草业学报 ›› 2026, Vol. 35 ›› Issue (1): 140-153.DOI: 10.11686/cyxb2025054
• 研究论文 • 上一篇
吕博文1,2,3(
), 温馨4, 李军乔1,2,3(
), 王聪1
收稿日期:2025-02-25
修回日期:2025-04-28
出版日期:2026-01-20
发布日期:2025-11-13
通讯作者:
李军乔
作者简介:E-mail: ljqlily2002@126.com基金资助:
Bo-wen LYU1,2,3(
), Xin WEN4, Jun-qiao LI1,2,3(
), Cong WANG1
Received:2025-02-25
Revised:2025-04-28
Online:2026-01-20
Published:2025-11-13
Contact:
Jun-qiao LI
摘要:
本试验旨在利用近红外光谱技术,建立蕨麻产地判别模型和营养成分快速检测的近红外预测模型。以32个采样点蕨麻块根为研究对象,参考国家标准和行业标准分别测定蕨麻中淀粉、蛋白质、多糖、鞣质和总皂苷5个关键质量属性的含量,并采集其全反射红外光谱(ATR)和近红外光谱(NIR)数据。利用ATR和NIR光谱数据结合建模方法、校正方法、图谱类型为因素进行3因素3水平的正交试验,选取蕨麻样品分为校正集430个,预测集215个构建并验证产地判别模型的优劣。经比对分析,ATR模型中,以建模方法为扩散模型(DM),校正方法为标准正态变量校正(SNV),谱图类型为原谱图的组合为最优建模条件,优化后,其识别率为99.07%,预测率为97.21%,判别效果较好。在此基础上,通过优化预处理方法、建模波段等建模条件,建立了蕨麻5种有效营养成分的定量检测模型。其中,鞣质最优模型为PCR+MSC+D1+Norris平滑(5,5),建模波段为6148~5379 cm-1,其预测相关系数(Rp)为0.9393,外部验证相对分析误差(RPD)为2.86,>2.00;多糖的预测模型效果次之,其最优模型为PCR+MSC+spectrum+Norris平滑(5,5),建模波段为7000~4173 cm-1,其Rp为0.8470,RPD为1.68,>1.40。近红外光谱技术结合化学计量学可实现蕨麻产地判别及多种营养成分综合质量的快速准确检测,为蕨麻快速综合质量评价模型的建立奠定了基础。
吕博文, 温馨, 李军乔, 王聪. 基于近红外光谱分析技术的蕨麻产地判别及定量检测模型评价[J]. 草业学报, 2026, 35(1): 140-153.
Bo-wen LYU, Xin WEN, Jun-qiao LI, Cong WANG. Development of a model based on near-infrared spectral data to evaluate the origin and quality of Potentilla anserina materials[J]. Acta Prataculturae Sinica, 2026, 35(1): 140-153.
采样地区 Sampling area | 编号 Number | 样品数量Number of samples |
|---|---|---|
| 海北藏族自治州门源回族自治县Menyuan Huizu Autonomous County, Haibei Tibetan Autonomous Prefecture | 门源01 Menyuan 01 | 20 |
| 门源02A Menyuan 02A | 21 | |
| 门源02B Menyuan 02B | 20 | |
| 门源03 Menyuan 03 | 19 | |
| 门源04 Menyuan 04 | 23 | |
| 门源05 Menyuan 05 | 16 | |
| 门源野生01 Menyuan wild 01 | 20 | |
| 门源野生02 Menyuan wild 02 | 17 | |
| 门源野生03 Menyuan wild 03 | 19 | |
| 门源野生04 Menyuan wild 04 | 24 | |
| 门源野生05 Menyuan wild 05 | 21 | |
| 门源野生06 Menyuan wild 06 | 22 | |
| 西宁市湟源县Huangyuan County, Xining City | 湟源01 Huangyuan 01 | 21 |
| 湟源03 Huangyuan 03 | 18 | |
| 湟源04 Huangyuan 04 | 18 | |
| 湟源05 Huangyuan 05 | 21 | |
| 湟源06 Huangyuan 06 | 22 | |
| 湟源07 Huangyuan 07 | 20 | |
| 海西蒙古族藏族自治州Haixi Mongol and Tibetan Autonomous Prefecture | 海西01 Haixi 01 | 19 |
| 海西02 Haixi 02 | 23 | |
| 海西02B Haixi 02B | 20 | |
| 海西03A Haixi 03A | 19 | |
| 海西03B Haixi 03B | 22 | |
| 玉树藏族自治州囊谦县Nangqian County, Yushu Tibetan Autonomous Prefecture | 囊谦01 Nangqian 01 | 20 |
| 囊谦野生01 Nangqian wild 01 | 20 | |
| 黄南藏族自治州泽库县Zeku County, Huangnan Tibetan Autonomous Prefecture | 泽库01 Zeku 01 | 23 |
| 泽库02 Zeku 02 | 18 | |
| 泽库03 Zeku 03 | 20 | |
| 泽库04 Zeku 04 | 17 | |
| 海南藏族自治州贵南县Guinan County, Hainan Tibetan Autonomous Prefecture | 贵南01 Guinan 01 | 20 |
| 海南藏族自治州Hainan Tibetan Autonomous Prefecture | 海南01 Hainan 01 | 22 |
| 果洛藏族自治州Golog Tibetan Autonomous Prefecture | 果洛01 Golog 01 | 20 |
表1 蕨麻样品信息
Table 1 Information of P. anserina
采样地区 Sampling area | 编号 Number | 样品数量Number of samples |
|---|---|---|
| 海北藏族自治州门源回族自治县Menyuan Huizu Autonomous County, Haibei Tibetan Autonomous Prefecture | 门源01 Menyuan 01 | 20 |
| 门源02A Menyuan 02A | 21 | |
| 门源02B Menyuan 02B | 20 | |
| 门源03 Menyuan 03 | 19 | |
| 门源04 Menyuan 04 | 23 | |
| 门源05 Menyuan 05 | 16 | |
| 门源野生01 Menyuan wild 01 | 20 | |
| 门源野生02 Menyuan wild 02 | 17 | |
| 门源野生03 Menyuan wild 03 | 19 | |
| 门源野生04 Menyuan wild 04 | 24 | |
| 门源野生05 Menyuan wild 05 | 21 | |
| 门源野生06 Menyuan wild 06 | 22 | |
| 西宁市湟源县Huangyuan County, Xining City | 湟源01 Huangyuan 01 | 21 |
| 湟源03 Huangyuan 03 | 18 | |
| 湟源04 Huangyuan 04 | 18 | |
| 湟源05 Huangyuan 05 | 21 | |
| 湟源06 Huangyuan 06 | 22 | |
| 湟源07 Huangyuan 07 | 20 | |
| 海西蒙古族藏族自治州Haixi Mongol and Tibetan Autonomous Prefecture | 海西01 Haixi 01 | 19 |
| 海西02 Haixi 02 | 23 | |
| 海西02B Haixi 02B | 20 | |
| 海西03A Haixi 03A | 19 | |
| 海西03B Haixi 03B | 22 | |
| 玉树藏族自治州囊谦县Nangqian County, Yushu Tibetan Autonomous Prefecture | 囊谦01 Nangqian 01 | 20 |
| 囊谦野生01 Nangqian wild 01 | 20 | |
| 黄南藏族自治州泽库县Zeku County, Huangnan Tibetan Autonomous Prefecture | 泽库01 Zeku 01 | 23 |
| 泽库02 Zeku 02 | 18 | |
| 泽库03 Zeku 03 | 20 | |
| 泽库04 Zeku 04 | 17 | |
| 海南藏族自治州贵南县Guinan County, Hainan Tibetan Autonomous Prefecture | 贵南01 Guinan 01 | 20 |
| 海南藏族自治州Hainan Tibetan Autonomous Prefecture | 海南01 Hainan 01 | 22 |
| 果洛藏族自治州Golog Tibetan Autonomous Prefecture | 果洛01 Golog 01 | 20 |
水平 Level | 建模方法Modeling method (A) | 校正方法Calibration method (B) | 谱图类型 Spectral type (C) |
|---|---|---|---|
| L1 | DM | Constant | 原谱图 |
| L2 | DA | MSC | D1 |
| L3 | - | SNV | D2 |
表2 正交试验因素水平
Table 2 Factor-level of orthogonal test
水平 Level | 建模方法Modeling method (A) | 校正方法Calibration method (B) | 谱图类型 Spectral type (C) |
|---|---|---|---|
| L1 | DM | Constant | 原谱图 |
| L2 | DA | MSC | D1 |
| L3 | - | SNV | D2 |
试验 序号 Experiment number | 建模 方法 Modeling method (A) | 校正 方法 Calibration method (B) | 谱图类型 Spectral type (C) | 试验 序号 Experiment number | 建模 方法 Modeling method (A) | 校正 方法 Calibration method (B) | 谱图类型 Spectral type (C) |
|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 10 | L2 | L1 | L1 |
| 2 | L1 | L1 | L2 | 11 | L2 | L1 | L2 |
| 3 | L1 | L1 | L3 | 12 | L2 | L1 | L3 |
| 4 | L1 | L2 | L1 | 13 | L2 | L2 | L1 |
| 5 | L1 | L2 | L2 | 14 | L2 | L2 | L2 |
| 6 | L1 | L2 | L3 | 15 | L2 | L2 | L3 |
| 7 | L1 | L3 | L1 | 16 | L2 | L3 | L1 |
