草业学报 ›› 2024, Vol. 33 ›› Issue (3): 161-173.DOI: 10.11686/cyxb2023153
• 研究论文 • 上一篇
黄祥1(), 何梦瑶1,2, 王子煊1, 楚光明1, 江萍1,2()
收稿日期:
2023-05-09
修回日期:
2023-07-28
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
江萍
作者简介:
E-mail: shzujp@163.com基金资助:
Xiang HUANG1(), Meng-yao HE1,2, Zi-xuan WANG1, Guang-ming CHU1, Ping JIANG1,2()
Received:
2023-05-09
Revised:
2023-07-28
Online:
2024-03-20
Published:
2023-12-27
Contact:
Ping JIANG
摘要:
紫叶风箱果是我国近年来从北美引入的观赏性花灌木。为了明确紫叶风箱果叶绿体基因组结构特征,阐明紫叶风箱果在绣线菊亚科中的分类地位,使用Illumina NovaSeq 6000测序平台对其叶绿体基因组进行测序,并组装、注释到了其完整叶绿体基因组。结果表明:紫叶风箱果叶绿体基因组呈典型的双链环状四分体结构,全长为159131 bp,大单拷贝区(large single copy,LSC)长87582 bp、小单拷贝区(small single copy,SSC)长18829 bp、反向重复区a(inverted repeats a,IRa)和反向重复区b(inverted repeats b,IRb)长26360 bp;共注释到130个基因,包含83个蛋白编码基因,8个核糖体RNA(ribosomal RNA,rRNA)基因,37个转运RNA(transfer RNA,tRNA)基因和2个假基因。共确定12个最优密码子(UUG、AUU、GUU、GUA、UAA、AAA、UCU、UCC、CCU、ACU、GCU、GGU);密码子使用偏好性主要受自然选择影响,突变等因素对其影响较弱。共有27对长序列重复,87个简单重复序列标记(simple sequence repeat,SSR)位点;psbZ、trnG(UCC)、trnfM(CAU)、trnH(GUG)、psbA、rbcL、rpl20、rps12是紫叶风箱果叶绿体基因组中高核苷酸多态性的基因。系统发育结果表明,风箱果属和绣线梅属的物种亲缘关系较近。
黄祥, 何梦瑶, 王子煊, 楚光明, 江萍. 紫叶风箱果叶绿体基因组特征及绣线菊亚科系统发育分析[J]. 草业学报, 2024, 33(3): 161-173.
Xiang HUANG, Meng-yao HE, Zi-xuan WANG, Guang-ming CHU, Ping JIANG. Chloroplast genome characteristics of Physocarpus opulifolius ‘Diabolo’ and phylogenetic analysis of the subfamily Spiraeoideae[J]. Acta Prataculturae Sinica, 2024, 33(3): 161-173.
物种名称Species name | 登录号Accession number | 物种名称Species name | 登录号Accession number |
---|---|---|---|
珍珠花Spiraea thunbergii | ON357873 | 小野株蓝Neillia incisa | MT683856 |
蒙古绣线菊Spiraea mongolica | MT732945 | 高丛珍珠梅Sorbaria arborea | MN901450 |
绣球绣线菊Spiraea blumei | MN418904 | 华北珍珠梅Sorbaria kirilowii | MT528154 |
三裂绣线菊Spiraea trilobata | MW822176 | 星毛珍珠梅Sorbaria sorbifolia var. stellipila | MN026875 |
岛绣线菊Spiraea insularis | MT412405 | 白鹃梅Exochorda racemosa | OL449947 |
窄叶鲜卑花Sibiraea angustata | MW123094 | 齿叶白鹃梅Exochorda serratifolia | MZ981786 |
羊齿叶假升麻Aruncus aethusifolius | MZ882398 | 鸡爪茶Rubus henryi | MW238420 |
假升麻Aruncus sylvester | MW115132 | 白草莓Fragaria nilgerrensis | OM256477 |
风箱果P. amurensis | MK911770 | 鸡冠茶Sibbaldianthe bifurca | MW255973 |
表1 其他物种叶绿体基因组序列信息
Table 1 Chloroplast genome sequence information of other species
物种名称Species name | 登录号Accession number | 物种名称Species name | 登录号Accession number |
---|---|---|---|
珍珠花Spiraea thunbergii | ON357873 | 小野株蓝Neillia incisa | MT683856 |
蒙古绣线菊Spiraea mongolica | MT732945 | 高丛珍珠梅Sorbaria arborea | MN901450 |
绣球绣线菊Spiraea blumei | MN418904 | 华北珍珠梅Sorbaria kirilowii | MT528154 |
三裂绣线菊Spiraea trilobata | MW822176 | 星毛珍珠梅Sorbaria sorbifolia var. stellipila | MN026875 |
岛绣线菊Spiraea insularis | MT412405 | 白鹃梅Exochorda racemosa | OL449947 |
窄叶鲜卑花Sibiraea angustata | MW123094 | 齿叶白鹃梅Exochorda serratifolia | MZ981786 |
羊齿叶假升麻Aruncus aethusifolius | MZ882398 | 鸡爪茶Rubus henryi | MW238420 |
假升麻Aruncus sylvester | MW115132 | 白草莓Fragaria nilgerrensis | OM256477 |
风箱果P. amurensis | MK911770 | 鸡冠茶Sibbaldianthe bifurca | MW255973 |
基因功能Gene function | 基因分类 Gene group | 基因 Gene |
---|---|---|
光合作用Photosynthesis | 光合系统I Photosystem I | psaA, psaB, psaC, psaI, psaJ |
