[1] Tian H, Zhang D D.Review on the factors affecting the forage phytomass. Grassland and Turf, 2003, (3): 15-18, 22. 田宏, 张德罡. 影响牧草植物量形成的因素. 草原与草坪, 2003, (3): 15-18, 22. [2] Orodho A B, Trlica M J.Clipping and long-term grazing effects on biomass and carbohydrate reserves of Indian ricegrass. Journal of Range Management, 1990, 43(1): 52. [3] Wang C T, Long R J, Cao G M, et al. The relationship between soil nutrients and diversity-productivity of different type grasslands in alpine meadow. Chinese Journal of Soil Science, 2008, (1): 1-8. 王长庭, 龙瑞军, 曹广民, 等. 高寒草甸不同类型草地土壤养分与物种多样性——生产力关系. 土壤通报, 2008, (1): 1-8. [4] Yao X X, Gong X Y, Bai B, et al. Study of grassland vegetation characteristics and soil nutrient and their correlation between different grassland types in alpine pastoral area of Qilian mountains. Acta Agrestia Sinica, 2018, 26(2): 371-379. 姚喜喜, 宫旭胤, 白滨, 等. 祁连山高寒牧区不同类型草地植被特征与土壤养分及其相关性研究. 草地学报, 2018, 26(2): 371-379. [5] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2010, 14(7): 1592-1599. [6] Wendu R L.Study on vegetation characteristics, soil properties and microbial diversity of main grassland types in Hulunbeier. Hohhot: Inner Mongolia Agricultural University, 2011. 文都日乐. 呼伦贝尔主要草地类型植被特征、土壤特性与微生物多样性研究. 呼和浩特: 内蒙古农业大学, 2011. [7] Luan J W, Cui L J, Xiang C H, et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet plateau. Ecological Engineering, 2014, 64: 262-268. [8] Zhang W S, Li X X, Huang W J, et al. Comprehensive assessment methodology of soil quality under different land use conditions. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 311-318. 张汪寿, 李晓秀, 黄文江, 等. 不同土地利用条件下土壤质量综合评价方法. 农业工程学报, 2010, 26(12): 311-318. [9] Lü S L.Study on spatial heterogeneity of soil organic carbon and total nitrogen of alpine grassland and the influencing factors in Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2018. 吕韶利. 青藏高原高寒草地土壤有机碳、全氮的空间异质性及其影响因素的研究. 兰州: 兰州大学, 2018. [10] Peng S L, Wang H T, Chen C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman nature reserve. Research of Soil and Water Conservation, 2015, 22(5): 30-34. 彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析. 水土保持研究, 2015, 22(5): 30-34. [11] Wang S J, Cao Z L, Li X Y, et al. Spatiotemporal distributions of soil carbon and nitrogen under the four riparian zones in the Dianchi Lake. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 55-59. 王邵军, 曹子林, 李小英, 等. 滇池湖滨带不同植被类型土壤碳、氮时空分布特征. 南京林业大学学报(自然科学版), 2013, 37(5): 55-59. [12] Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibet plateau. Acta Geographica Sinica, 2012, 67(1): 3-12. 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. [13] Liu S L, Lin L, Guo X W, et al. The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai province. Acta Ecologica Sinica, 2014, 34(20): 5953-5961. 刘淑丽, 林丽, 郭小伟, 等. 青海省高寒草地土壤无机碳储量空间分异特征. 生态学报, 2014, 34(20): 5953-5961. [14] Lin L, Cao G M, Li Y K, et al. Effects of human activities on organic carbon storage in the Kobresia hummilis meadow ecosystem on the Tibetan Plateau. Acta Ecologica Sinica, 2010, 30(15): 4012-4018. 