草业学报 ›› 2025, Vol. 34 ›› Issue (7): 54-68.DOI: 10.11686/cyxb2024335
敬一胜1(
), 孙宗玖1,2,3(
), 刘慧霞1, 迪达尔·比苏力旦null1, 李美莎1, 周晨烨1, 周磊1, 于冰洁1, 李有政1, 郑丽1, 阿斯太肯·居力海提null1
收稿日期:2024-08-28
修回日期:2024-11-14
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
孙宗玖
作者简介:E-mail: nmszj@21cn.com基金资助:
Yi-sheng JING1(
), Zong-jiu SUN1,2,3(
), Hui-xia LIU1, Didaer·Bisulidan1, Mei-sha LI1, Chen-ye ZHOU1, Lei ZHOU1, Bing-jie YU1, You-zheng LI1, Li ZHENG1, Asitaiken·Julihaiti1
Received:2024-08-28
Revised:2024-11-14
Online:2025-07-20
Published:2025-05-12
Contact:
Zong-jiu SUN
摘要:
为探究准噶尔盆地沙质荒漠草地土壤pH分布特征,采用路线调查结合典型样地布设确定136个样地,以0~100 cm各土层pH实测数据为依据,结合气象数据及“3S”技术,运用单因素方差分析、地统计学分析与地理探测器等方法,探讨土壤pH发生空间变异的主要环境影响因素。结果表明:0~100 cm各土层土壤pH为8.54~8.76,均值为8.66,且随土层深度增加土壤pH表现出上升趋势。小乔木类群土壤pH(8.71)显著高于灌木类群(8.54)1.02倍、半灌木类群(8.59)1.01倍(P<0.05)。碱性土(7.5<pH<8.5)主要分布于准噶尔盆地周缘吉木乃县北部、福海县南部,克拉玛依市北部等地区,强碱性土(pH>8.5)主要分布于阜康市、呼图壁县、玛纳斯县、富蕴县等地区。半方差变异分析可知,0~100 cm土层pH最佳模型的块金效应为49.91%,说明其空间变异由结构因素与随机因素共同影响。地理探测器分析表明,总体上影响土壤pH空间变异的主要环境因子依次为年均温度(0.159)、植被覆盖度(0.152)、雪水当量(0.085)、根部土壤湿度(0.076)、物种丰富度指数(0.066)。研究结果完善了准噶尔盆地沙质荒漠草地土壤pH数据库,进一步探明了土壤pH产生变异的主控因素,为沙质荒漠管理与生态恢复提供了理论依据。
敬一胜, 孙宗玖, 刘慧霞, 迪达尔·比苏力旦null, 李美莎, 周晨烨, 周磊, 于冰洁, 李有政, 郑丽, 阿斯太肯·居力海提null. 准噶尔盆地沙质荒漠草地土壤pH分布特征及其环境影响因素分析[J]. 草业学报, 2025, 34(7): 54-68.
Yi-sheng JING, Zong-jiu SUN, Hui-xia LIU, Didaer·Bisulidan, Mei-sha LI, Chen-ye ZHOU, Lei ZHOU, Bing-jie YU, You-zheng LI, Li ZHENG, Asitaiken·Julihaiti. Soil pH distribution characteristics and environmental factors influencing it in sandy desert grassland in the Junggar Basin[J]. Acta Prataculturae Sinica, 2025, 34(7): 54-68.
图1 野外样点分布及样地布设基于自然资源部标准地图服务网站新S(2021)047号标准地图制作,底图边界无修改。Based on the new S (2021) No. 047 standard map of the standard map service website of the Ministry of Natural Resources, the boundaries of the base map have not been modified.
Fig.1 Distribution of field samples and plot layout
图2 沙质荒漠草地土壤pH频率分布和剖面特征不同小写字母代表不同处理间存在显著差异(P<0.05)。下同。Different lowercase letters represent significant differences among different treatments (P<0.05). The same below.
Fig.2 Soil pH frequency distribution and profile characteristics in sandy desert grassland
图4 不同植被类群间土壤pH的比较不同小写字母表示不同植被群落间差异显著(P<0.05)。Different lowercase letters indicate significant differences among different vegetation communities (P<0.05).
