.73 | 6.04 |
TJIB.EO-65-6 | - | 4.29 | - | - | - | - | - |
TJIB.EO-29-6 | 8.37 | 3.99 | 7.19 | 5.06 | 7.94 | 8.12 | 7.27 |
表9 |Z|得分确定的环境关联位点
Table 9 Environment association site determined by the score |Z|
位点Locus | Bio 1 | Bio 3 | Bio 5 | Bio 7 | Bio 9 | Bio 12 | Bio 14 |
---|---|---|---|---|---|---|---|
TJIB.EO-82-3 | - | - | - | 3.54 | - | - | - |
TJIB.EO-65-2 | 6.27 | 6.38 | 3.61 | 5.86 | 6.54 | 7.73 | 6.04 |
TJIB.EO-65-6 | - | 4.29 | - | - | - | - | - |
TJIB.EO-29-6 | 8.37 | 3.99 | 7.19 | 5.06 | 7.94 | 8.12 | 7.27 |
1 | Hanna W W. Centipedegrass-diversity and vulnerability. Crop Science, 1995, 35: 332-334. |
2 | Zheng Y Q, Zang G Z, Guo H L, et al. Analysis of heredity and correlation of reproductive traits in centipedegrass (Eremochloa ophiuroides)hybrids. Acta Prataculturae Sinica, 2011, 20(2): 283-289. |
郑轶琦, 臧国长, 郭海林, 等. 假俭草杂交后代生殖性状遗传及相关性分析. 草业学报, 2011, 20(2): 283-289. | |
3 | Weaver K R, Callahan L M, Caetano-Anollés G, et al. DNA amplification fingerprinting and hybridization analysis of centipedegrass. Crop Science, 1995, 35(3): 881-885. |
4 | Bai S Q, Gao R, Shen Y, et al. AFLP fingerprinting analysis of Eremochloa ophiuroides (Munro) Hackel germplasm. High Technology Letters, 2002(10): 45-49. |
白史且, 高荣, 沈翼, 等. 假俭草遗传多样性的AFLP指纹分析. 高技术通讯, 2002(10): 45-49. | |
5 | Liu X S, Liu J X, Guo H L. Preliminary study on germplasm resource diversity of Eremochloa ophiuroides in East China Ⅲ ploidy level and morphological variation of somatic chromosome. Acta Prataculturae Sinica, 2003, 12(3): 90-94. |
刘学诗, 刘建秀, 郭海林. 华东地区假俭草种质资源多样性初步研究Ⅲ染色体倍性和形态. 草业学报, 2003, 12(3): 90-94. | |
6 | Xuan J P, Gao H, Liu J X. RAPD analysis of a population of Eremochloa ophiuroides in China. Acta Prataculturae Sinica, 2005, 14(4): 47-52. |
宣继萍, 高鹤, 刘建秀. 中国假俭草居群遗传多样性研究Ⅲ RAPD分析. 草业学报, 2005, 14(4): 47-52. | |
7 | Zhao Q L, Bai C J, Liang X L. An analysis by ISSR of genetic diversity in Eremochloa ophiuroides in China. Chinese Journal of Tropical Crops, 2011, 32(1): 110-115. |
赵琼玲, 白昌军, 梁晓玲. 中国假俭草种质资源遗传多样性的ISSR分析. 热带作物学报, 2011, 32(1): 110-115. | |
8 | Yang S L. Study on genetic diversity of wild centipedegrass germplasm resources in Hunan. Changsha: Central South University of Forestry and Technology, 2009. |
杨水莲. 湖南野生假俭草种质资源遗传多样性研究. 长沙: 中南林业科技大学, 2009. | |
9 | Zheng Y Q. Detection of genetic diversity, construction of genetic linkage map and mapping QTL in centipedegrass (Eremochloa ophiuroides). Nanjing: Nanjing Agricultural University, 2009. |
郑轶琦. 假俭草种质遗传多样性分析、遗传图谱构建及重要性状QTL定位. 南京: 南京农业大学, 2009. | |
10 | Susana R, Jennifer A, Kimball M, et al. Use of sequence-related amplified polymorphism (SRAP) markers for comparing levels of genetic diversity in centipedegrass (Eremochloa ophiuroides (Munro) Hack.) germplasm. Genetic Resources and Crop Evolution, 2012, 59(7): 1517-1526. |
11 | Guo H L, Guo A G, Zong J Q, et al. Identification and analysis of eight centipedegrass materials by SRAP molecular makers. Acta Agrestia Sinica, 2014, 22(1): 203-207. |
郭海林, 郭爱桂, 宗俊勤, 等. SRAP标记对8份假俭草材料的鉴定分析. 草地学报, 2014, 22(1): 203-207. | |