光合系统II Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ | |
NADH 脱氢酶 Subunits of NADH dehydrogenase | ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
细胞色素复合物 Cytochrome b/f complex | petA, petB*, petD*, petG, petL, petN | |
ATP 合成酶 Subunits of ATP synthase | atpA, atpB, atpE, atpF*, atpH, atpI | |
二磷酸核酮糖羧化酶大亚基 Large subunit of rubisco | rbcL | |
自我复制Self-replication | 核糖体大亚基蛋白 Proteins of large ribosomal subunit | rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 |
核糖体小亚基蛋白 Proteins of small ribosomal subunit | #rps19, rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2), rps8 | |
RNA 聚合酶亚基 Subunits of RNA polymerase | rpoA, rpoB, rpoC1*, rpoC2 | |
核糖体RNA Ribosomal RNAs | rrn16S(2), rrn23S(2), rrn4.5S(2), rrn5S(2) | |
转运RNATransfer RNAs | trnA-UGC*(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC*, trnG-UCC, trnH-GUG, trnI-CAU(2), trnI-GAU*(2), trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU(2), trnP-UGG, trnQ-UUG, trnR-ACG(2), trnR-UCU, trnS-GCU(2), trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(2), trnV-UAC*, trnW-CCA, trnY-GUA, trnfM-CAU | |
其他基因Other genes | 成熟酶 Maturase | matK |
蛋白酶 Protease | clpP** | |
膜包被蛋白基因 Envelope membrane protein gene | cemA | |
乙酰辅酶A羧化酶Acetyl-CoA carboxylase | accD | |
c型细胞色素合成基因c-type cytochrome synthesis gene | ccsA | |
翻译起始因子Translation initiation factor | - | |
未知功能 Unknown function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | #ycf1, ycf1, ycf2(2), ycf3**, ycf4 |
表2 紫叶风箱果叶绿体基因组注释
Table 2 Gene annotation in the chloroplast genome of P. opulifolius ‘Diabolo’
基因功能Gene function | 基因分类 Gene group | 基因 Gene |
---|---|---|
光合作用Photosynthesis | 光合系统I Photosystem I | psaA, psaB, psaC, psaI, psaJ |
光合系统II Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ | |
NADH 脱氢酶 Subunits of NADH dehydrogenase | ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
细胞色素复合物 Cytochrome b/f complex | petA, petB*, petD*, petG, petL, petN | |
ATP 合成酶 Subunits of ATP synthase | atpA, atpB, atpE, atpF*, atpH, atpI | |
二磷酸核酮糖羧化酶大亚基 Large subunit of rubisco | rbcL | |
自我复制Self-replication | 核糖体大亚基蛋白 Proteins of large ribosomal subunit | rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 |
核糖体小亚基蛋白 Proteins of small ribosomal subunit | #rps19, rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2), rps8 | |
RNA 聚合酶亚基 Subunits of RNA polymerase | rpoA, rpoB, rpoC1*, rpoC2 | |
核糖体RNA Ribosomal RNAs | rrn16S(2), rrn23S(2), rrn4.5S(2), rrn5S(2) | |
转运RNATransfer RNAs | trnA-UGC*(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC*, trnG-UCC, trnH-GUG, trnI-CAU(2), trnI-GAU*(2), trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU(2), trnP-UGG, trnQ-UUG, trnR-ACG(2), trnR-UCU, trnS-GCU(2), trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(2), trnV-UAC*, trnW-CCA, trnY-GUA, trnfM-CAU | |
其他基因Other genes | 成熟酶 Maturase | matK |
蛋白酶 Protease | clpP** | |
膜包被蛋白基因 Envelope membrane protein gene | cemA | |
乙酰辅酶A羧化酶Acetyl-CoA carboxylase | accD | |
c型细胞色素合成基因c-type cytochrome synthesis gene | ccsA | |
翻译起始因子Translation initiation factor | - | |
未知功能 Unknown function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | #ycf1, ycf1, ycf2(2), ycf3**, ycf4 |