林丽, 曹广民, 李以康, 等. 人类活动对青藏高原高寒矮嵩草草甸碳过程的影响. 生态学报, 2010, 30(15): 4012-4018. [15] Li Y M, Cao G M, Xu R H.Effects of different land use modes on organic carbon and its component in alpine meadow soil. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5951-5953, 6010. 李月梅, 曹广民, 徐仁海. 土地利用方式对高寒草甸土壤有机碳及其组分的影响. 安徽农业科学, 2008, 36(14): 5951-5953, 6010. [16] Yang X H, Peng L J, Li S Y, et al. Effect of mangrove leaf litter decomposition on soil dissolved organic matter. Ecology and Environmental Sciences, 2013, 22(6): 924-930. 杨秀虹, 彭琳婧, 李适宇, 等. 红树植物凋落叶分解对土壤可溶性有机质的影响. 生态环境学报, 2013, 22(6): 924-930. [17] Chang D N, Cao W D, Bao X G, et al. Long-term different fertilizations changed the chemical and spectrum characteristics of DOM of the irrigation-desert soil in north-western China. Spectroscopy and Spectral Analysis, 2016, 36(1): 220-225. 常单娜, 曹卫东, 包兴国, 等. 西北灌漠土长期不同施肥改变土壤可溶性有机质的化学及光谱学特性. 光谱学与光谱分析, 2016, 36(1): 220-225. [18] Liu Z, Yang Y S, Zhu J M, et al. Comparative study on quantities and spectroscopic characteristics of soil dissolved organic matter between two economic forests in Subtropical China. Journal of Soil and Water Conservation, 2014, 28(5): 170-175. 刘翥, 杨玉盛, 朱锦懋, 等. 中亚热带2种经济林土壤可溶性有机质数量与光谱学特征比较. 水土保持学报, 2014, 28(5): 170-175. [19] Zhong C, Yang Z F, Xia X Q, et al. Estimation of soil organic carbon storage and analysis of soil carbon source/sink factors in Qinghai province. Geoscience, 2012, 26(5): 896-909. 钟聪, 杨忠芳, 夏学齐, 等. 青海省土壤有机碳储量估算及其源汇因素分析. 现代地质, 2012, 26(5): 896-909. [20] Lin L, Zhang D G, Cao G M, et al. Responses of soil nutrient traits to grazing intensities in alpine Kobresia meadows. Acta Ecologica Sinica, 2016, 36(15): 4664-4671. 林丽, 张德罡, 曹广民, 等. 放牧强度对高寒嵩草草甸土壤养分特性的影响. 生态学报, 2016, 36(15): 4664-4671. [21] Zhang A F, Zhou X, Li M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China. Chemosphere, 2017, 186: 986-993. [22] Wang Y T.Spectrofluorometric characterization of soil dissolved organic matter with different vegetation in Loess Plateau. Xi’an: Xi’an University of Architecture and Technology, 2015. 王玉涛. 黄土高原不同植被条件下土壤可溶性有机质的荧光特性. 西安: 西安建筑科技大学, 2015. [23] Gao A S, Zheng S H, Zhao M L, et al. Soil organic carbon and total nitrogen content in different steppes. Grassland of China, 2005, 27(6): 44-45, 65. 高安社, 郑淑华, 赵萌莉, 等. 不同草原类型土壤有机碳和全氮的差异. 中国草地, 2005, 27(6): 44-50, 65. [24] Gu Z K, Du G Z, Zhu W X, et al. Distribution pattern of soil nutrients in different grassland types and soil depths in the eastern Tibetan Plateau. Pratacultural Science, 2012, 29(4): 507-512. 顾振宽, 杜国祯, 朱炜歆, 等. 青藏高原东部不同草地类型土壤养分的分布规律. 草业科学, 2012, 29(4): 507-512. [25] Dunkerley D.Hydrologic effects of dry land shrubs: Defining the spatial extent of modified soil water uptake rates at an Australian desert site. Journal of Arid Environments, 2000, 45(2): 159-172. [26] Wang Q K, Wang S L, Feng Z W, et al. A study on dissolved organic carbon and nitrogen nutrients under Chinese fir plantation relationships with soil nutrients. Acta Ecologica Sinica, 2005, 25(6): 1299-1305. 