| 8 | L1 | L3 | L2 | 17 | L2 | L3 | L2 |
| 9 | L1 | L3 | L3 | 18 | L2 | L3 | L3 |
表3 不同行政区域判别模型正交试验
Table 3 Orthogonal tests of discriminant models for different administrative regions
试验 序号 Experiment number | 建模 方法 Modeling method (A) | 校正 方法 Calibration method (B) | 谱图类型 Spectral type (C) | 试验 序号 Experiment number | 建模 方法 Modeling method (A) | 校正 方法 Calibration method (B) | 谱图类型 Spectral type (C) |
|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 10 | L2 | L1 | L1 |
| 2 | L1 | L1 | L2 | 11 | L2 | L1 | L2 |
| 3 | L1 | L1 | L3 | 12 | L2 | L1 | L3 |
| 4 | L1 | L2 | L1 | 13 | L2 | L2 | L1 |
| 5 | L1 | L2 | L2 | 14 | L2 | L2 | L2 |
| 6 | L1 | L2 | L3 | 15 | L2 | L2 | L3 |
| 7 | L1 | L3 | L1 | 16 | L2 | L3 | L1 |
| 8 | L1 | L3 | L2 | 17 | L2 | L3 | L2 |
| 9 | L1 | L3 | L3 | 18 | L2 | L3 | L3 |
样点 Site | 共有峰Common peaks (cm-1) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2931 | 1629 | 1409 | 1236 | 1103 | 989 | 921 | 866 | 572 | 522 | |
| 贵南01 Guinan 01 | 0.094 | 0.104 | 0.120 | 0.119 | 0.225 | 0.521 | 0.242 | 0.178 | 0.364 | 0.400 |
| 果洛01 Golog 01 | 0.093 | 0.105 | 0.121 | 0.111 | 0.210 | 0.508 | 0.238 | 0.173 | 0.349 | 0.381 |
| 海南01 Hainan 01 | 0.087 | 0.092 | 0.111 | 0.112 | 0.208 | 0.487 | 0.223 | 0.165 | 0.340 | 0.368 |
| 海西01 Haixi 01 | 0.108 | 0.149 | 0.151 | 0.120 | 0.245 | 0.578 | 0.257 | 0.180 | 0.407 | 0.451 |
| 海西02 Haixi 02 | 0.080 | 0.083 | 0.104 | 0.105 | 0.200 | 0.439 | 0.217 | 0.165 | 0.310 | 0.339 |
| 海西02B Haixi 02B | 0.114 | 0.152 | 0.156 | 0.132 | 0.263 | 0.634 | 0.272 | 0.193 | 0.437 | 0.483 |
| 海西03A Haixi 03A | 0.087 | 0.087 | 0.109 | 0.113 | 0.216 | 0.504 | 0.233 | 0.177 | 0.346 | 0.378 |
| 海西03B Haixi 03B | 0.075 | 0.069 | 0.090 | 0.090 | 0.171 | 0.374 | 0.191 | 0.146 | 0.269 | 0.287 |
| 湟源01 Huangyuan 01 | 0.097 | 0.110 | 0.124 | 0.121 | 0.232 | 0.549 | 0.243 | 0.175 | 0.380 | 0.413 |
| 湟源03 Huangyuan 03 | 0.089 | 0.100 | 0.112 | 0.114 | 0.192 | 0.406 | 0.216 | 0.161 | 0.293 | 0.329 |
| 湟源04 Huangyuan 04 | 0.082 | 0.097 | 0.112 | 0.114 | 0.196 | 0.410 | 0.191 | 0.146 | 0.301 | 0.331 |
| 湟源05 Huangyuan 05 | 0.080 | 0.080 | 0.098 | 0.098 | 0.185 | 0.423 | 0.204 | 0.150 | 0.300 | 0.321 |
| 湟源06 Huangyuan 06 | 0.093 | 0.101 | 0.115 | 0.113 | 0.218 | 0.514 | 0.235 | 0.170 | 0.355 | 0.385 |
| 湟源07 Huangyuan 07 | 0.098 | 0.101 | 0.125 | 0.115 | 0.237 | 0.594 | 0.282 | 0.187 | 0.389 | 0.432 |
| 门源01 Menyuan 01 | 0.098 | 0.101 | 0.125 | 0.115 | 0.237 | 0.610 | 0.260 | 0.176 | 0.400 | 0.433 |
| 门源02A Menyuan 02A | 0.097 | 0.126 | 0.132 | 0.118 | 0.225 | 0.533 | 0.245 | 0.181 | 0.374 | 0.415 |
| 门源02B Menyuan 02B | 0.111 | 0.160 | 0.155 | 0.127 | 0.249 | 0.573 | 0.247 | 0.176 | 0.410 | 0.451 |
| 门源03 Menyuan 03 | 0.093 | 0.123 | 0.124 | 0.115 | 0.217 | 0.468 | 0.223 | 0.165 | 0.341 | 0.374 |
| 门源04 Menyuan 04 | 0.086 | 0.097 | 0.112 | 0.113 | 0.209 | 0.461 | 0.221 | 0.168 | 0.325 | 0.357 |
| 门源05 Menyuan 05 | 0.081 | 0.116 | 0.117 | 0.094 | 0.200 | 0.531 | 0.219 | 0.142 | 0.362 | 0.394 |
| 门源野生01 Menyuan wild 01 | 0.105 | 0.131 | 0.140 | 0.117 | 0.251 | 0.686 | 0.289 | 0.188 | 0.434 | 0.484 |
| 门源野生02 Menyuan wild 02 | 0.091 | 0.105 | 0.118 | 0.108 | 0.211 | 0.490 | 0.229 | 0.171 | 0.332 | 0.374 |
| 门源野生03 Menyuan wild 03 | 0.107 | 0.130 | 0.139 | 0.122 | 0.253 | 0.676 | 0.282 | 0.190 | 0.436 | 0.481 |
| 门源野生04 Menyuan wild 04 | 0.110 | 0.123 | 0.140 | 0.128 | 0.261 | 0.671 | 0.288 | 0.197 | 0.440 | 0.482 |
| 门源野生05 Menyuan wild 05 | 0.119 | 0.160 | 0.162 | 0.130 | 0.278 | 0.701 | 0.297 | 0.199 | 0.463 | 0.515 |
| 门源野生06 Menyuan wild 06 | 0.120 | 0.158 | 0.160 | 0.130 | 0.276 | 0.705 | 0.302 | 0.206 | 0.464 | 0.518 |
| 囊谦01 Nangqian 01 | 0.091 | 0.098 | 0.117 | 0.108 | 0.212 | 0.499 | 0.229 | 0.163 | 0.344 | 0.369 |
| 囊谦野生01 Nangqian wild 01 | 0.109 | 0.143 | 0.145 | 0.125 | 0.259 | 0.640 | 0.281 | 0.189 | 0.430 | 0.474 |
| 泽库01 Zeku 01 | 0.078 | 0.097 | 0.106 | 0.092 | 0.192 | 0.553 | 0.223 | 0.147 | 0.345 | 0.387 |
| 泽库02 Zeku 02 | 0.099 | 0.111 | 0.128 | 0.116 | 0.241 | 0.601 | 0.262 | 0.179 | 0.379 | 0.438 |
| 泽库03 Zeku 03 | 0.098 | 0.119 | 0.127 | 0.125 | 0.238 | 0.534 | 0.245 | 0.179 | 0.375 | 0.414 |
| 泽库04 Zeku 04 | 0.090 | 0.101 | 0.119 | 0.116 | 0.217 | 0.480 | 0.233 | 0.175 | 0.339 | 0.373 |
表4 蕨麻各样点ATR吸收数据
Table 4 Data of P. anserina ATR uptake at each sample site
样点 Site | 共有峰Common peaks (cm-1) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2931 | 1629 | 1409 | 1236 | 1103 | 989 | 921 | 866 | 572 | 522 | |
| 贵南01 Guinan 01 | 0.094 | 0.104 | 0.120 | 0.119 | 0.225 | 0.521 | 0.242 | 0.178 | 0.364 | 0.400 |
| 果洛01 Golog 01 | 0.093 | 0.105 | 0.121 | 0.111 | 0.210 | 0.508 | 0.238 | 0.173 | 0.349 | 0.381 |
| 海南01 Hainan 01 | 0.087 | 0.092 | 0.111 | 0.112 | 0.208 | 0.487 | 0.223 | 0.165 | 0.340 | 0.368 |
| 海西01 Haixi 01 | 0.108 | 0.149 | 0.151 | 0.120 | 0.245 | 0.578 | 0.257 | 0.180 | 0.407 | 0.451 |
| 海西02 Haixi 02 | 0.080 | 0.083 | 0.104 | 0.105 | 0.200 | 0.439 | 0.217 | 0.165 | 0.310 | 0.339 |
| 海西02B Haixi 02B | 0.114 | 0.152 | 0.156 | 0.132 | 0.263 | 0.634 | 0.272 | 0.193 | 0.437 | 0.483 |
| 海西03A Haixi 03A | 0.087 | 0.087 | 0.109 | 0.113 | 0.216 | 0.504 | 0.233 | 0.177 | 0.346 | 0.378 |
| 海西03B Haixi 03B | 0.075 | 0.069 | 0.090 | 0.090 | 0.171 | 0.374 | 0.191 | 0.146 | 0.269 | 0.287 |