基因Gene | 位置Location | 外显子I Exon I | 内含子I Intron I | 外显子II Exon II | 内含子II Intron II | 外显子III Exon III |
---|---|---|---|---|---|---|
trnK-UUU | 大单拷贝区LSC | 37 | 2499 | 35 | ||
rps16 | 大单拷贝区LSC | 39 | 892 | 228 | ||
trnG-GCC | 大单拷贝区LSC | 23 | 695 | 48 | ||
atpF | 大单拷贝区LSC | 145 | 793 | 410 | ||
rpoC1 | 大单拷贝区LSC | 430 | 761 | 1631 | ||
ycf3 | 大单拷贝区LSC | 124 | 734 | 230 | 773 | 153 |
trnL-UAA | 大单拷贝区LSC | 37 | 516 | 50 | ||
trnV-UAC | 大单拷贝区LSC | 39 | 597 | 37 | ||
clpP | 大单拷贝区LSC | 71 | 808 | 291 | 660 | 226 |
petB | 大单拷贝区LSC | 6 | 771 | 657 | ||
petD | 大单拷贝区LSC | 9 | 720 | 474 | ||
rpl16 | 大单拷贝区LSC | 9 | 983 | 402 | ||
rpl2 | 反向重复区IR | 397 | 680 | 431 | ||
ndhB | 反向重复区IR | 775 | 680 | 758 | ||
trnI-GAU | 反向重复区IR | 42 | 943 | 35 | ||
trnA-UGC | 反向重复区IR | 38 | 807 | 35 | ||
ndhA | 小单拷贝区SSC | 553 | 1149 | 539 |
表3 紫叶风箱果叶绿体基因组中含内含子的基因信息
Table 3 Information of gene introns in the chloroplast genome of P. opulifolius ‘Diabolo’ (bp)
基因Gene | 位置Location | 外显子I Exon I | 内含子I Intron I | 外显子II Exon II | 内含子II Intron II | 外显子III Exon III |
---|---|---|---|---|---|---|
trnK-UUU | 大单拷贝区LSC | 37 | 2499 | 35 | ||
rps16 | 大单拷贝区LSC | 39 | 892 | 228 | ||
trnG-GCC | 大单拷贝区LSC | 23 | 695 | 48 | ||
atpF | 大单拷贝区LSC | 145 | 793 | 410 | ||
rpoC1 | 大单拷贝区LSC | 430 | 761 | 1631 | ||
ycf3 | 大单拷贝区LSC | 124 | 734 | 230 | 773 | 153 |
trnL-UAA | 大单拷贝区LSC | 37 | 516 | 50 | ||
trnV-UAC | 大单拷贝区LSC | 39 | 597 | 37 | ||
clpP | 大单拷贝区LSC | 71 | 808 | 291 | 660 | 226 |
petB | 大单拷贝区LSC | 6 | 771 | 657 | ||
petD | 大单拷贝区LSC | 9 | 720 | 474 | ||
rpl16 | 大单拷贝区LSC | 9 | 983 | 402 | ||
rpl2 | 反向重复区IR | 397 | 680 | 431 | ||
ndhB | 反向重复区IR | 775 | 680 | 758 | ||
trnI-GAU | 反向重复区IR | 42 | 943 | 35 | ||
trnA-UGC | 反向重复区IR | 38 | 807 | 35 | ||
ndhA | 小单拷贝区SSC | 553 | 1149 | 539 |
氨基酸 Amino acid | 密码子 Codon | RSCU | 氨基酸 Amino acid | 密码子 Codon | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
基因组 Genome | 高表达基因 High expression gene | 低表达基因Low expression gene | ΔRSCU | 基因组 Genome | 高表达基因 High expression gene | 低表达基因 Low expression gene | ΔRSCU | ||||
苯丙氨酸 Phenylalanine | UUU | 1.26 | 0.98 | 1.70 | -0.72 | 丝氨酸Serine | 1.49 | 2.32 | 1.41 | 0.91 | |
0.74 | 1.02 | 0.30 | 0.72 | 1.11 | 1.36 | 0.84 | 0.52 | ||||
亮氨酸Leucine | UUA | 1.52 | 1.97 | 2.25 | -0.28 | UCA | 1.18 | 0.41 | 1.69 | -1.28 | |
1.21 | 1.15 | 0.89 | 0.26 | UCG | 0.78 | 0.00 | 0.38 | -0.38 | |||
CUU | 1.13 | 0.90 | 1.28 | -0.38 | 脯氨酸Proline | 1.08 | 2.21 | 1.49 | 0.72 | ||
0.71 | 0.25 | 0.15 | 0.10 | CCC | 1.02 | 0.28 | 0.94 | -0.66 | |||
0.92 | 1.32 | 0.89 | 0.43 | CCA | 1.25 | 0.97 | 1.10 | -0.13 | |||
CUG | 0.51 | 0.41 | 0.54 | -0.13 | 0.65 | 0.55 | 0.47 | 0.08 | |||
异亮氨酸Isoleucine | 1.18 | 1.60 | 1.42 | 0.18 | 苏氨酸Threonine | 1.17 | 2.05 | 1.53 | 0.52 | ||
0.72 | 0.80 | 0.49 | 0.31 | 1.00 | 1.41 | 0.65 | 0.76 | ||||
AUA | 1.10 | 0.60 | 1.08 | -0.48 | ACA | 1.22 | 0.54 | 1.40 | -0.86 | ||
甲硫氨酸Methionine | AUG | 1.00 | 1.00 | 1.00 | 0.00 | ACG | 0.61 | 0.00 | 0.42 | -0.42 | |
缬氨酸Valine | 1.38 | 1.91 | 1.36 | 0.55 | 丙氨酸 Alanine | 1.28 | 2.54 | 2.00 | 0.54 | ||
GUC | 0.67 | 0.18 | 0.47 | -0.29 | GCC | 0.94 | 0.39 | 0.50 | -0.11 | ||
1.29 | 1.82 | 1.63 | 0.19 | GCA | 1.17 | 0.85 | 1.00 | -0.15 | |||