Fig.4 Comparison of soil pH among different vegetation groups
土层 Soil layer (cm) | 模型 Model | 块金值 Nugget value (C0) | 基台值 Abutment value (C0+C) | 块金效应 Nugget effect [C0/(C0+C),%] | 变程 Range (km) | 决定系数 Coefficient of determination (R2) | 残差 Residuals (RSS) |
|---|---|---|---|---|---|---|---|
| 0~5 | 指数Index | 0.211 | 0.474 | 44.618 | 488.100 | 0.918 | 3.247×10-3 |
| 线性Linear | 0.235 | 0.417 | 56.256 | 210.817 | 0.899 | 4.026×10-3 | |
| 高斯Gauss | 0.255 | 0.510 | 49.902 | 345.025 | 0.858 | 5.920×10-3 | |
| 球状Globosity | 0.022 | 0.338 | 6.509 | 19.200 | 0.190 | 0.0322 | |
| 5~10 | 指数Index | 0.307 | 0.751 | 40.879 | 1141.200 | 0.823 | 7.837×10-3 |
| 线性Linear | 0.318 | 0.503 | 63.254 | 210.817 | 0.826 | 7.709×10-3 | |
| 高斯Gauss | 0.071 | 0.419 | 16.945 | 12.817 | 0.063 | 0.0415 | |
| 球状Globosity | 0.043 | 0.419 | 10.263 | 15.000 | 0.063 | 0.0415 | |
| 10~20 | 指数Index | 0.300 | 0.600 | 49.917 | 502.200 | 0.923 | 3.696×10-3 |
| 线性Linear | 0.329 | 0.528 | 62.340 | 210.817 | 0.887 | 5.403×10-3 | |
| 高斯Gauss | 0.067 | 0.444 | 15.090 | 16.281 | 0.268 | 0.0351 | |
| 球状Globosity | 0.036 | 0.444 | 8.108 | 19.400 | 0.268 | 0.0351 | |
| 20~30 | 指数Index | 0.306 | 0.678 | 45.133 | 633.300 | 0.945 | 3.201×10-3 |
| 线性Linear | 0.330 | 0.555 | 59.400 | 210.817 | 0.938 | 3.583×10-3 | |
| 高斯Gauss | 0.065 | 0.458 | 14.192 | 15.935 | 0.216 | 0.0456 | |
| 球状Globosity | 0.033 | 0.458 | 7.205 | 18.900 | 0.216 | 0.0456 | |
| 30~50 | 指数Index | 0.346 | 0.750 | 46.133 | 835.200 | 0.881 | 6.271×10-3 |
| 线性Linear | 0.362 | 0.571 | 63.465 | 210.817 | 0.885 | 6.040×10-3 | |
| 高斯Gauss | 0.078 | 0.483 | 16.149 | 16.628 | 0.321 | 6.271×10-3 | |
| 球状Globosity | 0.040 | 0.483 | 8.282 | 19.900 | 0.321 | 0.0358 | |
| 50~70 | 指数Index | 0.010 | 0.400 | 2.500 | 15.600 | 0.999 | 4.422×10-6 |
| 线性Linear | 0.349 | 0.412 | 84.529 | 65.494 | 0.640 | 9.083×10-4 | |
| 高斯Gauss | 0.029 | 0.400 | 7.250 | 12.644 | 0.996 | 1.102×10-5 | |
| 球状Globosity | 0.001 | 0.400 | 0.250 | 14.900 | 0.996 | 1.057×10-5 | |
| 70~100 | 指数Index | 0.019 | 0.447 | 4.251 | 32.100 | 0.980 | 4.325×10-4 |
| 线性Linear | 0.296 | 0.471 | 62.809 | 65.555 | 0.600 | 8.061×10-3 | |
| 高斯Gauss | 0.030 | 0.437 | 6.865 | 18.360 | 0.996 | 8.989×10-5 | |
| 球状Globosity | 0.002 | 0.437 | 0.458 | 22.800 | 0.995 | 8.989×10-5 | |
| 0~100 | 指数Index | 0.264 | 0.530 | 49.906 | 543.300 | 0.910 | 3.099×10-3 |
| 线性Linear | 0.290 | 0.456 | 63.680 | 210.817 | 0.873 | 4.293×10-3 | |
| 高斯Gauss | 0.700 | 0.388 | 18.040 | 18.706 | 0.482 | 0.0180 | |
| 球状Globosity | 0.029 | 0.388 | 7.470 | 22.300 | 0.481 | 0.0180 |
表1 沙质荒漠草地土壤pH半方差函数模型及参数
Table 1 Half-variance function model and parameters of soil pH in sandy desert grassland