| 湟源01 Huangyuan 01 | 0.097 | 0.110 | 0.124 | 0.121 | 0.232 | 0.549 | 0.243 | 0.175 | 0.380 | 0.413 |
| 湟源03 Huangyuan 03 | 0.089 | 0.100 | 0.112 | 0.114 | 0.192 | 0.406 | 0.216 | 0.161 | 0.293 | 0.329 |
| 湟源04 Huangyuan 04 | 0.082 | 0.097 | 0.112 | 0.114 | 0.196 | 0.410 | 0.191 | 0.146 | 0.301 | 0.331 |
| 湟源05 Huangyuan 05 | 0.080 | 0.080 | 0.098 | 0.098 | 0.185 | 0.423 | 0.204 | 0.150 | 0.300 | 0.321 |
| 湟源06 Huangyuan 06 | 0.093 | 0.101 | 0.115 | 0.113 | 0.218 | 0.514 | 0.235 | 0.170 | 0.355 | 0.385 |
| 湟源07 Huangyuan 07 | 0.098 | 0.101 | 0.125 | 0.115 | 0.237 | 0.594 | 0.282 | 0.187 | 0.389 | 0.432 |
| 门源01 Menyuan 01 | 0.098 | 0.101 | 0.125 | 0.115 | 0.237 | 0.610 | 0.260 | 0.176 | 0.400 | 0.433 |
| 门源02A Menyuan 02A | 0.097 | 0.126 | 0.132 | 0.118 | 0.225 | 0.533 | 0.245 | 0.181 | 0.374 | 0.415 |
| 门源02B Menyuan 02B | 0.111 | 0.160 | 0.155 | 0.127 | 0.249 | 0.573 | 0.247 | 0.176 | 0.410 | 0.451 |
| 门源03 Menyuan 03 | 0.093 | 0.123 | 0.124 | 0.115 | 0.217 | 0.468 | 0.223 | 0.165 | 0.341 | 0.374 |
| 门源04 Menyuan 04 | 0.086 | 0.097 | 0.112 | 0.113 | 0.209 | 0.461 | 0.221 | 0.168 | 0.325 | 0.357 |
| 门源05 Menyuan 05 | 0.081 | 0.116 | 0.117 | 0.094 | 0.200 | 0.531 | 0.219 | 0.142 | 0.362 | 0.394 |
| 门源野生01 Menyuan wild 01 | 0.105 | 0.131 | 0.140 | 0.117 | 0.251 | 0.686 | 0.289 | 0.188 | 0.434 | 0.484 |
| 门源野生02 Menyuan wild 02 | 0.091 | 0.105 | 0.118 | 0.108 | 0.211 | 0.490 | 0.229 | 0.171 | 0.332 | 0.374 |
| 门源野生03 Menyuan wild 03 | 0.107 | 0.130 | 0.139 | 0.122 | 0.253 | 0.676 | 0.282 | 0.190 | 0.436 | 0.481 |
| 门源野生04 Menyuan wild 04 | 0.110 | 0.123 | 0.140 | 0.128 | 0.261 | 0.671 | 0.288 | 0.197 | 0.440 | 0.482 |
| 门源野生05 Menyuan wild 05 | 0.119 | 0.160 | 0.162 | 0.130 | 0.278 | 0.701 | 0.297 | 0.199 | 0.463 | 0.515 |
| 门源野生06 Menyuan wild 06 | 0.120 | 0.158 | 0.160 | 0.130 | 0.276 | 0.705 | 0.302 | 0.206 | 0.464 | 0.518 |
| 囊谦01 Nangqian 01 | 0.091 | 0.098 | 0.117 | 0.108 | 0.212 | 0.499 | 0.229 | 0.163 | 0.344 | 0.369 |
| 囊谦野生01 Nangqian wild 01 | 0.109 | 0.143 | 0.145 | 0.125 | 0.259 | 0.640 | 0.281 | 0.189 | 0.430 | 0.474 |
| 泽库01 Zeku 01 | 0.078 | 0.097 | 0.106 | 0.092 | 0.192 | 0.553 | 0.223 | 0.147 | 0.345 | 0.387 |
| 泽库02 Zeku 02 | 0.099 | 0.111 | 0.128 | 0.116 | 0.241 | 0.601 | 0.262 | 0.179 | 0.379 | 0.438 |
| 泽库03 Zeku 03 | 0.098 | 0.119 | 0.127 | 0.125 | 0.238 | 0.534 | 0.245 | 0.179 | 0.375 | 0.414 |
| 泽库04 Zeku 04 | 0.090 | 0.101 | 0.119 | 0.116 | 0.217 | 0.480 | 0.233 | 0.175 | 0.339 | 0.373 |
| 样点Site | 波数Wave number | 样点Site | 波数Wave number |
|---|---|---|---|
| 贵南01 Guinan 01 | 8337, 6794, 5674, 5168, 4763, 4310 | 门源03 Menyuan 03 | 8344, 6780, 5674, 5168, 4763, 4310 |
| 果洛01 Golog 01 | 8337, 6779, 5674, 5163, 4763, 4310 | 门源04 Menyuan 04 | 8350, 6779, 5674, 5168, 4763, 4310 |
| 海南01 Hainan 01 | 8325, 6794, 5674, 5170, 4763, 4310 | 门源05 Menyuan 05 | 8319, 6807, 5674, 5168, 4742, 4304 |
| 海西01 Haixi 01 | 8321, 6780, 5674, 5163, 4761, 4310 | 门源野生01 Menyuan wild 01 | 8331, 6781, 5674, 5168, 4763, 4310 |
| 海西02 Haixi 02 | 8350, 6779, 5674, 5168, 4796, 4310 | 门源野生02 Menyuan wild 02 | 8343, 6780, 5674, 5168, 4763, 4310 |
| 海西02B Haixi 02B | 8337, 6781, 5674, 5163, 4761, 4310 | 门源野生03 Menyuan wild 03 | 8314, 6809, 5668, 5168, 4748, 4306 |
| 海西03A Haixi 03A | 8344, 6786, 5674, 5174, 4794, 4310 | 门源野生04 Menyuan wild 04 | 8320, 6810, 5668, 5168, 4756, 4306 |
| 海西03B Haixi 03B | 8350, 6775, 5674, 5168, 4794, 4312 | 门源野生05 Menyuan wild 05 | 8320, 6781, 5668, 5163, 4748, 4306 |
| 湟源01 Huangyuan 01 | 8319, 6809, 5674, 5170, 4761, 4310 | 门源野生06 Menyuan wild 06 | 8325, 6794, 5674, 5168, 4761, 4306 |
| 湟源03 Huangyuan 03 | 8344, 6780, 5674, 5170, 4763, 4310 | 囊谦01 Nangqian 01 | 8319, 6794, 5674, 5168, 4761, 4310 |
| 湟源04 Huangyuan 04 | 8314, 6809, 5668, 5168, 4742, 4306 | 囊谦野生01 Nangqian wild 01 | 8319, 6807, 5674, 5168, 4754, 4306 |
| 湟源05 Huangyuan 05 | 8325, 6786, 5674, 5170, 4761, 4310 | 泽库01 Zeku 01 | 8319, 6809, 5668, 5168, 4748, 4306 |
| 湟源06 Huangyuan 06 | 8325, 6786, 5674, 5170, 4761, 4310 | 泽库02 Zeku 02 | 8319, 6807, 5674, 5168, 4761, 4310 |
| 湟源07 Huangyuan 07 | 8314, 6809, 5639, 5168, 4761, 4310 | 泽库03 Zeku 03 | 8350, 6781, 5674, 5168, 4763, 4310 |
| 门源01 Menyuan 01 | 8350, 6779, 5674, 5168, 4763, 4310 | 泽库04 Zeku 04 | 8350, 6780, 5674, 5168, 4794, 4310 |
| 门源02A Menyuan 02A | 8350, 6775, 5674, 5168, 4794, 4310 | 均值Averages | 8332, 6790, 5672, 5168, 4763, 4309 |
| 门源02B Menyuan 02B | 8325, 6781, 5674, 5163, 4738, 4306 |
表5 不同样点蕨麻近红外NIR吸收数据
Table 5 Near-infrared (NIR) absorption data of P. anserina with different sites (cm-1)
| 样点Site | 波数Wave number | 样点Site | 波数Wave number |
|---|---|---|---|
| 贵南01 Guinan 01 | 8337, 6794, 5674, 5168, 4763, 4310 | 门源03 Menyuan 03 | 8344, 6780, 5674, 5168, 4763, 4310 |
| 果洛01 Golog 01 | 8337, 6779, 5674, 5163, 4763, 4310 | 门源04 Menyuan 04 | 8350, 6779, 5674, 5168, 4763, 4310 |
| 海南01 Hainan 01 | 8325, 6794, 5674, 5170, 4763, 4310 | 门源05 Menyuan 05 | 8319, 6807, 5674, 5168, 4742, 4304 |
| 海西01 Haixi 01 | 8321, 6780, 5674, 5163, 4761, 4310 | 门源野生01 Menyuan wild 01 | 8331, 6781, 5674, 5168, 4763, 4310 |
| 海西02 Haixi 02 | 8350, 6779, 5674, 5168, 4796, 4310 | 门源野生02 Menyuan wild 02 | 8343, 6780, 5674, 5168, 4763, 4310 |