12 | Wang T. Comprehensive evaluation of morphological characters, turf use value and construction of fingerprint map of wild centipedegrass. Chengdu: Sichuan Agricultural University, 2018. |
王婷. 野生假俭草种质形态性状、坪用价值综合评价及指纹图谱构建. 成都: 四川农业大学, 2018. | |
13 | Karen R, Susana R, Carolina Z M, et al. Development of simple sequence repeat markers and the analysis of genetic diversity and ploidy level in a centipedegrass collection. Crop Science, 2012, 52(1): 383-392. |
14 | Li J J, Guo H L, Wang Y, et al. High-throughput SSR marker development and its application in a centipedegrass (Eremochloa ophiuroides (Munro) Hack.) genetic diversity analysis. PLoS One, 2018, 13(8): e0202605. |
15 | Rellstab C, Gugerli F, Eckert A J, et al. A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 2015, 24(17): 4348-4370. |
16 | Li J X, Zhu X H, Li Y, et al. Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biology, 2018, 18(1): 306-318. |
17 | Thomas C D, Bodsworth E J, Wilson R J, et al. Ecological and evolutionary processes at expanding range margins. Nature, 2001, 411(6837): 557-581. |
18 | Montero-Mendieta S, Tan K, Christmas M J, et al. The genomic basis of adaptation to high altitude habitats in the eastern honey bee (Apis cerana). Molecular Ecology, 2019, 28(4): 746-760. |
19 | Hamasha H, Schmidt-Lebuhn A, Durka W, et al. Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biology, 2012, 15(5): 882-891. |
20 | Wu Z, Yu D, Li X, et al. Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology & Evolution, 2016, 6(2): 460-468. |
21 | Gao L, Tang S, Zhuge L, et al. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLoS One, 2012, 7(8): e43334. |
22 | Lawton J H. Range, population abundance and conservation. Trends in Ecology and Evolution, 1993, 8(11): 409-413. |
23 | Kluth C, Bruelheide H. Central and peripheral Hornungia petraea populations: Patterns and dynamics. Journal of Ecology, 2005, 93(3): 584-595. |
24 | Wang Y Q, Zhang Z B, Xu L X. The genetic diversity of central and peripheral populations of ratlike hamster (Cricetulus triton). Chinese Science Bulletin, 2002, 47(3): 201-206. |
25 | Eckert C G, Samis K E, Lougheed S C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 2008, 17(5): 1170-1188. |
26 | Johannesson K, André C. Life on the margin: Genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology, 2006, 15(8): 2013-2029. |
27 | Li N, Jiang Y F, Su X, et al. Genetic diversity and genetic structure of the northern margin populations of Hippophae neurocarpa. Guihaia, 2016, 36(5): 557-563. |
李霓, 蒋严妃, 苏雪, 等. 肋果沙棘北缘居群的遗传多样性与遗传结构. 广西植物, 2016, 36(5): 557-563. | |
28 | Van R F, Vekemans X, Gratia E, et al. A comparative study of allozyme variation of peripheral and central populations of Silene nutans L. (Caryophyllaceae) from Western Europe: implications for conservation. Plant Systematics and Evolution, 2003, 242: 49-61. |
29 | Liu J, Jiang J M, Zou J. Genetic diversity of the central and peripheral populations of Toona ciliata var. pubescens, an endangered tree species endemic to China. Journal of Plant Ecology, 2013, 37(1): 52-60. |