土层 Soil layer (cm) | 模型 Model | 块金值 Nugget value (C0) | 基台值 Abutment value (C0+C) | 块金效应 Nugget effect [C0/(C0+C),%] | 变程 Range (km) | 决定系数 Coefficient of determination (R2) | 残差 Residuals (RSS) |
|---|---|---|---|---|---|---|---|
| 0~5 | 指数Index | 0.211 | 0.474 | 44.618 | 488.100 | 0.918 | 3.247×10-3 |
| 线性Linear | 0.235 | 0.417 | 56.256 | 210.817 | 0.899 | 4.026×10-3 | |
| 高斯Gauss | 0.255 | 0.510 | 49.902 | 345.025 | 0.858 | 5.920×10-3 | |
| 球状Globosity | 0.022 | 0.338 | 6.509 | 19.200 | 0.190 | 0.0322 | |
| 5~10 | 指数Index | 0.307 | 0.751 | 40.879 | 1141.200 | 0.823 | 7.837×10-3 |
| 线性Linear | 0.318 | 0.503 | 63.254 | 210.817 | 0.826 | 7.709×10-3 | |
| 高斯Gauss | 0.071 | 0.419 | 16.945 | 12.817 | 0.063 | 0.0415 | |
| 球状Globosity | 0.043 | 0.419 | 10.263 | 15.000 | 0.063 | 0.0415 | |
| 10~20 | 指数Index | 0.300 | 0.600 | 49.917 | 502.200 | 0.923 | 3.696×10-3 |
| 线性Linear | 0.329 | 0.528 | 62.340 | 210.817 | 0.887 | 5.403×10-3 | |
| 高斯Gauss | 0.067 | 0.444 | 15.090 | 16.281 | 0.268 | 0.0351 | |
| 球状Globosity | 0.036 | 0.444 | 8.108 | 19.400 | 0.268 | 0.0351 | |
| 20~30 | 指数Index | 0.306 | 0.678 | 45.133 | 633.300 | 0.945 | 3.201×10-3 |
| 线性Linear | 0.330 | 0.555 | 59.400 | 210.817 | 0.938 | 3.583×10-3 | |
| 高斯Gauss | 0.065 | 0.458 | 14.192 | 15.935 | 0.216 | 0.0456 | |
| 球状Globosity | 0.033 | 0.458 | 7.205 | 18.900 | 0.216 | 0.0456 | |
| 30~50 | 指数Index | 0.346 | 0.750 | 46.133 | 835.200 | 0.881 | 6.271×10-3 |
| 线性Linear | 0.362 | 0.571 | 63.465 | 210.817 | 0.885 | 6.040×10-3 | |
| 高斯Gauss | 0.078 | 0.483 | 16.149 | 16.628 | 0.321 | 6.271×10-3 | |
| 球状Globosity | 0.040 | 0.483 | 8.282 | 19.900 | 0.321 | 0.0358 | |
| 50~70 | 指数Index | 0.010 | 0.400 | 2.500 | 15.600 | 0.999 | 4.422×10-6 |
| 线性Linear | 0.349 | 0.412 | 84.529 | 65.494 | 0.640 | 9.083×10-4 | |
| 高斯Gauss | 0.029 | 0.400 | 7.250 | 12.644 | 0.996 | 1.102×10-5 | |
| 球状Globosity | 0.001 | 0.400 | 0.250 | 14.900 | 0.996 | 1.057×10-5 | |
| 70~100 | 指数Index | 0.019 | 0.447 | 4.251 | 32.100 | 0.980 | 4.325×10-4 |
| 线性Linear | 0.296 | 0.471 | 62.809 | 65.555 | 0.600 | 8.061×10-3 | |
| 高斯Gauss | 0.030 | 0.437 | 6.865 | 18.360 | 0.996 | 8.989×10-5 | |
| 球状Globosity | 0.002 | 0.437 | 0.458 | 22.800 | 0.995 | 8.989×10-5 | |
| 0~100 | 指数Index | 0.264 | 0.530 | 49.906 | 543.300 | 0.910 | 3.099×10-3 |
| 线性Linear | 0.290 | 0.456 | 63.680 | 210.817 | 0.873 | 4.293×10-3 | |
| 高斯Gauss | 0.700 | 0.388 | 18.040 | 18.706 | 0.482 | 0.0180 | |
| 球状Globosity | 0.029 | 0.388 | 7.470 | 22.300 | 0.481 | 0.0180 |
图5 沙质荒漠草地土壤pH空间分布格局基于自然资源部标准地图服务网站新S(2021)047号标准地图制作,底图边界无修改。Based on the new S (2021) No. 047 standard map of the standard map service website of the Ministry of Natural Resources, the boundaries of the base map have not been modified.