| 海西02B Haixi 02B | 8337, 6781, 5674, 5163, 4761, 4310 | 门源野生03 Menyuan wild 03 | 8314, 6809, 5668, 5168, 4748, 4306 |
| 海西03A Haixi 03A | 8344, 6786, 5674, 5174, 4794, 4310 | 门源野生04 Menyuan wild 04 | 8320, 6810, 5668, 5168, 4756, 4306 |
| 海西03B Haixi 03B | 8350, 6775, 5674, 5168, 4794, 4312 | 门源野生05 Menyuan wild 05 | 8320, 6781, 5668, 5163, 4748, 4306 |
| 湟源01 Huangyuan 01 | 8319, 6809, 5674, 5170, 4761, 4310 | 门源野生06 Menyuan wild 06 | 8325, 6794, 5674, 5168, 4761, 4306 |
| 湟源03 Huangyuan 03 | 8344, 6780, 5674, 5170, 4763, 4310 | 囊谦01 Nangqian 01 | 8319, 6794, 5674, 5168, 4761, 4310 |
| 湟源04 Huangyuan 04 | 8314, 6809, 5668, 5168, 4742, 4306 | 囊谦野生01 Nangqian wild 01 | 8319, 6807, 5674, 5168, 4754, 4306 |
| 湟源05 Huangyuan 05 | 8325, 6786, 5674, 5170, 4761, 4310 | 泽库01 Zeku 01 | 8319, 6809, 5668, 5168, 4748, 4306 |
| 湟源06 Huangyuan 06 | 8325, 6786, 5674, 5170, 4761, 4310 | 泽库02 Zeku 02 | 8319, 6807, 5674, 5168, 4761, 4310 |
| 湟源07 Huangyuan 07 | 8314, 6809, 5639, 5168, 4761, 4310 | 泽库03 Zeku 03 | 8350, 6781, 5674, 5168, 4763, 4310 |
| 门源01 Menyuan 01 | 8350, 6779, 5674, 5168, 4763, 4310 | 泽库04 Zeku 04 | 8350, 6780, 5674, 5168, 4794, 4310 |
| 门源02A Menyuan 02A | 8350, 6775, 5674, 5168, 4794, 4310 | 均值Averages | 8332, 6790, 5672, 5168, 4763, 4309 |
| 门源02B Menyuan 02B | 8325, 6781, 5674, 5163, 4738, 4306 |
试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) | 试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 44.19 | 47.44 | 45.27 | 10 | L2 | L1 | L1 | 64.42 | 65.12 | 64.65 |
| 2 | L1 | L1 | L2 | 83.02 | 57.21 | 74.42 | 11 | L2 | L1 | L2 | 63.02 | 61.86 | 62.64 |
| 3 | L1 | L1 | L3 | 87.44 | 51.16 | 75.35 | 12 | L2 | L1 | L3 | 46.74 | 44.65 | 46.05 |
| 4 | L1 | L2 | L1 | 82.56 | 79.53 | 81.55 | 13 | L2 | L2 | L1 | 66.51 | 65.58 | 66.20 |
| 5 | L1 | L2 | L2 | 85.12 | 65.58 | 78.60 | 14 | L2 | L2 | L2 | 66.05 | 68.37 | 66.82 |
| 6 | L1 | L2 | L3 | 82.79 | 58.60 | 74.73 | 15 | L2 | L2 | L3 | 45.81 | 43.26 | 44.96 |
| 7 | L1 | L3 | L1 | 82.33 | 80.47 | 81.71 | 16 | L2 | L3 | L1 | 66.74 | 66.98 | 66.82 |
| 8 | L1 | L3 | L2 | 85.35 | 65.58 | 78.76 | 17 | L2 | L3 | L2 | 66.05 | 69.30 | 67.13 |
| 9 | L1 | L3 | L3 | 83.02 | 58.60 | 74.88 | 18 | L2 | L3 | L3 | 46.05 | 43.26 | 45.12 |
表6 ATR区域判别模型正交试验结果
Table 6 Results of orthogonal tests of the ATR regional discriminant model
试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) | 试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 44.19 | 47.44 | 45.27 | 10 | L2 | L1 | L1 | 64.42 | 65.12 | 64.65 |
| 2 | L1 | L1 | L2 | 83.02 | 57.21 | 74.42 | 11 | L2 | L1 | L2 | 63.02 | 61.86 | 62.64 |
| 3 | L1 | L1 | L3 | 87.44 | 51.16 | 75.35 | 12 | L2 | L1 | L3 | 46.74 | 44.65 | 46.05 |
| 4 | L1 | L2 | L1 | 82.56 | 79.53 | 81.55 | 13 | L2 | L2 | L1 | 66.51 | 65.58 | 66.20 |
| 5 | L1 | L2 | L2 | 85.12 | 65.58 | 78.60 | 14 | L2 | L2 | L2 | 66.05 | 68.37 | 66.82 |
| 6 | L1 | L2 | L3 | 82.79 | 58.60 | 74.73 | 15 | L2 | L2 | L3 | 45.81 | 43.26 | 44.96 |
| 7 | L1 | L3 | L1 | 82.33 | 80.47 | 81.71 | 16 | L2 | L3 | L1 | 66.74 | 66.98 | 66.82 |
| 8 | L1 | L3 | L2 | 85.35 | 65.58 | 78.76 | 17 | L2 | L3 | L2 | 66.05 | 69.30 | 67.13 |
| 9 | L1 | L3 | L3 | 83.02 | 58.60 | 74.88 | 18 | L2 | L3 | L3 | 46.05 | 43.26 | 45.12 |
试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) | 试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 43.02 | 36.28 | 40.78 | 10 | L2 | L1 | L1 | 73.26 | 68.37 | 71.63 |
| 2 | L1 | L1 | L2 | 80.00 | 68.84 | 76.28 | 11 | L2 | L1 | L2 | 71.40 | 71.16 | 71.32 |
| 3 | L1 | L1 | L3 | 73.02 | 45.12 | 63.72 | 12 | L2 | L1 | L3 | 65.81 | 67.44 | 66.36 |
| 4 | L1 | L2 | L1 | 74.42 | 70.70 | 73.18 | 13 | L2 | L2 | L1 | 74.19 | 73.49 | 73.95 |
| 5 | L1 | L2 | L2 | 81.16 | 63.26 | 75.19 | 14 | L2 | L2 | L2 | 66.98 | 64.65 | 66.20 |
| 6 | L1 | L2 | L3 | 75.12 | 51.63 | 67.29 | 15 | L2 | L2 | L3 | 57.21 | 61.40 | 58.60 |
| 7 | L1 | L3 | L1 | 73.26 | 71.63 | 72.71 | 16 | L2 | L3 | L1 | 73.72 | 73.49 | 73.64 |
| 8 | L1 | L3 | L2 | 81.16 | 63.26 | 75.19 | 17 | L2 | L3 | L2 | 67.44 | 65.58 | 66.82 |
| 9 | L1 | L3 | L3 | 75.12 | 51.63 | 67.29 | 18 | L2 | L3 | L3 | 57.21 | 61.40 | 58.60 |
表7 NIR区域判别模型正交试验结果
Table 7 Results of the orthogonal experiment for the NIR region discriminant model
试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) | 试验序号 Experiment number | 建模方法 Modeling method (A) | 校正方法 Calibration method (B) | 谱图 类型 Spectral type (C) | 识别率 Recognition rate (%) | 预测率 Prediction rate (%) | 总和 Total (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | L1 | L1 | L1 | 43.02 | 36.28 | 40.78 | 10 | L2 | L1 | L1 | 73.26 | 68.37 | 71.63 |
| 2 | L1 | L1 | L2 | 80.00 | 68.84 | 76.28 | 11 | L2 | L1 | L2 | 71.40 | 71.16 | 71.32 |
| 3 | L1 | L1 | L3 | 73.02 | 45.12 | 63.72 | 12 | L2 | L1 | L3 | 65.81 | 67.44 | 66.36 |
| 4 | L1 | L2 | L1 | 74.42 | 70.70 | 73.18 | 13 | L2 | L2 | L1 | 74.19 | 73.49 | 73.95 |
| 5 | L1 | L2 | L2 | 81.16 | 63.26 | 75.19 | 14 | L2 | L2 | L2 | 66.98 | 64.65 | 66.20 |
| 6 | L1 | L2 | L3 | 75.12 | 51.63 | 67.29 | 15 | L2 | L2 | L3 | 57.21 | 61.40 | 58.60 |
| 7 | L1 | L3 | L1 | 73.26 | 71.63 | 72.71 | 16 | L2 | L3 | L1 | 73.72 | 73.49 | 73.64 |
| 8 | L1 | L3 | L2 | 81.16 | 63.26 | 75.19 | 17 | L2 | L3 | L2 | 67.44 | 65.58 | 66.82 |
| 9 | L1 | L3 | L3 | 75.12 | 51.63 | 67.29 | 18 | L2 | L3 | L3 | 57.21 | 61.40 | 58.60 |
