草业学报 ›› 2023, Vol. 32 ›› Issue (9): 173-180.DOI: 10.11686/cyxb2022402
• 研究论文 • 上一篇
收稿日期:
2022-10-10
修回日期:
2022-12-07
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
杨佳
作者简介:
E-mail: yangjia@imu.edu.cn基金资助:
Yan KANG(), Yao-hui WANG, Tian-hui NIU, Zhe TENG, Zhi QI, Jia YANG(
)
Received:
2022-10-10
Revised:
2022-12-07
Online:
2023-09-20
Published:
2023-07-12
Contact:
Jia YANG
摘要:
羊草在我国内蒙古草原广泛分布,是重要的乡土牧草,然而关于羊草矿质营养吸收的分子机制尚未受到广泛关注。关于ZIP家族在植物吸收和转运必需微量元素和重金属过程中的作用,在模式植物和农作物中研究较多。本研究从羊草转录组数据库中筛选到一个与ZIP同源的基因Lc206852,发现其与拟南芥ZIP家族的Zn2+转运蛋白AtZIP1亲缘关系较近,因此将其命名为LcZIP1。利用TMHMM Server v. 2.0进行跨膜域分析发现,LcZIP1是一种跨膜蛋白,有9个跨膜域,与禾本科短柄草属植物ZIP亲缘关系最近。将LcZIP1-GFP瞬时转染烟草叶表皮细胞和羊草叶原生质体进行亚细胞定位,发现LcZIP1定位于内质网。通过实时荧光定量PCR分析发现,缺铁、高铁和高锌环境可诱导LcZIP1表达,表明LcZIP1参与环境中Zn和Fe营养水平的响应。最后通过酵母功能互补试验证明,LcZIP1在低铁条件下能够使低铁敏感酵母突变体(?fet3/?fet4)恢复生长,暗示LcZIP1具有Fe2+转运功能。以上结果对日后开发和利用微量元素强化农作物品质具有一定的参考价值。
亢燕, 王耀辉, 牛天慧, 滕哲, 祁智, 杨佳. 羊草LcZIP1的铁转运功能鉴定[J]. 草业学报, 2023, 32(9): 173-180.
Yan KANG, Yao-hui WANG, Tian-hui NIU, Zhe TENG, Zhi QI, Jia YANG. Functional identification of iron transport of LcZIP1 in Leymus chinensis[J]. Acta Prataculturae Sinica, 2023, 32(9): 173-180.
图1 LcZIP1同源蛋白系统进化发生分析和跨膜域A: LcZIP1及同源蛋白系统进化发生分析 Phylogenetic analysis of LcZIP1 homologues; B: LcZIP1蛋白结构 LcZIP1 structure; C: Lc206852及同源蛋白的跨膜结构域分析 Comparison of transmembrane domains between LcZIP1 and its homologues.
Fig.1 Phylogenetic analysis and transmembrane domains of LcZIP1 homologues
图2 LcZIP1定位于内质网A: LcZIP1与内质网标记蛋白共定位于烟草表皮细胞内质网 Co-localization of both LcZIP1 and endoplasmic reticulum-mCherry in endoplasmic reticulum of tobacco leaf epidermal cells; B: LcZIP1与内质网标记蛋白共定位于羊草叶肉细胞原生质体内质网 Co-localization of both LcZIP1 and endoplasmic reticulum marker protein in endoplasmic reticulum of L. chinensis mesophyll cell protoplast.
Fig. 2 LcZIP1 was located in endoplasmic reticulum
图3 不同Zn2+和Fe2+浓度条件下LcZIP1的相对表达量不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences (P<0.05).
Fig.3 Relative expression of LcZIP1 under different Zn2+ and Fe2+ concentration
图4 LcZIP1在酵母突变体?fet3/?fet4、?zrt1/?zrt2和?zrc1/?cot1中的功能互补验证A: 在低铁条件下LcZIP1互补?fet3/?fet4Complementation of ?fet3/?fet4with LcZIP1 gene under deficient iron condition; B: 在低锌条件下LcZIP1互补?zrt1/?zrt2 Complementation of ?zrt1/?zrt2 with LcZIP1 gene under deficient zinc condition; C: 在高锌条件下LcZIP1互补?zrc1/?cot1 Complementation of ?zrc1/?cot1 with LcZIP1 gene under high zinc condition; 以pFL61或pVUL2空质粒转化酵母突变体为阴性对照The yeast mutant transformed with the empty vector pFL61 or pVUL2 was used as a negative control; 以AtZIP7或MtMTP3转化酵母突变体为阳性对照The yeast mutant transformed with the AtZIP7 or MtMTP3 was used as a positive control.