Fig.5 Spatial distribution pattern of soil pH in sandy desert grassland
图6 沙质荒漠草地土壤pH空间变异影响因素地理探测结果Ele: 海拔Elevation; Slope: 坡度; MAP: 年均降水量Mean average precipitation; MAT: 年均温度Mean average temperature; SPEI: 标准化降水蒸散指数Standardized precipitation evapotranspiration index; SWE: 雪水当量Snow water equivalent; Litter: 凋落物生物量Litter biomass; AGB: 地上生物量Above-ground biomass; Cov: 植被覆盖度Vegetation coverage; SR: 物种丰富度指数Species richness index; SIF: 平均叶绿素荧光值Average chlorophyll fluorescence value; EC: 电导率Electrical conductivity; SOC: 土壤有机碳Soil organic carbon; BD: 土壤容重Bulk density; SMC: 土壤含水量Soil moisture content; SRR: 土石比Soil-rock ratio; Clay: 黏粒; Silt: 粉粒; Sand: 砂粒; RSM: 根部土壤湿度Root soil moisture; SSM: 表层土壤湿度Surface soil moisture; Topographic: 地形; Soil: 土壤; Vegetation: 植被; Climate: 气候.
Fig.6 Geographical detection results of influencing factors on spatial variation of soil pH in sandy desert grassland
| 1 | Lindroos A J, Derome J, Raitio H, et al. Heavy metal concentrations in soil solution, soil and needles in a norway spruce stand on an acid sulphate forest soil. Water, Air, and Soil Pollution, 2007, 180(1/2/3/4): 155-170. |
| 2 | Xue W, Bezemer M T, Berendse F. Soil heterogeneity and plant species diversity in experimental grassland communities: contrasting effects of soil nutrients and pH at different spatial scales. Plant and Soil, 2019, 442(1/2): 497-509. |
| 3 | Zhang W, Li Q Q, Wang C Q, et al. Spatial variability of soil pH and its influence factors at a county scale in hilly area of Mid-Sichuan Basin-a case study from Renshou in Sichuan. Resources and Environment in the Yangtze Basin, 2015, 24(7): 1192-1199. |
| 张维, 李启权, 王昌全, 等. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例. 长江流域资源与环境, 2015, 24(7): 1192-1199. | |
| 4 | Wu Z X, Zhou Y, Muhtar·Amat, et al. Spatial variability of soil pH value and its influencing factors in the soil layer of northwestern Hubei Province. Resources and Environment in the Yangtze Basin, 2020, 29(2): 488-498. |
| 吴正祥, 周勇, 木合塔尔·艾买提, 等. 鄂西北山区耕层土壤pH值空间变异特征及其影响因素研究. 长江流域资源与环境, 2020, 29(2): 488-498. | |
| 5 | Wen H T, Dong Q Y, Wang P, et al. Spatial variation characteristics and influencing factors of soil pH value at the northern foot of Tongbai Mountain. Chinese Journal of Soil Science, 2023, 54(2): 295-305. |
| 温皓天, 董秋瑶, 王攀, 等. 桐柏山北麓土壤pH值空间分布特征及其影响因素. 土壤通报, 2023, 54(2): 295-305. | |
| 6 | Chen Q X, Lu X H, Tu C L. Spatial variation and influencing factors of soil pH in Anshun City. Environmental Science, 2022, 43(4): 2124-2132. |
| 陈清霞, 陆晓辉, 涂成龙. 安顺市土壤pH空间变异及影响因素分析. 环境科学, 2022, 43(4): 2124-2132. | |
| 7 | Gao P, Yang X M, Li D N, et al. Distribution characteristics of soil pH in cultivated land in Qinling-Bashan area and its influencing factors. Journal of Agriculture, 2023, 13(8): 32-36. |
| 高鹏, 杨小敏, 李丹妮, 等. 秦岭巴山区域耕地土壤pH分布特征及其影响因素. 农学学报, 2023, 13(8): 32-36. | |
| 8 | Huang H Q, Zhang H, Hu Z, et al. Spatial distribution and influencing factors of arable soil organic matter and pH in mountainous areas of Guizhou. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2473-2479. |
| 黄会前, 张慧, 胡震, 等. 贵州山区耕地土壤有机质及pH的空间分布与影响因素研究. 西南农业学报, 2023, 36(11): 2473-2479. | |