GUG | 0.67 | 0.09 | 0.54 | -0.45 | GCG | 0.61 | 0.23 | 0.50 | -0.27 | ||
络氨酸Tyrosine | UAU | 1.34 | 1.40 | 1.61 | -0.21 | 半胱氨酸Cysteine | UGU | 1.29 | 1.33 | 2.00 | -0.67 |
0.66 | 0.60 | 0.39 | 0.21 | 0.71 | 0.67 | 0.00 | 0.67 | ||||
组氨酸Histidine | CAU | 1.42 | 1.22 | 1.50 | -0.28 | 精氨酸 Arginine | 0.80 | 3.20 | 1.13 | 2.07 | |
0.58 | 0.78 | 0.50 | 0.28 | 0.47 | 1.00 | 0.17 | 0.83 | ||||
谷氨酰胺Glutamine | CAA | 1.43 | 1.65 | 1.74 | -0.09 | CGA | 1.03 | 0.80 | 1.30 | -0.50 | |
0.57 | 0.35 | 0.26 | 0.09 | CGG | 0.71 | 0.20 | 0.17 | 0.03 | |||
天冬酰胺Asparagine | AAU | 1.43 | 1.05 | 1.62 | -0.57 | AGA | 1.90 | 0.40 | 2.72 | -2.32 | |
0.57 | 0.95 | 0.38 | 0.57 | AGG | 1.09 | 0.40 | 0.51 | -0.11 | |||
赖氨酸Lysine | 1.40 | 2.00 | 1.60 | 0.40 | 丝氨酸Serine | AGU | 0.86 | 1.23 | 1.36 | -0.13 | |
AAG | 0.60 | 0.00 | 0.40 | -0.40 | 0.59 | 0.68 | 0.33 | 0.35 | |||
天冬氨酸Aspartate | GAU | 1.44 | 1.37 | 1.66 | -0.29 | 甘氨酸Glycine | 1.06 | 2.28 | 0.84 | 1.44 | |
0.56 | 0.63 | 0.34 | 0.29 | GGC | 0.59 | 0.68 | 0.74 | -0.06 | |||
谷氨酸Glutamate | GAA | 1.42 | 1.57 | 1.74 | -0.17 | GGA | 1.42 | 0.74 | 1.79 | -1.05 | |
0.58 | 0.43 | 0.26 | 0.17 | GGG | 0.93 | 0.31 | 0.63 | -0.32 | |||
色氨酸Tryptophan | UGG | 1.00 | 1.00 | 1.00 | 0.00 | 终止子Terminator | UGA | 0.99 | 0.00 | 0.00 | 0.00 |
1.31 | 3.00 | 1.50 | 1.50 | ||||||||
UAG | 0.70 | 0.00 | 1.50 | -1.50 |
表4 紫叶风箱果叶绿体基因组同义密码子相对使用度
Table 4 Relative synonymous codon usage (RSCU) of genes in the chloroplast genome of P. opulifolius ‘Diabolo’
氨基酸 Amino acid | 密码子 Codon | RSCU | 氨基酸 Amino acid | 密码子 Codon | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
基因组 Genome | 高表达基因 High expression gene | 低表达基因Low expression gene | ΔRSCU | 基因组 Genome | 高表达基因 High expression gene | 低表达基因 Low expression gene | ΔRSCU | ||||
苯丙氨酸 Phenylalanine | UUU | 1.26 | 0.98 | 1.70 | -0.72 | 丝氨酸Serine | 1.49 | 2.32 | 1.41 | 0.91 | |
0.74 | 1.02 | 0.30 | 0.72 | 1.11 | 1.36 | 0.84 | 0.52 | ||||
亮氨酸Leucine | UUA | 1.52 | 1.97 | 2.25 | -0.28 | UCA | 1.18 | 0.41 | 1.69 | -1.28 | |
1.21 | 1.15 | 0.89 | 0.26 | UCG | 0.78 | 0.00 | 0.38 | -0.38 | |||
CUU | 1.13 | 0.90 | 1.28 | -0.38 | 脯氨酸Proline | 1.08 | 2.21 | 1.49 | 0.72 | ||
0.71 | 0.25 | 0.15 | 0.10 | CCC | 1.02 | 0.28 | 0.94 | -0.66 | |||
0.92 | 1.32 | 0.89 | 0.43 | CCA | 1.25 | 0.97 | 1.10 | -0.13 | |||
CUG | 0.51 | 0.41 | 0.54 | -0.13 | 0.65 | 0.55 | 0.47 | 0.08 | |||
异亮氨酸Isoleucine | 1.18 | 1.60 | 1.42 | 0.18 | 苏氨酸Threonine | 1.17 | 2.05 | 1.53 | 0.52 | ||
0.72 | 0.80 | 0.49 | 0.31 | 1.00 | 1.41 | 0.65 | 0.76 | ||||
AUA | 1.10 | 0.60 | 1.08 | -0.48 | ACA | 1.22 | 0.54 | 1.40 | -0.86 | ||
甲硫氨酸Methionine | AUG | 1.00 | 1.00 | 1.00 | 0.00 | ACG | 0.61 | 0.00 | 0.42 | -0.42 | |
缬氨酸Valine | 1.38 | 1.91 | 1.36 | 0.55 | 丙氨酸 Alanine | 1.28 | 2.54 | 2.00 | 0.54 | ||
GUC | 0.67 | 0.18 | 0.47 | -0.29 | GCC | 0.94 | 0.39 | 0.50 | -0.11 | ||
1.29 | 1.82 | 1.63 | 0.19 | GCA | 1.17 | 0.85 | 1.00 | -0.15 | |||
GUG | 0.67 | 0.09 | 0.54 | -0.45 | GCG | 0.61 | 0.23 | 0.50 | -0.27 | ||
络氨酸Tyrosine | UAU | 1.34 | 1.40 | 1.61 | -0.21 | 半胱氨酸Cysteine | UGU | 1.29 | 1.33 | 2.00 | -0.67 |
0.66 | 0.60 | 0.39 | 0.21 | 0.71 | 0.67 | 0.00 | 0.67 | ||||