样品编号 Sample number | 淀粉 Amylum | 蛋白质 Protein | 多糖 Polysaccharide | 鞣质 Tannin | 总皂苷 Total saponin |
|---|---|---|---|---|---|
| 泽库01 Zeku 01 | 442±6.9 | 92.6±1.9 | 63.6±2.4 | 18.6±0.21 | 14.2±0.6 |
| 果洛01 Golog 01 | 447±6.7 | 97.8±2.1 | 32.2±1.5 | 12.5±0.32 | 20.1±1.1 |
| 泽库04 Zeku 04 | 422±6.2 | 92.8±1.7 | 111.2±1.1 | 20.8±0.34 | 27.6±1.3 |
| 囊谦野生01 Nangqian wild 01 | 414±1.1 | 125.0±1.5 | 122.5±8.8 | 12.1±0.41 | 20.3±0.6 |
| 囊谦01 Nangqian 01 | 412±5.0 | 85.1±1.5 | 38.5±3.0 | 19.5±0.27 | 25.8±0.6 |
| 贵南01 Guinan 01 | 453±8.3 | 125.0±2.8 | 108.5±6.4 | 25.4±0.73 | 24.0±1.2 |
| 海西03A Haixi 03A | 439±6.1 | 90.1±1.2 | 62.4±3.4 | 27.0±1.03 | 25.7±0.9 |
| 海西02A Haixi 02A | 433±6.7 | 101.0±2.5 | 152.1±10.9 | 17.9±0.24 | 22.6±0.9 |
| 泽库03 Zeku 03 | 420±5.7 | 90.1±2.0 | 132.7±3.8 | 24.4±0.91 | 25.6±0.9 |
| 门源01 Menyuan 01 | 422±6.5 | 95.5±1.6 | 123.4±0.6 | 19.4±0.25 | 24.4±0.9 |
| 门源03 Menyuan 03 | 450±4.0 | 135.0±3.0 | 152.8±11.2 | 24.2±0.97 | 27.4±0.2 |
| 门源02A Menyuan 02A | 416±1.7 | 124.0±0.8 | 70.2±4.5 | 14.0±0.55 | 24.9±1.5 |
| 门源04 Menyuan 04 | 448±6.9 | 110.0±2.8 | 103.2±5.3 | 22.2±1.12 | 28.5±1.7 |
| 门源野生03 Menyuan wild 03 | 444±1.8 | 100.0±1.4 | 102.5±4.9 | 18.7±0.77 | 25.7±0.7 |
| 海南01 Hainan 01 | 448±6.5 | 125.0±1.8 | 32.6±1.7 | 30.1±1.10 | 24.6±1.2 |
| 湟源04 Huangyuan 04 | 487±7.8 | 91.6±1.6 | 56.4±3.9 | 23.3±1.01 | 19.8±1.0 |
| 海西01 Haixi 01 | 418±4.0 | 138.0±1.2 | 128.3±6.6 | 13.2±0.39 | 32.9±1.5 |
| 泽库02 Zeku 02 | 418±3.3 | 104.0±2.0 | 83.6±6.4 | 15.9±0.32 | 31.8±1.7 |
| 湟源07 Huangyuan 07 | 507±8.9 | 121.0±2.7 | 48.0±3.6 | 23.1±0.83 | 22.6±0.9 |
| 海西02B Haixi 02B | 429±6.5 | 128.0±1.9 | 146.0±7.1 | 20.2±0.20 | 25.5±1.1 |
| 门源野生01 Menyuan wild 01 | 456±2.8 | 110.0±2.6 | 153.4±6.9 | 10.6±0.43 | 25.8±1.3 |
| 湟源01 Huangyuan 01 | 446±5.6 | 103.0±2.0 | 64.4±4.7 | 32.9±1.41 | 31.4±1.3 |
| 海西03B Haixi 03B | 503±8.7 | 94.3±2.0 | 110.0±4.3 | 17.5±0.60 | 29.0±1.1 |
| 湟源06 Huangyuan 06 | 469±5.3 | 121.0±2.8 | 61.7±2.7 | 30.6±1.21 | 28.3±0.9 |
| 门源02B Menyuan 02B | 432±5.0 | 155.0±1.5 | 162.9±8.2 | 18.2±0.39 | 27.1±1.5 |
| 门源野生04 Menyuan wild 04 | 469±6.2 | 90.9±2.2 | 64.6±4.5 | 20.2±0.31 | 30.2±0.7 |
| 门源野生06 Menyuan wild 06 | 474±4.7 | 123.0±2.5 | 104.5±6.4 | 11.1±0.40 | 31.7±1.8 |
| 门源野生05 Menyuan wild 05 | 432±7.2 | 150.0±3.3 | 95.4±2.6 | 15.2±0.68 | 30.1±1.2 |
| 湟源05 Huangyuan 05 | 480±5.8 | 99.4±1.4 | 41.4±3.0 | 28.6±0.60 | 33.6±2.0 |
| 湟源03 Huangyuan 03 | 420±0.4 | 105.0±2.4 | 78.9±2.3 | 36.6±1.13 | 41.1±1.7 |
| 门源野生02 Menyuan wild 02 | 494±7.4 | 103.0±1.4 | 72.3±2.5 | 18.0±0.76 | 32.8±1.4 |
| 门源05 Menyuan 05 | 482±3.2 | 145.0±1.8 | 128.8±10.2 | 8.7±0.29 | 33.0±1.4 |
表8 蕨麻中5种营养成分含量测定结果
Table 8 Determination result of five nutrient contents in P. anserina (mg·g-1)
样品编号 Sample number | 淀粉 Amylum | 蛋白质 Protein | 多糖 Polysaccharide | 鞣质 Tannin | 总皂苷 Total saponin |
|---|---|---|---|---|---|
| 泽库01 Zeku 01 | 442±6.9 | 92.6±1.9 | 63.6±2.4 | 18.6±0.21 | 14.2±0.6 |
| 果洛01 Golog 01 | 447±6.7 | 97.8±2.1 | 32.2±1.5 | 12.5±0.32 | 20.1±1.1 |
| 泽库04 Zeku 04 | 422±6.2 | 92.8±1.7 | 111.2±1.1 | 20.8±0.34 | 27.6±1.3 |
| 囊谦野生01 Nangqian wild 01 | 414±1.1 | 125.0±1.5 | 122.5±8.8 | 12.1±0.41 | 20.3±0.6 |
| 囊谦01 Nangqian 01 | 412±5.0 | 85.1±1.5 | 38.5±3.0 | 19.5±0.27 | 25.8±0.6 |
| 贵南01 Guinan 01 | 453±8.3 | 125.0±2.8 | 108.5±6.4 | 25.4±0.73 | 24.0±1.2 |
| 海西03A Haixi 03A | 439±6.1 | 90.1±1.2 | 62.4±3.4 | 27.0±1.03 | 25.7±0.9 |
| 海西02A Haixi 02A | 433±6.7 | 101.0±2.5 | 152.1±10.9 | 17.9±0.24 | 22.6±0.9 |
| 泽库03 Zeku 03 | 420±5.7 | 90.1±2.0 | 132.7±3.8 | 24.4±0.91 | 25.6±0.9 |
| 门源01 Menyuan 01 | 422±6.5 | 95.5±1.6 | 123.4±0.6 | 19.4±0.25 | 24.4±0.9 |
| 门源03 Menyuan 03 | 450±4.0 | 135.0±3.0 | 152.8±11.2 | 24.2±0.97 | 27.4±0.2 |
| 门源02A Menyuan 02A | 416±1.7 | 124.0±0.8 | 70.2±4.5 | 14.0±0.55 | 24.9±1.5 |
| 门源04 Menyuan 04 | 448±6.9 | 110.0±2.8 | 103.2±5.3 | 22.2±1.12 | 28.5±1.7 |
| 门源野生03 Menyuan wild 03 | 444±1.8 | 100.0±1.4 | 102.5±4.9 | 18.7±0.77 | 25.7±0.7 |
| 海南01 Hainan 01 | 448±6.5 | 125.0±1.8 | 32.6±1.7 | 30.1±1.10 | 24.6±1.2 |
| 湟源04 Huangyuan 04 | 487±7.8 | 91.6±1.6 | 56.4±3.9 | 23.3±1.01 | 19.8±1.0 |
| 海西01 Haixi 01 | 418±4.0 | 138.0±1.2 | 128.3±6.6 | 13.2±0.39 | 32.9±1.5 |
| 泽库02 Zeku 02 | 418±3.3 | 104.0±2.0 | 83.6±6.4 | 15.9±0.32 | 31.8±1.7 |
| 湟源07 Huangyuan 07 | 507±8.9 | 121.0±2.7 | 48.0±3.6 | 23.1±0.83 | 22.6±0.9 |
| 海西02B Haixi 02B | 429±6.5 | 128.0±1.9 | 146.0±7.1 | 20.2±0.20 | 25.5±1.1 |
| 门源野生01 Menyuan wild 01 | 456±2.8 | 110.0±2.6 | 153.4±6.9 | 10.6±0.43 | 25.8±1.3 |
| 湟源01 Huangyuan 01 | 446±5.6 | 103.0±2.0 | 64.4±4.7 | 32.9±1.41 | 31.4±1.3 |
| 海西03B Haixi 03B | 503±8.7 | 94.3±2.0 | 110.0±4.3 | 17.5±0.60 | 29.0±1.1 |
| 湟源06 Huangyuan 06 | 469±5.3 | 121.0±2.8 | 61.7±2.7 | 30.6±1.21 | 28.3±0.9 |
| 门源02B Menyuan 02B | 432±5.0 | 155.0±1.5 | 162.9±8.2 | 18.2±0.39 | 27.1±1.5 |
| 门源野生04 Menyuan wild 04 | 469±6.2 | 90.9±2.2 | 64.6±4.5 | 20.2±0.31 | 30.2±0.7 |
| 门源野生06 Menyuan wild 06 | 474±4.7 | 123.0±2.5 | 104.5±6.4 | 11.1±0.40 | 31.7±1.8 |
| 门源野生05 Menyuan wild 05 | 432±7.2 | 150.0±3.3 | 95.4±2.6 | 15.2±0.68 | 30.1±1.2 |
| 湟源05 Huangyuan 05 | 480±5.8 | 99.4±1.4 | 41.4±3.0 | 28.6±0.60 | 33.6±2.0 |
| 湟源03 Huangyuan 03 | 420±0.4 | 105.0±2.4 | 78.9±2.3 | 36.6±1.13 | 41.1±1.7 |