Fig.4 Complementation analysis of Saccharomyces cerevisiae mutants (?zrt1/?zrt2, ?fet3/?fet4 and ?zrc1/?cot1) with LcZIP1
1 | Liu G S, Li X X, Qi D M, et al. Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016, 61(2): 271-281. |
刘公社, 李晓霞, 齐冬梅, 等. 羊草种质资源的评价与利用. 科学通报, 2016, 61(2): 271-281. | |
2 | Dong X B, Hao M D, Jiang M, et al. Effect of trace element fertilizer on yield and quality of Leymus chinensis. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(1): 137-143. |
董晓兵, 郝明德, 姜梅, 等. 微肥对羊草干草产量及品质的影响. 西北农业学报, 2015, 24(1): 137-143. | |
3 | Liu H, Li Y, Li S. Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil. PLoS One, 2020, 15(12): e0243172. |
4 | Kang Y, Wang Y H, Li J, et al. Functional identification of zinc transporter LcZNE1 in Leymus chinensis. Chinese Journal of Grassland, 2021, 43(11): 1-9. |
亢燕, 王耀辉, 李俊, 等. 羊草锌转运蛋白LcZNE1功能的鉴定. 中国草地学报, 2021, 43(11): 1-9. | |
5 | Krishna T P A, Maharajan T, Roch G V, et al. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science, 2020, 11: 662. |
6 | Hänsch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009, 12(3): 259-266. |
7 | Riaz N, Guerinot M L. All together now: Regulation of the iron deficiency response. Journal of Experimental Botany, 2021, 72(6): 2045-2055. |
8 | Milner M J, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 2013, 64(1): 369-381. |
9 | Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 7220-7224. |
10 | Papierniak A, Kozak K, Kendziorek M, et al. Contribution of NtZIP1-Like to the regulation of Zn homeostasis. Frontiers in Plant Science, 2018, 9: 185. |
11 | López-Millán A, Ellis D R, Grusak M A. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology, 2004, 54(4): 583-596. |
12 | Gong F, Qi T, Hu Y, et al. Genome-wide investigation and functional verification of the ZIP family transporters in wild emmer wheat. International Journal of Molecular Sciences, 2022, 23: 2866. |
13 | Pedas P, Schjoerring J K, Husted S. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 2009, 47(5): 377-383. |
14 | Alagarasan G, Dubey M, Aswathy K S, et al. Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Frontiers in Plant Science, 2017, 8: 775. |
15 | Huang S, Sasaki A, Yamaji N, et al. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiology, 2020, 183(3): 1224-1234. |
16 | Liu X S, Feng S J, Zhang B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biology, 2019, 19: 283. |
17 | Li S, Zhou X, Huang Y, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 2013, 13: 114. |
18 | Moreau S, Thomson R M, Kaiser B N, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry, 2002, 277(7): 4738-4746. |
19 | Astudillo C, Fernandez A C, Blair M W, et al. The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 2013, 4: 286. |
20 | Gainza-Cortes F, Perez-Diaz R, Perez-Castro R, et al. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biology, 2012, 12: 111. |
21 | Xing F, Fu X Z, Wang N Q, et al. Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). Journal of Integrative Agriculture, 2016, 15(4): 803-811. |
22 | Yang J, Zhang T, Mao H, et al. A Leymus chinensis histidine-rich Ca2+-binding protein binds Ca2+/Zn2+ and suppresses abscisic acid signaling in Arabidopsis. Journal of Plant Physiology, 2020, 252: 153209. |
23 | Nakagawa T, Kurose T, Hino T, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience & Bioengineering, 2007, 104(1): 34-41. |
24 | Sparkes I A, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 2006, 1(4): 2019-2025. |
25 | Yu G, Cheng Q, Xie Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods, 2017, 13: 46. |
26 | Zhao S B, Li Y G, Zhao B, et al. Identification and expression analyses of MtMTP3, a zinc transporter of CDF family in Medicago truncatula. Journal of Huazhong Agricultural University, 2018, 37(3): 52-60. |
赵圣博, 李友国, 赵斌, 等. 蒺藜苜蓿中CDF家族锌转运体MtMTP3的鉴定和表达调控分析. 华中农业大学学报, 2018, 37(3): 52-60. | |
27 | Guerinot M L. The ZIP family of metal transporters. Biochimica et Biophysica Acta-Biomembranes, 2000, 1465(1/2): 190-198. |
28 | Gaitan-Solis E, Taylor N J, Siritunga D, et al. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Frontiers in Plant Science, 2015, 6: 492. |
29 | Narayanan N, Beyene G, Chauhan R D, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nature Biotechnology, 2019, 37(2): 144-151. |
[1] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[2] | 于晓东, 余浩洋, 杨旭, 赵东旭, 张林刚. 内蒙古两种生态型羊草叶绿体基因组序列差异分析[J]. 草业学报, 2023, 32(7): 72-84. |
[3] | 高守舆, 李钰莹, 杨志青, 董宽虎, 夏方山. 白羊草叶绿体基因组密码子使用偏好性分析[J]. 草业学报, 2023, 32(7): 85-95. |
[4] | 丰吉, 刘志扩, 李海燕, 杨允菲, 郭健. 围栏封育和长期刈割对松嫩草地羊草和野古草种群营养繁殖特征的影响[J]. 草业学报, 2023, 32(5): 50-60. |
[5] | 周泽东, 马晖玲, 韩煦, 李元恒, 李西良, 李坤娜. 温性典型草原羊草光合特性对模拟放牧因素分解的响应[J]. 草业学报, 2022, 31(8): 81-89. |
[6] | 赵成振, 李强, 钟荣珍. 不同物候期刈割对羊草再生和根形态及产量的影响[J]. 草业学报, 2022, 31(3): 92-100. |
[7] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[8] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[9] | 李倩, 李晓霞, 程丽琴, 陈双燕, 齐冬梅, 杨伟光, 高利军, 新巴音, 刘公社. 羊草LcCBF6基因的表达特性和功能研究[J]. 草业学报, 2021, 30(10): 105-115. |
[10] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[11] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[12] | 李茹霞, 耿元波. 应用13C同位素标记法区分羊草草原生态系统呼吸[J]. 草业学报, 2020, 29(6): 56-70. |
[13] | 伏兵哲, 周燕飞, 李雪, 倪彪, 高雪芹. 宁夏引黄灌区羊草水肥耦合效应研究[J]. 草业学报, 2020, 29(5): 98-108. |
[14] | 白乌云, 侯向阳, 武自念, 田春育, 丁勇. 羊草不同地理种群表型变异及其对根茎克隆繁殖的影响[J]. 草业学报, 2020, 29(12): 86-94. |
[15] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||