组氨酸Histidine | CAU | 1.42 | 1.22 | 1.50 | -0.28 | 精氨酸 Arginine | 0.80 | 3.20 | 1.13 | 2.07 | |
0.58 | 0.78 | 0.50 | 0.28 | 0.47 | 1.00 | 0.17 | 0.83 | ||||
谷氨酰胺Glutamine | CAA | 1.43 | 1.65 | 1.74 | -0.09 | CGA | 1.03 | 0.80 | 1.30 | -0.50 | |
0.57 | 0.35 | 0.26 | 0.09 | CGG | 0.71 | 0.20 | 0.17 | 0.03 | |||
天冬酰胺Asparagine | AAU | 1.43 | 1.05 | 1.62 | -0.57 | AGA | 1.90 | 0.40 | 2.72 | -2.32 | |
0.57 | 0.95 | 0.38 | 0.57 | AGG | 1.09 | 0.40 | 0.51 | -0.11 | |||
赖氨酸Lysine | 1.40 | 2.00 | 1.60 | 0.40 | 丝氨酸Serine | AGU | 0.86 | 1.23 | 1.36 | -0.13 | |
AAG | 0.60 | 0.00 | 0.40 | -0.40 | 0.59 | 0.68 | 0.33 | 0.35 | |||
天冬氨酸Aspartate | GAU | 1.44 | 1.37 | 1.66 | -0.29 | 甘氨酸Glycine | 1.06 | 2.28 | 0.84 | 1.44 | |
0.56 | 0.63 | 0.34 | 0.29 | GGC | 0.59 | 0.68 | 0.74 | -0.06 | |||
谷氨酸Glutamate | GAA | 1.42 | 1.57 | 1.74 | -0.17 | GGA | 1.42 | 0.74 | 1.79 | -1.05 | |
0.58 | 0.43 | 0.26 | 0.17 | GGG | 0.93 | 0.31 | 0.63 | -0.32 | |||
色氨酸Tryptophan | UGG | 1.00 | 1.00 | 1.00 | 0.00 | 终止子Terminator | UGA | 0.99 | 0.00 | 0.00 | 0.00 |
1.31 | 3.00 | 1.50 | 1.50 | ||||||||
UAG | 0.70 | 0.00 | 1.50 | -1.50 |
图2 ENC-plot分析(A)、ENC分布直方图(B)、PR2-plot分析(C)以及中性绘图分析(D)
Fig.2 Analysis of ENC-plot (A), distribution histogram of ENC (B), analysis of PR2-plot (C), and analysis of neutrality plot (D)
重复类型(数量) SSR repeat type (Number) | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总数Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | |||
单碱基Mononucleotide (66) | A/T | - | - | - | - | - | 25 | 13 | 10 | 6 | 3 | 2 | 2 | 3 | 1 | 65 |
C/G | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 1 | |
二碱基Dinucleotide (7) | AG/CT | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 |
AT/TA | - | - | 4 | 1 | 1 | - | - | - | - | - | - | - | - | - | 6 | |
三碱基Trinucleotide (4) | AAT/ATT | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
四碱基Tetranucleotide (9) | AAAT/ATTT | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |
AATT/AATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | |
五碱基Pentanucleotide (1) | AATAT/ATATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
表5 紫叶风箱果叶绿体基因组简单重复序列信息
Table 5 Number of SSRs identified in the chloroplast genome of P. opulifolius ‘Diabolo’
重复类型(数量) SSR repeat type (Number) | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总数Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | |||
单碱基Mononucleotide (66) | A/T | - | - | - | - | - | 25 | 13 | 10 | 6 | 3 | 2 | 2 | 3 | 1 | 65 |
C/G | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 1 | |
二碱基Dinucleotide (7) | AG/CT | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 |
AT/TA | - | - | 4 | 1 | 1 | - | - | - | - | - | - | - | - | - | 6 | |
三碱基Trinucleotide (4) | AAT/ATT | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
四碱基Tetranucleotide (9) | AAAT/ATTT | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |
AATT/AATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | |
五碱基Pentanucleotide (1) | AATAT/ATATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
1 | Lu L D. The evolution and distribution of subfam. Spiraeoideae (Rosaceae) of China, with special reference to distribution of the subfamily in the world. Acta Phytotaxonomica Sinica, 1996, 34(4): 361-375. |