| 门源野生02 Menyuan wild 02 | 494±7.4 | 103.0±1.4 | 72.3±2.5 | 18.0±0.76 | 32.8±1.4 |
| 门源05 Menyuan 05 | 482±3.2 | 145.0±1.8 | 128.8±10.2 | 8.7±0.29 | 33.0±1.4 |
成分 Component | 校正方法 Calibration method | 谱图类型 Spectral type | 潜变量 Latent variable | 建模波段 Modeling band (cm-1) | RMSEC | Rc | RMSEP | Rp | RPD |
|---|---|---|---|---|---|---|---|---|---|
淀粉 Starch | Constant | spectrum | 3 | 5280~4382 | 2.650 | 0.3626 | 1.460 | 0.5790 | 1.31 |
| D1(NS) | 3 | 6140~5390 | 2.240 | 0.6155 | 1.480 | 0.6959 | 1.29 | ||
| D2(NS) | 3 | 6140~5390 | 1.920 | 0.7374 | 1.630 | 0.5260 | 1.17 | ||
| MSC | spectrum | 3 | 5280~4382 | 2.420 | 0.5280 | 1.460 | 0.6676 | 1.31 | |
| D1(NS) | 3 | 6140~5390 | 2.190 | 0.6394 | 1.380 | 0.6895 | 1.38 | ||
| D2(NS) | 3 | 6140~5390 | 2.020 | 0.7030 | 1.670 | 0.4880 | 1.14 | ||
| SNV | spectrum | 3 | 5280~4382 | 2.410 | 0.5305 | 1.480 | 0.6640 | 1.29 | |
| D1(NS) | 3 | 6140~5390 | 2.190 | 0.6387 | 1.380 | 0.6908 | 1.38 | ||
| D2(NS) | 3 | 6140~5390 | 2.020 | 0.7027 | 1.660 | 0.4887 | 1.15 | ||
蛋白质 Protein | Constant | spectrum | 6 | 5221~4144 | 1.480 | 0.6348 | 1.250 | 0.7771 | 1.55 |
| D1(NS) | 6 | 5234~4129 | 1.310 | 0.7309 | 1.250 | 0.7335 | 1.55 | ||
| D2(NS) | 6 | 5234~4129 | 1.270 | 0.7485 | 1.210 | 0.7561 | 1.60 | ||
| MSC | spectrum | 6 | 5221~4144 | 1.280 | 0.7455 | 1.380 | 0.6866 | 1.41 | |
| D1(NS) | 6 | 5234~4129 | 1.270 | 0.7506 | 1.170 | 0.7726 | 1.66 | ||
| D2(NS) | 6 | 5234~4129 | 1.260 | 0.7546 | 1.120 | 0.7965 | 1.73 | ||
| SNV | spectrum | 6 | 5221~4144 | 1.280 | 0.7453 | 1.370 | 0.6898 | 1.42 | |
| D1(NS) | 6 | 5234~4129 | 1.270 | 0.7508 | 1.170 | 0.7723 | 1.66 | ||
| D2(NS) | 6 | 5234~4129 | 1.260 | 0.7547 | 1.120 | 0.7966 | 1.73 | ||
多糖 Polysaccharides | Constant | spectrum | 6 | 7000~4173 | 1.930 | 0.8154 | 2.700 | 0.7762 | 1.64 |
| D1(NS) | 10 | 6940~4490 | 1.790 | 0.8439 | 3.220 | 0.6527 | 1.37 | ||
| D2(NS) | 10 | 6940~4490 | 1.540 | 0.8870 | 2.900 | 0.7726 | 1.52 | ||
| MSC | spectrum | 6 | 7000~4173 | 2.140 | 0.7660 | 2.630 | 0.8470 | 1.68 | |
| D1(NS) | 10 | 6940~4490 | 1.620 | 0.8730 | 2.940 | 0.7312 | 1.50 | ||
| D2(NS) | 10 | 6940~4490 | 1.490 | 0.8938 | 2.940 | 0.7677 | 1.50 | ||
| SNV | spectrum | 6 | 7000~4173 | 2.140 | 0.7657 | 2.640 | 0.8449 | 1.67 | |
| D1(NS) | 10 | 6940~4490 | 1.630 | 0.8719 | 2.940 | 0.7310 | 1.50 | ||
| D2(NS) | 10 | 6940~4490 | 1.490 | 0.8939 | 2.940 | 0.7682 | 1.50 | ||
鞣质 Tannins | Constant | spectrum | 4 | 5215~4144 | 0.311 | 0.8443 | 0.451 | 0.7251 | 1.44 |
| D1(NS) | 4 | 6148~5379 | 0.222 | 0.9243 | 0.312 | 0.8928 | 2.08 | ||
| D2(NS) | 4 | 6148~5379 | 0.192 | 0.9438 | 0.270 | 0.9080 | 2.41 | ||
| MSC | spectrum | 4 | 5215~4144 | 0.395 | 0.7331 | 0.519 | 0.6414 | 1.25 | |
| D1(NS) | 4 | 6148~5379 | 0.240 | 0.9103 | 0.227 | 0.9393 | 2.86 | ||
| D2(NS) | 4 | 6148~5379 | 0.230 | 0.9184 | 0.263 | 0.9240 | 2.47 | ||
| SNV | spectrum | 4 | 5215~4144 | 0.399 | 0.7274 | 0.521 | 0.6341 | 1.25 | |
| D1(NS) | 4 | 6148~5379 | 0.241 | 0.9098 | 0.228 | 0.9392 | 2.85 | ||
| D2(NS) | 4 | 6148~5379 | 0.230 | 0.9185 | 0.263 | 0.9240 | 2.47 | ||
总皂苷 Total saponin | Constant | spectrum | 3 | 7015~4392 | 0.506 | 0.4396 | 0.439 | 0.2780 | 0.66 |
| D1(NS) | 3 | 4381~4362 | 0.341 | 0.7953 | 0.319 | 0.6732 | 0.91 | ||
| D2(NS) | 3 | 4381~4362 | 0.509 | 0.4272 | 0.350 | 0.1327 | 0.83 | ||
| MSC | spectrum | 3 | 7015~4392 | 0.546 | 0.2407 | 0.369 | 0.5327 | 0.79 | |
| D1(NS) | 3 | 4381~4362 | 0.358 | 0.7714 | 0.349 | 0.6466 | 0.83 | ||
| D2(NS) | 3 | 4381~4362 | 0.479 | 0.5252 | 0.448 | 0.2873 | 0.65 | ||
| SNV | spectrum | 3 | 7015~4392 | 0.546 | 0.2421 | 0.370 | 0.5322 | 0.78 | |
| D1(NS) | 3 | 4381~4362 | 0.358 | 0.7715 | 0.349 | 0.6467 | 0.83 | ||
| D2(NS) | 3 | 4381~4362 | 0.480 | 0.5225 | 0.445 | 0.2829 | 0.65 |
表9 蕨麻多指标关键质量属性单因素近红外光谱模型参数
Table 9 Parameters of one-factor near-infrared spectral model for key quality attributes of P. anserina multi-indicators
成分 Component | 校正方法 Calibration method | 谱图类型 Spectral type | 潜变量 Latent variable | 建模波段 Modeling band (cm-1) | RMSEC | Rc | RMSEP | Rp | RPD |
|---|---|---|---|---|---|---|---|---|---|
淀粉 Starch | Constant | spectrum | 3 | 5280~4382 | 2.650 | 0.3626 | 1.460 | 0.5790 | 1.31 |
| D1(NS) | 3 | 6140~5390 | 2.240 | 0.6155 | 1.480 | 0.6959 | 1.29 | ||
| D2(NS) | 3 | 6140~5390 | 1.920 | 0.7374 | 1.630 | 0.5260 | 1.17 | ||
| MSC | spectrum | 3 | 5280~4382 | 2.420 | 0.5280 | 1.460 | 0.6676 | 1.31 | |
| D1(NS) | 3 | 6140~5390 | 2.190 | 0.6394 | 1.380 | 0.6895 | 1.38 | ||
| D2(NS) | 3 | 6140~5390 | 2.020 | 0.7030 | 1.670 | 0.4880 | 1.14 | ||
| SNV | spectrum | 3 | 5280~4382 | 2.410 | 0.5305 | 1.480 | 0.6640 | 1.29 | |
| D1(NS) | 3 | 6140~5390 | 2.190 | 0.6387 | 1.380 | 0.6908 | 1.38 | ||
| D2(NS) | 3 | 6140~5390 | 2.020 | 0.7027 | 1.660 | 0.4887 | 1.15 | ||
蛋白质 Protein | Constant | spectrum | 6 | 5221~4144 | 1.480 | 0.6348 | 1.250 | 0.7771 | 1.55 |
| D1(NS) | 6 | 5234~4129 | 1.310 | 0.7309 | 1.250 | 0.7335 | 1.55 | ||
| D2(NS) | 6 | 5234~4129 | 1.270 | 0.7485 | 1.210 | 0.7561 | 1.60 | ||
| MSC | spectrum | 6 | 5221~4144 | 1.280 | 0.7455 | 1.380 | 0.6866 | 1.41 | |
| D1(NS) | 6 | 5234~4129 | 1.270 | 0.7506 | 1.170 | 0.7726 | 1.66 | ||
| D2(NS) | 6 | 5234~4129 | 1.260 | 0.7546 | 1.120 | 0.7965 | 1.73 | ||