| 9 | Deng Q, Fang H Y, Zhang Y Y, et al. Spatial variability of cropland soil pH and its influencing factors in Sichuan Basin. Soils, 2022, 54(6): 1283-1290. |
| 邓茜, 方红艳, 张元媛, 等. 四川盆地耕地土壤pH空间变异特征及影响因素. 土壤, 2022, 54(6): 1283-1290. | |
| 10 | Palpurina S, Wagner V, Wehrden V H, et al. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 2017, 26(4): 425-434. |
| 11 | Zhao X, He C, Liu W S, et al. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. Global Change Biology, 2021, 28(1): 154-166. |
| 12 | Li J, Zhang L C, Zhang M Q, et al. Characteristics and prediction of topsoil acidification of latosolic red soil caused by long-term urea application. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2161-2171. |
| 李娟, 张立成, 章明清, 等. 长期施用尿素降低赤红壤旱地耕层pH的特征与预测. 植物营养与肥料学报, 2022, 28(12): 2161-2171. | |
| 13 | Liang G H, Wu J P, Xiong X, et al. Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan Nature Reserve. Ecology and Environmental Sciences, 2015, 24(6): 911-918. |
| 梁国华, 吴建平, 熊鑫, 等. 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应. 生态环境学报, 2015, 24(6): 911-918. | |
| 14 | Li Z Y, Liu Z C, Yan C, et al. The biomass-diversity relationship depends upon soil pH variations in Inner Mongolian grasslands: Insight from comparison between gradient observations and manipulative experiments. Acta Prataculturae Sinica, 2020, 29(1): 38-49. |
| 李子雁, 刘尊驰, 鄢创, 等. 内蒙古草原不同土壤pH条件下植物生物量和多样性的关系:样带调查和控制实验的比较研究. 草业学报, 2020, 29(1): 38-49. | |
| 15 | Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology and Health Press, 1993. |
| 许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993. | |
| 16 | Diao M J, Xia C Z. Analysis on the change of vegetation growth in Junggar Basin during 1982-2013. Forest Resources Management, 2016(5): 39-46. |
| 刁鸣军, 夏朝宗. 1982—2013年准噶尔盆地植被长势变化分析. 林业资源管理, 2016(5): 39-46. | |
| 17 | Wang J P, Guo Z J, Huang J H, et al. Characteristics of spatio-temporal variation of NDVI in different ecological function zones in north Xinjiang in recent 30 years. Forest Resources Management, 2015(6): 64-70. |
| 王计平, 郭仲军, 黄继红, 等. 北疆不同生态功能区近30年来植被盖度时空变化. 林业资源管理, 2015(6): 64-70. | |
| 18 | Yang J, Sun Z J, Chai Y. Effects of enclosure on vegetation characteristics and stability of sandy desert grassland. Chinese Journal of Grassland, 2017, 39(3): 65-71, 108. |
| 杨静, 孙宗玖, 柴艳. 封育对沙质荒漠草地植被特征及稳定性影响. 中国草地学报, 2017, 39(3): 65-71, 108. | |
| 19 | Yang J, Sun Z J, Bademu qiqige, et al. Effects of enclosure years on vegetation functional groups diversity and soil total nutrients characters of sandy desert grassland. Chinese Journal of Grassland, 2018, 40(4): 102-110. |
| 杨静, 孙宗玖, 巴德木其其格, 等. 封育对草地植被功能群多样性及土壤养分特征的影响. 中国草地学报, 2018, 40(4): 102-110. | |
| 20 | Liu H X, Sun Z J, Shi Y K, et al. Distribution characteristics of soil organic carbon in Haloxylon sandy desert in Junggar Basin. Journal of Agricultural Science and Technology, 2021, 23(11): 147-155. |
| 刘慧霞, 孙宗玖, 石宇堃, 等. 准噶尔盆地梭梭沙质荒漠土壤有机碳分布特征的研究. 中国农业科技导报, 2021, 23(11): 147-155. | |
| 21 | Liu H X, Sun Z J, Cui Y X, et al. Spatial distribution pattern and impact factors of soil bulk density in desert grassland of northern Xinjiang. Chinese Journal of Grassland, 2021, 43(2): 82-91. |