陆玲娣. 中国蔷薇科绣线菊亚科的演化、分布——兼述世界绣线菊亚科植物的分布. 植物分类学报, 1996, 34(4): 361-375. | |
2 | Yu Y Y, Zhang H Y, Pan J, et al. Cross-breeding of Physocarpus plants. Journal of Northeast Forestry University, 2010, 38(7): 16-18. |
郁永英, 张华艳, 潘杰, 等. 风箱果属植物杂交育种. 东北林业大学学报, 2010, 38(7): 16-18. | |
3 | Liu C J, Liu Y, Wang L. Cutting propagation and cultivation of Physocarpus opulifolius. China Flowers & Horticulture, 2008(2): 22-23. |
刘春静, 刘义, 王林. 紫叶风箱果扦插繁殖与栽培. 中国花卉园艺, 2008(2): 22-23. | |
4 | Li Y, Yang Q H, Yang G L. Breeding technology and garden application of Physocarpus opulifolius in cold area. Heilongjiang Science, 2014, 5(6): 266-267. |
李颖, 杨齐红, 杨广乐. 紫叶风箱果寒地繁育技术及园林应用. 黑龙江科学, 2014, 5(6): 266-267. | |
5 | Zhang H, Zhong H, Wang J, et al. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. PeerJ, 2016, 4: e2125. |
6 | Xu N, Long J H, Zhang W S, et al. Effects of flooding stress on photosynthesis characteristics in leaves of native species Physocarpus amurensis and introduced species P. opulifolius. Chinese Journal of Ecology, 2018, 37(6): 1880-1888. |
许楠, 龙静泓, 张文石, 等. 淹水胁迫对乡土风箱果和引种紫叶风箱果光合特性的影响. 生态学杂志, 2018, 37(6): 1880-1888. | |
7 | Liu L, Wei X H, Yin D S. Effect of saline-alkali stress on germination and salt-alkaline tolerance of Physocarpus amurensis and P. opulifolius seeds. Journal of Northeast Forestry University, 2021, 49(9): 40-44. |
刘乐, 魏晓慧, 殷东生. 盐碱胁迫对风箱果和紫叶风箱果种子萌发及耐盐碱性的影响. 东北林业大学学报, 2021, 49(9): 40-44. | |
8 | Jin W W, Zhang H H, Teng Z Y, et al. Photosynthetic characteristics in leaves of F1 hybrid between Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo” cutting seedlings. Journal of Central South University of Forestry & Technology, 2018, 38(4): 33-39. |
金微微, 张会慧, 滕志远, 等. 乡土风箱果和紫叶风箱果及其杂交种F1叶片的光合功能研究. 中南林业科技大学学报, 2018, 38(4): 33-39. | |
9 | Xu N, Zhang H H, Zhong H X, et al. The response of photosynthetic functions of F1 cutting seedlings from Physocarpus amurensis Maxim (♀)×Physocarpus opulifolius "Diabolo" (♂) and the parental seedlings to salt stress. Frontiers in Plant Science, 2018, 9: 714. |
10 | Zhang S B, Wang J R, Zhou T, et al. Response of photosynthetic gas exchange and chlorophyll fluorescence characteristics to drought stress in hybrid of Physocarpus amurensis Maxim (♀)×Physocarpus opulifolius “Diabolo” (♂). Journal of Central South University of Forestry & Technology, 2019, 39(9): 33-38. |
张书博, 王均睿, 周涛, 等. 风箱果(♀)×紫叶风箱果(♂)杂交种光合特性对干旱胁迫的响应. 中南林业科技大学学报, 2019, 39(9): 33-38. | |
11 | Buti M, Sargent D J, Mhelembe K G, et al. Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC Research Notes, 2016, 9: 268. |
12 | Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastids. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 111-140. |
13 | Liang H, Zhang Y, Deng J, et al. The complete chloroplast genome sequences of 14 Curcuma species: Insights into genome evolution and phylogenetic relationships within Zingiberales. Frontiers in Genetics, 2020, 11: 802. |
14 | Dyer T. The chloroplast genome: Its nature and role in development. Topics Photosynthesis, 1984, 5: 23-69. |
15 | Chen X, Zhou J, Cui Y, et al. Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode. Frontiers in Pharmacology, 2018, 9: 695. |