| SNV | spectrum | 6 | 5221~4144 | 1.280 | 0.7453 | 1.370 | 0.6898 | 1.42 | |
| D1(NS) | 6 | 5234~4129 | 1.270 | 0.7508 | 1.170 | 0.7723 | 1.66 | ||
| D2(NS) | 6 | 5234~4129 | 1.260 | 0.7547 | 1.120 | 0.7966 | 1.73 | ||
多糖 Polysaccharides | Constant | spectrum | 6 | 7000~4173 | 1.930 | 0.8154 | 2.700 | 0.7762 | 1.64 |
| D1(NS) | 10 | 6940~4490 | 1.790 | 0.8439 | 3.220 | 0.6527 | 1.37 | ||
| D2(NS) | 10 | 6940~4490 | 1.540 | 0.8870 | 2.900 | 0.7726 | 1.52 | ||
| MSC | spectrum | 6 | 7000~4173 | 2.140 | 0.7660 | 2.630 | 0.8470 | 1.68 | |
| D1(NS) | 10 | 6940~4490 | 1.620 | 0.8730 | 2.940 | 0.7312 | 1.50 | ||
| D2(NS) | 10 | 6940~4490 | 1.490 | 0.8938 | 2.940 | 0.7677 | 1.50 | ||
| SNV | spectrum | 6 | 7000~4173 | 2.140 | 0.7657 | 2.640 | 0.8449 | 1.67 | |
| D1(NS) | 10 | 6940~4490 | 1.630 | 0.8719 | 2.940 | 0.7310 | 1.50 | ||
| D2(NS) | 10 | 6940~4490 | 1.490 | 0.8939 | 2.940 | 0.7682 | 1.50 | ||
鞣质 Tannins | Constant | spectrum | 4 | 5215~4144 | 0.311 | 0.8443 | 0.451 | 0.7251 | 1.44 |
| D1(NS) | 4 | 6148~5379 | 0.222 | 0.9243 | 0.312 | 0.8928 | 2.08 | ||
| D2(NS) | 4 | 6148~5379 | 0.192 | 0.9438 | 0.270 | 0.9080 | 2.41 | ||
| MSC | spectrum | 4 | 5215~4144 | 0.395 | 0.7331 | 0.519 | 0.6414 | 1.25 | |
| D1(NS) | 4 | 6148~5379 | 0.240 | 0.9103 | 0.227 | 0.9393 | 2.86 | ||
| D2(NS) | 4 | 6148~5379 | 0.230 | 0.9184 | 0.263 | 0.9240 | 2.47 | ||
| SNV | spectrum | 4 | 5215~4144 | 0.399 | 0.7274 | 0.521 | 0.6341 | 1.25 | |
| D1(NS) | 4 | 6148~5379 | 0.241 | 0.9098 | 0.228 | 0.9392 | 2.85 | ||
| D2(NS) | 4 | 6148~5379 | 0.230 | 0.9185 | 0.263 | 0.9240 | 2.47 | ||
总皂苷 Total saponin | Constant | spectrum | 3 | 7015~4392 | 0.506 | 0.4396 | 0.439 | 0.2780 | 0.66 |
| D1(NS) | 3 | 4381~4362 | 0.341 | 0.7953 | 0.319 | 0.6732 | 0.91 | ||
| D2(NS) | 3 | 4381~4362 | 0.509 | 0.4272 | 0.350 | 0.1327 | 0.83 | ||
| MSC | spectrum | 3 | 7015~4392 | 0.546 | 0.2407 | 0.369 | 0.5327 | 0.79 | |
| D1(NS) | 3 | 4381~4362 | 0.358 | 0.7714 | 0.349 | 0.6466 | 0.83 | ||
| D2(NS) | 3 | 4381~4362 | 0.479 | 0.5252 | 0.448 | 0.2873 | 0.65 | ||
| SNV | spectrum | 3 | 7015~4392 | 0.546 | 0.2421 | 0.370 | 0.5322 | 0.78 | |
| D1(NS) | 3 | 4381~4362 | 0.358 | 0.7715 | 0.349 | 0.6467 | 0.83 | ||
| D2(NS) | 3 | 4381~4362 | 0.480 | 0.5225 | 0.445 | 0.2829 | 0.65 |
| [1] | Li J Q, Cai G M, Li L Z. The Chinese Juema. Beijing: Science Press, 2020. |
| 李军乔, 蔡光明, 李灵芝. 中国蕨麻. 北京: 科学出版社, 2020. | |
| [2] | Committee on Flora of China, Chinese Academy of Sciences. Flora of China (Vol. 37, Rosaceae). Beijing: Science Press, 1985. |
| 中国科学院中国植物志委员会. 中国植物志(第37卷蔷薇科). 北京: 科学出版社, 1985. | |
| [3] | Zhao X M. Gleanings from the compendium of materia medica. Beijing: People’s Health Publishing House, 1963. |
| 赵学敏. 本草纲目拾遗. 北京: 人民卫生出版社, 1963. | |
| [4] | Hu T J, Chen J R, Cheng F S, et al. Effect of Potentilla anserine polysaccharide on levels of IL-6, IFN-γ and TNF-α in murine serum. Chinese Veterinary Science, 2005(8): 653-656. |
| 胡庭俊, 陈炅然, 程富胜, 等. 蕨麻多糖对小鼠血清中三种细胞因子水平的影响. 中国兽医科技, 2005(8): 653-656. | |
| [5] | Zhang X Q, Zhao Y L, Shan L M, et al. Study on protective mechanism of JMS on chemical liver injury. Pharmaceutical Journal of Chinese People’s Liberation Army, 2004(4): 259-261. |
| 张新全, 赵艳玲, 山丽梅, 等. 蕨麻素对化学性肝损伤保护作用机制的研究. 解放军药学学报, 2004(4): 259-261. | |
| [6] | Chu X L, Shi Y Y, Chen P, et al. Research and application progresses of near infrared spectroscopy analytical technique in China in past five years. Journal of Instrumental Analysis, 2019, 38(5): 603-611. |
| 褚小立, 史云颖, 陈瀑, 等. 近五年我国近红外光谱分析技术研究与应用进展. 分析测试学报, 2019, 38(5): 603-611. | |
| [7] | Zhang Y, Wang D, Li X, et al. Research progress of near infrared spectroscopy based geographical origin traceability of agricultural products. Journal of Food Safety & Quality, 2018, 9(23): 6161-6166. |
| 张勇, 王督, 李雪, 等. 基于近红外光谱技术的农产品产地溯源研究进展. 食品安全质量检测学报, 2018, 9(23): 6161-6166. | |
| [8] | Xia Z Z, Zheng D, Xia H, et al. Rapid identification of shiitake geographical origins based on near infrared spectroscopy. Journal of Instrumental Analysis, 2020, 39(11): 1371-1377. |
| 夏珍珍, 郑丹, 夏虹, 等. 基于近红外光谱分析技术的栽培香菇产地快速鉴别. 分析测试学报, 2020, 39(11): 1371-1377. | |
| [9] | Bai Q X, Hou Y, Yang P P, et al. Identification method of the production site of Gastrodia elata Blume based on near infrared spectroscopy. Journal of West China Forestry Science, 2021(3): 124-130. |
| 白庆旭, 候英, 杨盼盼, 等. 基于近红外光谱技术的天麻产地鉴别方法. 西部林业科学, 2021(3): 124-130. | |
| [10] | Cui M, Duan B Z, Cheng L, et al. Geographical origin traceability of Crataegus pinnatifida var. major based on near-infrared spectroscopy combined with chemometrics. Chinese Traditional and Herbal Drugs, 2024, 55(14): 4897-4906. |
| 崔萌, 段宝忠, 程蕾, 等. 基于近红外光谱结合化学计量学方法的山里红产地溯源分析. 中草药, 2024, 55(14): 4897-4906. | |
| [11] | Li J Y, Yu M, Zheng Y, et al. Nondestructive identification of Poria cocos blocks from different origins based on near infrared spectroscopy. Chinese Journal of Analysis Laboratory, 2021(12): 1381-1386. |
| 李嘉仪, 余梅, 郑郁, 等. 基于近红外光谱技术的不同产地茯苓块无损鉴别. 分析试验室, 2021(12): 1381-1386. | |
| [12] | Xu R, Ao D M, Xu X, et al. Study on the identification method of Lycium barbarum cultivars in Ningxia based on infrared spectrum and cluster analysis. Spectroscopy and Spectral Analysis, 2024, 44(5): 1386-1391. |