30 | Shi M M, Chen X Y. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Population Ecology, 2012, 54(4): 591-600. |
31 | Jiangsu Institute of Botany. Flora of Jiangsu (I). Nanjing: Jiangsu People’s Publishing House, 1997. |
江苏省植物研究所. 江苏植物志(上). 南京: 江苏人民出版社, 1977. | |
32 | Ding B Z, Wang S Y, Ye Y Z, et al. Flora of Henan. Zhengzhou: Henan Science and Technology Press, 1998(4): 229. |
丁宝章, 王遂义, 叶永忠, 等. 河南植物志. 郑州: 河南科学技术出版社, 1998(4): 229. | |
33 | Li J J, Guo H L, Zong J Q, et al. Genetic diversity in centipedegrass [Eremochloa ophiuroides (Munro) Hack.]. Horticulture Research, 2020, 7(1): 1-9. |
34 | Peakall R O D, Smouse P E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources, 2006, 6(1): 288-295. |
35 | Yeh F C, Yang R, Boyle T J, et al. PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre. Edmonton: University of Alberta, 2000. |
36 | Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007, 16(5): 1099-1106. |
37 | Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.1. Setauket: Exeter Software, 2000. |
38 | Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. |
39 | Evanno G S, Regnaut S J, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
40 | Liu K J, Goodman M, Muse S, et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165(4): 2117-2128. |
41 | Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 1966, 53(3/4): 325-338. |
42 | Craig M. Multivariate analysis of ecological data using Canoco 5, 2nd edition. African Journal of Range & Forage Science, 2015, 32(4): 289-290. |
43 | Foil M, Gaggiotti O E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 2008, 180(2): 977-993. |
44 | Beaumont M A, Nichols R A. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London, 1996, 263(1377): 1619-1626. |
45 | Frichot E, Schoville S D, Bouchard G, et al. Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 2013, 30(7): 1687-1699. |
46 | Mu Y, Zhang M L, Bai Y H, et al. Analysis on genetic diversity of natural populations of Acer davidii based on EST-SSR marker. Journal of Plant Resources and Environment, 2022, 31(2): 57-63. |
穆莹, 张梦璐, 白云海, 等. 基于EST-SSR标记的青榨槭天然种群遗传多样性分析. 植物资源与环境学报, 2022, 31(2): 57-63. | |
47 | Liu X S, Deng X Y. Research progress on the germplasm resources of Eremochloa ophiuroides (Munro) Hack. Anhui Agricultural Science, 2004, 32(5): 1007-1008, 1020. |
刘学诗, 邓新义. 假俭草[Eremochloa ophiuroides (Munro) Hack.]种质资源研究进展. 安徽农业科学, 2004, 32(5): 1007-1008, 1020. | |
48 | Duminil J, Fineschi S, Hampe A, et al. Can population genetic structure be predicted from life-history traits? The American Naturalist, 2007, 169(5): 662-672. |
49 | Ohsawa T, Ide Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography, 2008, 17(2): 152-163. |
50 | Yang J, Li Y, Miao C Y, et al. Landscape genomics analysis of Achyranthes bidentata reveal adaptive genetic variations are driven by environmental variations relating to ecological habit. Population Ecology, 2017, 59(4): 355-362. |
51 | Xie L F, Li N, Li Y, et al. Genetic diversity and population structure of eggplant (Solanum melongena) germplasm resources based on SRAP method. Bulletin of Botany, 2019, 54(1): 58-63. |