16 | Abdullah, Mehmood F, Rahim A, et al. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecology and Evolution, 2021, 11(12): 7810-7826. |
17 | Su N. Phylogeny of Prunus s.l. (Rosaceae) and species delimitation of Maddenia group. Yangling: Northwest A&F University, 2022. |
苏娜. 广义李属(蔷薇科)的系统发育和臭樱分支的物种界定研究. 杨凌: 西北农林科技大学, 2022. | |
18 | Yang J B, Tang M, Li H T, et al. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses. BMC Ecology and Evolution, 2013, 13: 84. |
19 | Vaughn J N, Chaluvadi S R, Tushar, et al. Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology. PLoS One, 2014, 9(10): e108581. |
20 | Zhang L J, Xia X Y, Xu N, et al. An efficient method for genomic DNA extraction from mature tissues of blueberry (Vaccinium spp.). Acta Agriculturae Boreali-Sinica, 2008, 23(Supple2): 205-208. |
张鲁杰, 夏秀英, 徐娜, 等. 高效提取越橘成熟组织基因组DNA的方法. 华北农学报, 2008, 23(增刊2): 205-208. | |
21 | Jin J J, Yu W B, Yang J B, et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 2020, 21(1): 241. |
22 | Koo H, Shin A Y, Hong S, et al. The complete chloroplast genome of Hibiscus syriacus using long-read sequencing: comparative analysis to examine the evolution of the tribe Hibisceae. Frontiers in Plant Science, 2023, 14: 1111968. |
23 | Benson D A, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Research, 2017, 45(D1): D37-D42. |
24 | Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 2019, 47(W1): W59-W64. |
25 | Kurtz S, Choudhuri J V, Ohlebusch E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 2001, 29(22): 4633-4642. |
26 | Beier S, Thiel T, Münch T, et al. MISA-web: A web server for microsatellite prediction. Bioinformatics, 2017, 33(16): 2583-2585. |
27 | Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. |
28 | Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589. |
29 | Minh B Q, Schmidt H A, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 2020, 37(5): 1530-1534. |
30 | Hu S W, Ma L, Ding Y N, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Geum aleppicum Jacq. Journal of Henan Agricultural University, 2022, 56(3): 438-446. |
胡赛文, 马良, 丁怡宁, 等. 路边青叶绿体基因组特征与系统进化分析. 河南农业大学学报, 2022, 56(3): 438-446. | |
31 | Tang C Q, Qiu Z X, Tan C, et al. Sorbus koehneana (Rosaceae): Its complete chloroplast genome and phylogenetic relationship with S. unguiculata. Acta Horticulturae Sinica, 2022, 49(3): 641-654. |
汤晨茜, 仇志欣, 檀超, 等. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系. 园艺学报, 2022, 49(3): 641-654. | |
32 | Duan C Y, Zhang K, Duan Y Z. Comparison of complete chloroplast genome sequences of Amygdalus pedunculata Pall. Chinese Journal of Biotechnology, 2020, 36(12): 2850-2859. |
段春燕, 张凯, 段义忠. 长柄扁桃叶绿体基因组比较. 生物工程学报, 2020, 36(12): 2850-2859. | |
33 | Wolf P G, Der J P, Duffy A M, et al. The evolution of chloroplast genes and genomes in ferns. Plant Molecular Biology, 2010, 76(3/4/5): 251-261. |
34 | Dugas D V, Hernandez D, Koenen E J, et al. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Scientific Reports, 2015, 5: 16958. |
35 | He L, Qian J, Li X, et al. Complete chloroplast genome of medicinal plant Lonicera japonica: Genome rearrangement, intron gain and loss, and implications for phylogenetic studies. Molecules, 2017, 22(2): 249. |