| 徐荣, 敖冬梅, 徐鑫, 等. 基于红外光谱与聚类分析法的宁夏产地枸杞子品种鉴别研究. 光谱学与光谱分析, 2024, 44(5): 1386-1391. | |
| [13] | Lü M Y, Wan X Y, Shuai J H, et al. A processing-trajectory strategy for rapid quality assessment of Rhizoma smilacis Glabraeby NIR combined with PLS modeling. Journal of Yangzhou University (Agricultural and Life Science Edition), 2024(3): 82-89. |
| 吕蒙莹, 万夏芸, 帅锦浩, 等. 近红外技术结合参数轨迹策略快速评价土茯苓质量. 扬州大学学报(农业与生命科学版), 2024(3): 82-89. | |
| [14] | National Health Commission of the People’s Republic of China. National standard for food safety determination of amylum C6H10O5 in food: GB 5009.9-2023. Beijing: State Administration for Market Regulation, 2023. |
| 中华人民共和国国家卫生健康委员会. 食品安全国家标准 食品中淀粉的测定: GB 5009.9-2023.北京: 国家市场监督管理总局, 2023. | |
| [15] | National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration. National standard for food safety determination of protein in food: GB 5009.5-2016. Beijing: China Food and Drug Administration, 2016. |
| 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定: GB 5009.5-2016. 北京: 国家食品药品监督管理总局, 2016. | |
| [16] | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Wolfberry: GB/T 18672-2014. Beijing: Standardization Administration of the People’s Republic of China, 2014. |
| 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 枸杞: GB/T 18672-2014. 北京: 中国国家标准化管理委员会, 2014. | |
| [17] | Ministry of Agriculture of the People’s Republic of China. Determination of tannin content in fruits, vegetables and derived product-Spectrophotometry method: NY/T 1600-2008. Beijing: Ministry of Agriculture of the People’s Republic of China, 2008. |
| 中华人民共和国农业部. 水果、蔬菜及其制品中单宁含量的测定 分光光度法: NY/T 1600-2008. 北京: 中华人民共和国农业部, 2008. | |
| [18] | Ministry of Health of the People’s Republic of China. Technical standards for testing & assessment of health food. Beijing: Standards Press of China, 2003. |
| 中华人民共和国卫生部. 保健食品检验与评价技术规范. 北京: 中国标准出版社, 2003. | |
| [19] | Du C Z, Dai S Y, Zhao A B, et al. Optimization of PLS modeling parameters via quality by design concept for Gardenia jasminoides Ellis using online NIR sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117267. |
| [20] | Luo L, Wang J Y, Xu Z J, et al. Geographic origin discrimination of wood using NIR spectroscopy combined with machine learning techniques. Spectroscopy and Spectral Analysis, 2023, 43(11): 3372-3379. |
| 骆立, 王静仪, 徐兆军, 等. 基于近红外光谱技术建立木材产地鉴别模型. 光谱学与光谱分析, 2023, 43(11): 3372-3379. | |
| [21] | Liu C L. Study on chemical fingerprint and geographic origins traceability of Panax notoginseng. Kunming: Yunnan University of Chinese Medicine, 2023. |
| 刘春路. 三七化学指纹图谱及产地溯源研究. 昆明: 云南中医药大学, 2023. | |
| [22] | Han C S. Application of exosomes derived from mesenchymal stem cell modified by MiR-675 and hydrogel. Suzhou: Soochow University, 2019. |
| 韩超珊. MiR-675和水凝胶对间充质干细胞外泌体的改造和应用研究. 苏州: 苏州大学, 2019. | |
| [23] | Signe V, Anu T, Pilleriin P, et al. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000~80 cm-1. Analytical and Bioanalytical Chemistry, 2016, 408(13): 3373-3379. |
| [24] | Yu Z. Preparation and properties of antioxidant active packaging film based on metal ions chelation principle. Wuxi: Jiangnan University, 2021. |
| 于振. 基于金属离子螯合原理的抗氧化活性包装膜制备及性能研究. 无锡: 江南大学, 2021. | |
| [25] | Han Y X, Hu Y, Zhang E H, et al. Place of origin identification for air-dried yak meat from Tibet based on portable near-infrared spectroscopy. Food and Fermentation Industries, 2025, 51(10): 336-343. |
| 韩沅汐, 胡云, 张二豪, 等. 基于便携式近红外光谱的西藏风干牦牛肉产地鉴别研究. 食品与发酵工业, 2025, 51(10): 336-343. | |
| [26] | Yang C E, Li M, Wang T C, et al. Identification of Aronia melanocarpa fruits from different areas by mid-infrared spectroscopy. Spectroscopy and Spectral Analysis, 2024, 44(4): 991-996. |
| 杨承恩, 李萌, 王天赐, 等. 红外光谱的不同产地黑果腺肋花楸果实鉴别. 光谱学与光谱分析, 2024, 44(4): 991-996. | |
| [27] | Pei L X, He J L, Wang K L, et al. Rapid quantitative study of Pueraria lobata in traditional Chinese medicine based on Fourier transform infrared spectroscopy combined with multivariate statistical analysis. Chemical Research and Application, 2024, 36(9): 1988-1996. |
| 裴莉昕, 何江龙, 王锴乐, 等. 基于傅里叶变换红外光谱技术与多元统计分析相结合的中药葛根快速定量研究. 化学研究与应用, 2024, 36(9): 1988-1996. | |
| [28] | Qiao L, Yin Z Y, Duan H H, et al. Rapid and nondestructive identification of Dihuang (Rehmannia glutinosa) of different origins based on infrared spectroscopy and high performance liquid chromatography. Chinese Archives of Traditional Chinese Medicine, 2025, 43(3): 42-46, 261-267. |
| 乔璐, 阴紫钰, 段浩瀚, 等. 基于中红外光谱技术结合HPLC对不同产地地黄快速无损鉴别. 中华中医药学刊, 2025, 43(3): 42-46, 261-267. |
| [1] | 白世俊, 李军乔, 刘欣, 吕博文. 青藏高原蕨麻的分子谱系地理学研究[J]. 草业学报, 2024, 33(11): 84-105. |
| [2] | 田甜, 李军乔, 马斌, 王鑫慈, 曲俊儒. 基于SSR分子标记的自然状态下蕨麻采样策略研究[J]. 草业学报, 2023, 32(9): 181-197. |
| [3] | 金有顺, 侯扶江. 放牧家畜养分消化率的测定[J]. 草业学报, 2022, 31(5): 200-212. |
| [4] | 李晨芹, 李军乔, 王鑫慈, 牛永昆, 曲俊儒. 蕨麻根腐病病原菌的分离鉴定及其生物学特性研究[J]. 草业学报, 2022, 31(4): 113-123. |
| [5] | 肖逸, 杨忠富, 聂刚, 韩佳婷, 帅杨, 张新全. 12个多花黑麦草品种(系)在成都平原的生产性能和营养价值综合评价[J]. 草业学报, 2021, 30(5): 174-185. |
| [6] | 郑敏娜, 梁秀芝, 韩志顺, 康佳惠, 陈燕妮. 不同苜蓿品种在雁门关地区的生产性能和营养价值研究[J]. 草业学报, 2018, 27(5): 97-108. |
| [7] | 富贵, 李军乔, 包锦渊, 白世俊, 韦梅琴. 磁珠富集法开发蕨麻SSR标记引物[J]. 草业学报, 2018, 27(2): 123-134. |
| [8] | 邰书静,张仁和,史俊通,薛吉全. 不同玉米品种秸秆饲用品质的研究[J]. 草业学报, 2009, 18(5): 80-85. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||