| 刘慧霞, 孙宗玖, 崔雨萱, 等. 新疆北疆荒漠草地土壤容重空间分布格局及其影响因素. 中国草地学报, 2021, 43(2): 82-91. | |
| 22 | Zhang L, Lv G H, Jiang L M, et al. Analysis on soil driving force affecting biomass distribution of desert plants in Ebinur Lake basin. Journal of Plant Resources and Environment, 2019, 28(3): 12-18. |
| 张磊, 吕光辉, 蒋腊梅, 等. 影响艾比湖流域荒漠植物生物量分布的土壤驱动力分析. 植物资源与环境学报, 2019, 28(3): 12-18. | |
| 23 | Zheng L L, Xiong H G, Xia Q R, et al. Physical and chemical differences of 11 vegetation-soil types in southern Gurbantunggut Desert. Chinese Agricultural Science Bulletin, 2013, 29(35): 245-253. |
| 郑丽丽, 熊黑钢, 夏倩柔, 等. 古尔班通沙漠南缘11种植被的土壤理化差异性研究. 中国农学通报, 2013, 29(35): 245-253. | |
| 24 | Marhaba·Nigat, Dai Y, Shi Q D, et al. Physical and chemical properties of soil at southeastern edge of Anabasis salsa in Junggar Basin. Journal of Irrigation and Drainage, 2019, 38(7): 38-44. |
| 麦尔哈巴·尼加提, 戴岳, 师庆东, 等. 准噶尔盆地东南缘荒漠灌丛盐生假木贼周围土壤理化性质研究. 灌溉排水学报, 2019, 38(7): 38-44. | |
| 25 | Liu H X, Dong Y Q, Cui Y X, et al. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang. Acta Prataculturae Sinica, 2021, 30(10): 41-52. |
| 刘慧霞, 董乙强, 崔雨萱, 等. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析. 草业学报, 2021, 30(10): 41-52. | |
| 26 | Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2005. |
| 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2005. | |
| 27 | Li X, Xiao J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 2019, 11(5): 517. |
| 28 | Hegde R, Bardhan G, Niranjana V K, et al. Spatial variability and mapping of selected soil properties in Kaligaudanahalli microwatershed, Gundlupet Taluk, Chamarajanagar district, under hot semi arid agrosubregion of Central Karnataka Plateau, India. SN Applied Sciences, 2019, 1(6): 1-15. |
| 29 | Bhattacharjee S, Mitra P, Ghosh K S. Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4771-4780. |
| 30 | Jia Z Y, Zhang J H, Ding S Y, et al. Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: A case study in Zhoukou City, Henan, China. Chinese Journal of Applied Ecology, 2016, 27(4): 1211-1220. |
| 贾振宇, 张俊华, 丁圣彦, 等. 基于GIS和地统计学的黄泛区土壤磷空间变异——以周口为例. 应用生态学报, 2016, 27(4): 1211-1220. | |
| 31 | Li Z H, Li S Y, Li B W, et al. Spatial variation of soil chemical properties of longitudinal dunes with different vegetation coverage levels. Arid Zone Research, 2020, 37(1): 160-167. |
| 李浙华, 李生宇, 李丙文, 等. 不同植被覆盖度沙垄土壤化学性质的空间分异. 干旱区研究, 2020, 37(1): 160-167. | |
| 32 | Medeiros S A, Drezner D T. Vegetation, climate, and soil relationships across the Sonoran Desert. Ecoscience, 2012, 19(2): 148-160. |
| 33 | Li C J, Lei J Q, Xu X W, et al. Spatial pattern for soil water and chemical properties in Gurbantunggut Desert. Acta Ecologica Sinica, 2014, 34(15): 4380-4389. |
| 李从娟, 雷加强, 徐新文, 等. 古尔班通古特沙漠土壤水分与化学性质的空间分布. 生态学报, 2014, 34(15): 4380-4389. | |
| 34 | Pei S, Fu H, Wan C, et al. Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Research and Management, 2006, 20(2): 161-175. |
| 35 | Wezel A, Rajot J, Herbrig C. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 2000, 44(4): 383-398. |