谢立峰, 李宁, 李烨, 等. 茄子种质遗传多样性及群体结构的SRAP分析. 植物学报, 2019, 54(1): 58-63. | |
52 | Johnson B J, Carrow R N. Frequency of fertilizer applications and centipedegrass performance. Agronomy Journal, 1988, 80(6): 925-929. |
53 | Jiang X L, Xu G B, Deng M. Spatial genetic patterns and distribution dynamics of the rare oak Quercus chungii: Implications for biodiversity conservation in southeast China. Forests, 2019, 10(9): 821. |
54 | Shryock D F, Havrilla C A, Defalco L A, et al. Landscape genetic approaches to guide native plant restoration in the Mojave Desert. Ecological Applications, 2017, 27(2): 429-445. |
55 | Jia K H, Zhao W, Maier P A, et al. Landscape genomics predicts climate change related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evolutionary Applications, 2020, 13(4): 665-676. |
56 | Miao C Y, Li Y, Yang J, et al. Landscape genomics reveal that ecological character determines adaptation: A case study in smoke tree (Cotinus coggygria Scop.). BMC Evolutionary Biology, 2017, 17(1): 202. |
57 | Zhang X X, Liu B G, Li Y, et al. Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats. BMC Evolutionary Biology, 2019, 19(1): 1-13. |
58 | Yang J, Miao C Y, Mao R L, et al. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Frontiers in Plant Science, 2017, 8: 481. |
59 | Cushman S A. Grand challenges in evolutionary and population genetics: The importance of integrating epigenetics, genomics, modeling, and experimentation. Frontiers in Genetics, 2014, 5(5): 197-182. |
60 | Yan D Q, Ren J, Liu J M, et al. De novo assembly, annotation, marker discovery, and genetic diversity of the Stipa breviflora Griseb. (Poaceae) response to grazing. PLoS One, 2021, 15(12): e0244222. |
[1] | 马士龙, 李小伟, 李响, 谢书琼, 刘益丽, 唐娇, 江明锋. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究[J]. 草业学报, 2022, 31(9): 183-194. |
[2] | 任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70. |
[3] | 潘静, 张俊超, 陈有军, 周青平. 基于SCoT标记的披碱草属种质遗传多样性分析及指纹图谱构建[J]. 草业学报, 2022, 31(11): 48-60. |
[4] | 常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价[J]. 草业学报, 2022, 31(11): 61-74. |
[5] | 尹晓凡, 魏娜, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿反转录转座子IRAP分子标记开发及应用[J]. 草业学报, 2022, 31(1): 131-144. |
[6] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[7] | 杨正禹, 陆忠杰, 张茂, 董瑞. 利用数字图像分析132份胡枝子种子表型性状遗传多样性[J]. 草业学报, 2021, 30(11): 87-97. |
[8] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[9] | 丁永福, 王纪良, 陈奋奇, 庄泽龙, 白明兴, 陆晏天, 金兵兵, 彭云玲. 玉米自交系SSR多样性与穗部性状的关联分析[J]. 草业学报, 2020, 29(7): 143-153. |
[10] | 刘南清, 林绍艳, 沈益新. 假俭草叶片渗透调节物质含量对冬前低温的响应及其与低温伤害的关系[J]. 草业学报, 2019, 28(3): 122-130. |
[11] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[12] | 张彦军, 苟作旺, 王兴荣, 李玥, 祁旭升. 西北地区和尚头小麦遗传多样性及农艺性状的关联分析[J]. 草业学报, 2019, 28(2): 142-155. |
[13] | 宫文龙, 王赞, 赵桂琴, 马琳, 韦宝, 龚攀, 刘希强. 沙打旺EST-SSR分子标记开发及其遗传多样性分析[J]. 草业学报, 2019, 28(11): 147-158. |
[14] | 孙丽坤, 刘光琇, 张宝贵, 章高森. 环境因子对中国柽柳遗传变异的影响[J]. 草业学报, 2019, 28(10): 178-186. |
[15] | 朱永群, 彭丹丹, 林超文, 聂刚, 许文志, 黄琳凯, 罗付香, 彭建华, 张新全. 苏丹草转录组SSR分子标记开发及遗传多样性评价[J]. 草业学报, 2018, 27(5): 178-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||