王清奎, 汪思龙, 冯宗炜, 等. 杉木人工林土壤可溶性有机质及其与土壤养分的关系. 生态学报, 2005, 25(6): 1299-1305. [27] He G Y, Sun H Z, Shi X M, et al. Soil properties of Tibetan Plateau alpine wetland affected by grazing and season. Acta Prataculturae Sinica, 2015, 24(4): 12-20. 何贵永, 孙浩智, 史小明, 等. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应. 草业学报, 2015, 24(4): 12-20. [28] Qing Y, Sun F D, Li Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47. 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47. [29] Gao X S, Tian Z C, Hao X N, et al. The changes of alpine grassland soil nutrition at different deteriorate degree on high mountain meadow of Three River Source. Journal of Qinghai University (Nature Science Edition), 2006, 24(5): 37-40. 高旭升, 田种存, 郝学宁, 等. 三江源区高寒草原草地不同退化程度土壤养分变化. 青海大学学报(自然科学版), 2006, 24(5): 37-40. [30] Fan C H, Zhang Y C, He L, et al. Effect of straw incorporation on three-dimensional fluorescence spectrum of dissolved organic matter in arid loess. Spectroscopy and Spectral Analysis, 2013, 33(7): 1820-1823. 范春辉, 张颖超, 贺磊, 等. 秸秆还田对旱田黄土可溶性有机质三维荧光光谱的影响. 光谱学与光谱分析, 2013, 33(7): 1820-1823. [31] Li M T, Wang J H, Zhao L P.Composition and structure of water extractable organic matter in soil with high yield maize. Journal of Northeast Forestry University, 2013, 41(6): 88-92. 李明堂, 王继红, 赵兰坡. 玉米高产田土壤水溶性有机物组成和结构特征. 东北林业大学学报, 2013, 41(6): 88-92. [32] Liu Z, Yang Y S, Zhu J M, et al. Effects of forest conversion on quantities and spectroscopic characteristics of soil dissolved organic matter in subtropical China. Acta Ecologica Sinica, 2015, 35(19): 6288-6297. 刘翥, 杨玉盛, 朱锦懋, 等. 中亚热带森林转换对土壤可溶性有机质数量与光谱学特征的影响. 生态学报, 2015, 35(19): 6288-6297. [33] Dong Y H, Zeng Q C, Li Y Y, et al. The characteristics of soil active organic carbon composition under different vegetation types on the Loess Plateau. Acta Agrestia Sinica, 2015, 23(2): 277-284. 董扬红, 曾全超, 李娅芸, 等. 黄土高原不同植被类型土壤活性有机碳组分分布特征. 草地学报, 2015, 23(2): 277-284. [34] Biederbeck V O, Janzen H H, Campbell C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology & Biochemistry, 1994, 26(12): 1647-1656. [35] Zak D R, Grigal D F, Gleeson S, et al. Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass. Biogeochemistry, 1990, 11(2): 111-129. [36] Liechty H O, Kuuseoks E, Mroz G D.Dissolved organic carbon in Northern Hardwood Stands with differing acidic inputs and temperature regimes. Journal of Environmental Quality, 1995, 24(5): 927-933. [37] Li S S, Du Y X.Study advance on dissolved organic matter in soil. Jiangxi Forestry Science and Technology, 2010, (3): 23-26. 李少生, 杜有新. 土壤可溶性有机质研究进展. 江西林业科技, 2010, (3): 23-26. [38] Yang M Y, Yang N.Comparison of soil active organic carbon components between different vegetation types on sloping land of purple soil. Acta Agrestia Sinica, 2018, 26(2): 380-385. 杨满元, 杨宁. 紫色土丘陵坡地不同植被类型土壤活性有机碳组分的比较. 草地学报, 2018, 26(2): 380-385. [39] Sun X Y. Soil Science.Beijing: China Forestry Press, 2013. 孙向阳. 土壤学. 北京:中国林业出版社, 2013. |