| 36 | Liu Z T, Cui Y Y, Bai L, et al. Effects of simulated precipitation on aboveground and belowground biomass and their allocation proportion of plant community in desert steppe. Acta Agrestia Sinica, 2023, 31(6): 1632-1639. |
| 刘倬彤, 崔媛媛, 白柳, 等. 模拟降水变化对荒漠草原地上、地下生物量及其分配比例的影响. 草地学报, 2023, 31(6): 1632-1639. | |
| 37 | Liu M, Ma Z L. Responses of biomass allocation to simulated warming in an alpine scrubland of eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2021, 41(4): 1421-1430. |
| 刘美, 马志良. 青藏高原东部高寒灌丛生物量分配对模拟增温的响应. 生态学报, 2021, 41(4): 1421-1430. | |
| 38 | Zhou Z B, Xu X W. Absorption characteristics of ions in three species of shrubs of the artificially-planted greenbelts in the hinterland of Taklamakan Desert. Arid Zone Research, 2002, 19(1): 49-52. |
| 周智彬, 徐新文. 塔克拉玛干沙漠腹地人工绿地三种灌木的离子吸收特性. 干旱区研究, 2002, 19(1): 49-52. | |
| 39 | Li C J, Li Y, Ma J. Scale characteristics of spatial heterogeneity of soil chemical properties in Gurbantunggut Desert. Acta Pedologica Sinica, 2011, 48(2): 302-310. |
| 李从娟, 李彦, 马健. 古尔班通古特沙漠土壤化学性质空间异质性的尺度特征. 土壤学报, 2011, 48(2): 302-310. | |
| 40 | Wang W F, Liu R T, Guo Z X, et al. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southeastern area of Tengger Desert. Journal of Desert Research, 2021, 41(1): 209-218. |
| 王文帆, 刘任涛, 郭志霞, 等. 腾格里沙漠东南缘固沙灌丛林土壤理化性质及分形维数. 中国沙漠, 2021, 41(1): 209-218. | |
| 41 | Liu G M, Yang J S, Li D S. Evaporation regularity and its relationship with soil salt. Acta Pedologica Sinica, 2002, 39(3): 384-389. |
| 刘广明, 杨劲松, 李冬顺. 地下水蒸发规律及其与土壤盐分的关系. 土壤学报, 2002, 39(3): 384-389. | |
| 42 | Department of Agriculture and Rural Affairs of Xinjiang Uygur Autonomous Region. Xinjiang soil. Beijing: Science Press, 1996. |
| 新疆维吾尔自治区农业农村厅. 新疆土壤. 北京: 科学出版社, 1996. | |
| 43 | Zuo L N, Chen J, Zhang H, et al. Patterns and drivers of soil pH on the Xinjiang temperate steppe. Pratacultural Science, 2022, 39(7): 1341-1353. |
| 左李娜, 陈静, 张慧, 等. 新疆温性草原土壤pH特征及影响因素. 草业科学, 2022, 39(7): 1341-1353. | |
| 44 | Huang P Y, Pan W B, Li H T, et al. The feedback of desert plants on the spatial pattern of snowmelt in Zhunger Basin. Chinese Journal of Plant Ecology, 1992, 16(4): 346-353. |
| 黄培祐, 潘伟斌, 李海涛, 等. 准噶尔盆地荒漠灌丛对融雪水空间分布的反馈初探. 植物生态学报, 1992, 16(4): 346-353. | |
| 45 | Zhou H F, Li Y, Tang Y, et al. The Characteristics of the snow-cover and snowmelt water storage in Gurbantunggut Desert. Arid Zone Research, 2009, 26(3): 312-317. |
| 周宏飞, 李彦, 汤英, 等. 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 2009, 26(3): 312-317. | |
| 46 | Hao X T, Huang Y R, Ma Y B, et al. Study on soil moisture dynamics in growing season of sand-fixing Haloxylon ammodendron forest in Ulan Buhe Desert. Journal of Agricultural Science and Technology, 2023, 25(7): 187-196. |
| 郝需婷, 黄雅茹, 马迎宾, 等. 乌兰布和沙漠固沙梭梭林生长季土壤水分动态研究. 中国农业科技导报, 2023, 25(7): 187-196. | |
| 47 | Xi J Q, Yang Z H, Guo S J, et al. Effects of Haloxylon ammodendron planting on soil physico-chemical properties and soil microorganisms in sandy dunes. Acta Prataculturae Sinica, 2015, 24(5): 44-52. |
| 席军强, 杨自辉, 郭树江, 等. 人工梭梭林对沙地土壤理化性质和微生物的影响. 草业学报, 2015, 24(5): 44-52. | |
| 48 | Garner W, Steinberger Y. A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. Journal of Arid Environments, 1989, 16(3): 257-262. |