36 | Zhang D D, Han H W, Yu Z F, et al. Codon preference analysis of chloroplast genome in 12 Rosaceae plants. Journal of Agricultural Science and Technology, 2023, 25(8): 65-75. |
张冬冬, 韩宏伟, 余镇藩, 等. 12种蔷薇科植物叶绿体基因组密码子偏好性分析. 中国农业科技导报, 2023, 25(8): 65-75. | |
37 | Dong W, Xu C, Li D, et al. Comparative analysis of the complete chloroplast genome sequences in Psammophytic haloxylon species (Amaranthaceae). PeerJ, 2016, 4: e2699. |
38 | Jansen R K, Raubeson L A, Boore J L, et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology, 2005, 395: 348-384. |
39 | Hou Z, Li A, Huang C B. Characterization of chloroplast genome of Rosa chinensis ‘Old Blush’. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 1-7. |
侯哲, 李昂, 黄长兵. 中国古老月季‘月月粉’叶绿体基因组特征. 福建农林大学学报(自然科学版), 2023, 52(2): 1-7. | |
40 | Hershberg R, Petrov D A. Selection on codon bias. Annual Review of Genetics, 2008, 42: 287-299. |
41 | Zhang S D, Jin J J, Chen S Y, et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist, 2017, 214(3): 1355-1367. |
42 | Campbell W H, Gowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiology, 1990, 92(1): 1-11. |
43 | Du X, Zeng T, Feng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene, 2020, 731: 144340. |
44 | Powell W, Morgante M, McDevitt R, et al. Polymorphic simple sequences repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(17): 7759-7763. |
45 | Qin Z, Wang Y, Wang Q, et al. Evolution analysis of simple sequence repeats in plant genome. PLoS One, 2015, 10(12): e0144108. |
46 | Raman G, Choi K S, Park S. Phylogenetic relationships of the fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island based on chloroplast genome sequencing. Genes (Basel), 2016, 7(12): 115. |
47 | Jiang M, Ke S S, Wang J F. Characterization and phylogenetic analysis of Ostrya multinervis chloroplast genome. Scientia Silvae Sinicae, 2020, 56(5): 60-68. |
蒋明, 柯世省, 王军峰. 多脉铁木叶绿体基因组的序列特征和系统发育. 林业科学, 2020, 56(5): 60-68. |
[1] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
[2] | 于晓东, 余浩洋, 杨旭, 赵东旭, 张林刚. 内蒙古两种生态型羊草叶绿体基因组序列差异分析[J]. 草业学报, 2023, 32(7): 72-84. |
[3] | 高守舆, 李钰莹, 杨志青, 董宽虎, 夏方山. 白羊草叶绿体基因组密码子使用偏好性分析[J]. 草业学报, 2023, 32(7): 85-95. |
[4] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[5] | 旷宇, 汪建军, 许文博, 田沛. 中华羊茅Epichloё内生真菌的actin序列分析[J]. 草业学报, 2016, 25(9): 125-131. |
[6] | 鲍根生, 李春杰. 青藏高原高寒草地优势禾草-紫花针茅内生真菌分离和鉴定[J]. 草业学报, 2016, 25(3): 32-42. |
[7] | 廖敏, 张波, 范中菡, 陈熊春蕊, 张小平. 阿坝地区狼毒内生放线菌多样性及抗菌活性[J]. 草业学报, 2016, 25(3): 43-51. |
[8] | 宋辉,南志标,田沛. 中国西北地区披碱草属植物所带内生真菌的培养特征[J]. 草业学报, 2015, 24(9): 89-95. |
[9] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
[10] | 王丹,龚春霞,苟亚峰,周路,朱军保,高剑峰. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103. |
[11] | 马兴勇,彭献军,苏蔓,张乐新,周庆源,陈双燕,程丽琴,刘公社. 羊草DREB转录因子的系统发育和功能研究[J]. 草业学报, 2012, 21(6): 190-197. |
[12] | 刘静,张海琴,凡星,沙莉娜,曾建,周永红. 基于叶绿体atpB-rbcL序列探讨猬草属和赖草属植物的系统发育和母系起源[J]. 草业学报, 2012, 21(5): 77-85. |
[13] | 王晓丽,凡星,张春3,沙莉娜,张海琴,周永红. 用nrDNA ITS序列探讨小麦族含StH基因组物种的系统发育[J]. 草业学报, 2009, 18(6): 82-90. |
[14] | 杨红善,何小琴2,刘荣堂3,张三亮3,常根柱. 甘肃境内鼢鼠Eospalax亚属分子系统发育研究[J]. 草业学报, 2009, 18(6): 204-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||