| 49 | Chen F, Pan Z, Zhai Y M, et al. The effect of erosive precipitation on physical and chemical properties of soil in different slopes. Soil and Water Conservation in China, 2024(3): 55-60. |
| 陈凤, 潘政, 翟亚明, 等. 不同坡度下侵蚀性降水对土壤理化性质的影响. 中国水土保持, 2024(3): 55-60. | |
| 50 | Zhang X L, Feng M D, He B H, et al. Soil infiltration characteristics and suitable models under different land use types in Karst Trough-Valley region. Research of Soil and Water Conservation, 2024, 31(4): 34-41. |
| 张贤林, 冯梦蝶, 何丙辉, 等. 喀斯特槽谷区不同土地利用方式下土壤入渗特征及适宜模型. 水土保持研究, 2024, 31(4): 34-41. | |
| 51 | Zhang F, Li Y B, Wang D F, et al. Analysis of distribution patterns and spatial variability of soil salinity affecting factors in topsoil layer of salinized soil in Jinghe Oasis. Journal of Ecology and Rural Environment, 2018, 34(1): 64-73. |
| 张飞, 李怡博, 王东芳, 等. 精河绿洲盐渍土表层土壤盐分因子的空间变异及分布格局. 生态与农村环境学报, 2018, 34(1): 64-73. | |
| 52 | Farifteh J, Farshad A, George R. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 2005, 130(3): 191-206. |
| 53 | Ping X Y, Lin C C, Bai Y, et al. The ecological effects of planting Apocynum venetum in the plain desert of the Altay Region, Xinjiang Province. Acta Prataculturae Sinica, 2014, 23(2): 49-58. |
| 平晓燕, 林长存, 白宇, 等. 新疆阿勒泰平原荒漠罗布麻种植区的生态效益评价. 草业学报, 2014, 23(2): 49-58. | |
| 54 | Zhang Y, Chu X Z, Yang S M, et al. Climate change in north Xinjiang in recent 56 years. Arid Zone Research, 2019, 36(1): 212-219. |
| 张扬, 楚新正, 杨少敏, 等. 近56 a新疆北部地区气候变化特征. 干旱区研究, 2019, 36(1): 212-219. | |
| 55 | Hu L Q, Huang W J, Yin K Q, et al. Estimation of snow water resources and its distribution in Xinjiang. Advances in Water Science, 2013, 24(3): 326-332. |
| 胡列群, 黄慰军, 殷克勤, 等. 新疆冬季雪水资源估算及分布特征. 水科学进展, 2013, 24(3): 326-332. |
| [1] | 原韶雨, 韩诗卉, 夏天, 何宁波, 张建杰. 中国北方天然草地土壤pH对不同施肥措施的响应[J]. 草业学报, 2025, 34(7): 28-40. |
| [2] | 李军豪, 杨国靖, 裴孝东, 石贵, 王娅, 周立华. 青海省畜牧CO2排放强度的时空演变特征及其影响因素研究[J]. 草业学报, 2025, 34(3): 1-16. |
| [3] | 张聪, 王娅, 周立华, 裴孝东, 李军豪, 石贵. 牲畜饲养结构的时空分布特征及驱动因素——以宁夏为例[J]. 草业学报, 2024, 33(8): 37-49. |
| [4] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
| [5] | 余万洋, 陈怡帆, 方发永, 张金鑫, 李舟, 赵龙山. 1980-2020年贵州省草地空间分布格局演变及驱动力分析[J]. 草业学报, 2024, 33(1): 1-18. |
| [6] | 吴金蕊, 李梦真, 杨勇, 刘爱军, 王普昶, 哈斯巴根null, 吕世杰, 运向军. 典型草原不同放牧强度下羊草种群空间分布的研究[J]. 草业学报, 2023, 32(12): 68-76. |
| [7] | 张彩荷, 李纯斌, 吴静. 基于草原综合顺序分类法的中国山地草地亚类分类研究[J]. 草业学报, 2022, 31(3): 16-25. |
| [8] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
| [9] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
| [10] | 张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021, 30(11): 1-12. |
| [11] | 马涛, 吕文强, 李泽霞, 陈爱华, 董彦丽. 黄土高原丘陵沟壑区轮作休耕模式下5种土地利用方式土壤剖面水分分布特征[J]. 草业学报, 2020, 29(7): 30-39. |
| [12] | 许爱云, 许冬梅, 曹兵, 刘金龙, 于双, 郭艳菊, 马晓静. 宁夏荒漠草原不同群落蒙古冰草种群空间格局及种间关联性[J]. 草业学报, 2020, 29(3): 171-178. |
| [13] | 李子雁, 刘尊驰, 鄢创, 张静静, 时新荣, 袁志友. 内蒙古草原不同土壤pH条件下植物生物量和多样性的关系:样带调查和控制实验的比较研究[J]. 草业学报, 2020, 29(1): 38-49. |
| [14] | 安婵, 乔建霞, 商建英, 李金升, 赵天赐, 唐士明, 邵新庆, 黄顶, 王堃, 刘克思. 人造湖对毗邻退化草地土壤含水量、电导率和pH的影响[J]. 草业学报, 2018, 27(8): 21-29. |
| [15] | 张瑶瑶, 冷若琳, 崔霞, 宋清洁, 胥刚. 甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报, 2018, 27(12): 12-21. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||