[1] Merbold L, Eugster W, Stieger J, et al. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration. Global Change Biology, 2014, 20(6): 1913-1928. [2] Porensky L M, Mueller K E, Augustine D J, et al. Thresholds and gradients in a semi-arid grassland: Long-term grazing treatments induce slow, continuous and reversible vegetation change. Journal of Applied Ecology, 2016, 53(4): 1013-1022. [3] Irisarri J G, Derner J D, Porensky L M, et al. Grazing intensity differentially regulates ANPP response to precipitation in North American semiarid grasslands. Ecological Applications, 2016, 26(5): 1370-1380. [4] Li A, Wu J, Huang J.Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia. Landscape Ecology, 2012, 27(7): 969-982. [5] Bai W, Fang Y, Zhou M, et al. Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture Ecosystem & Environment, 2015, 200:143-150. [6] Wei X, Hu Y, Peng P, et al. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biology and Fertility of Soils, 2017, 53:767-776. [7] Wu G, Ren G, Dong Q, et al. Above- and belowground response along degradation gradient in an Alpine Grassland of the Qinghai-Tibetan Plateau. Clean-Soil Air Water, 2014, 42:319-323 [8] Li Z Z, Zhu L B, Lin Y C, et al. Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland. Acta Ecologica Sinica, 2010, 30(11): 2883-2889. 李梓正, 朱立博, 林叶春, 等. 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 2010, 30(11): 2883-2889. [9] Wu Y S, Ma W L, Li H, et al. Characteristics of bacterial community structure in degraded desert steppe of Inner Mongolia. Acta Ecologica Sinica, 2010, 30(23): 6355-6362. 吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤细菌群落结构特征. 生态学报, 2010, 30(23): 6355-6362. [10] Duan H F.Study on the community structure and diversity of microorganism in degraded alpine grassland ecosystem on Tibet Plateau. Lanzhou: Lanzhou University, 2013. 段红芳. 青藏高原退化高寒草地生态系统中微生物群落结构多样性变化研究. 兰州: 兰州大学, 2013. [11] Yang X Z, Wang C T, Zi H B, et al. Soil microbial community structure characteristics in arti oil microbial community structure characteristics in artifificial grassland with cial grassland with different cultivation years in the headwater region of Three Rivers, China. Chinese Journal of Applied & Environmental Biology, 2015, 21(2): 341-349. 杨希智, 王长庭, 字洪标, 等. 三江源区不同建植年限人工草地土壤微生物群落结构特征. 应用与环境生物学报, 2015, 21(2): 341-349. [12] Xia W W, Jia Z J.Comparative analysis of soil microbial communities by pyrosequencing and DGGE. Acta Microbiologica Sinica, 2014, 54(12): 1489-1499. 夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价. 微生物学报, 2014, 54(12): 1489-1499. [13] Dai Y T, Yan Z J, Xie J H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing. Acta Pedologica Sinica, 2017, 54(3): 735-748. 戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序两种植被恢复类型根际土壤细菌多样性研究. 土壤学报, 2017, 54(3): 735-748. [14] Yang H L, Xu C L, Yu X J, et al. Comparative study on the performance of 14 oat (Avena sativa) germplasm in Huangcheng town of Sunan County, Gansu Province. Pratacultural Science, 2016, 33(1): 129-135. 杨海磊, 徐长林, 鱼小军, 等. 14份燕麦种质在肃南皇城镇的生产性能比较. 草业科学, 2016, 33(1): 129-135. [15] Zhang J T.Applied ecology. Beijing Science Press, 2003: 173-174. 张金屯. 应用生态学. 北京: 科学出版社, 2003: 173-174 [16] Bao S D.Analysis of agricultural chemistry (The Third Edition). Beijing: China Agriculture Press, 2000. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. [17] Guang S Y.Soil enzymes and their research methods. Beijing: China Agriculture Press, 1986. 关松荫. 土壤酶及其研究法. 北京: 中国农业出版社, 1986. [18] Vasileiadis S, Puglisi E, Arena M, et al. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One, 2012, 7(8): e42671. [19] Zhao F, Zhao M Z, Wang Y, et al. Biodiversity of bacteria and fungi in rhizosphere of strawberry with different continuous cropping years. Microbiology China, 2017, 44(6): 1377-1386. 赵帆, 赵密珍, 王钰, 等. 不同连作年限草莓根际细菌和真菌多样性变化. 微生物学通报, 2017, 44(6): 1377-1386. [20] Magoĉ T, Salzberg S L.Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. [21] Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. [22] Quast C, Pruesse E, Yilmaz P, et al.The Silva ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41: 590-596. [23] Yilmaz P, Parfrey L W, Yarza P, et al. The Silva and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 2014, 42: 643-648. [24] Pan H, Liu H, Liu Y, et al. Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. Science of the Total Environment, 2018, 634: 1157-1164. [25] Cubillos AM, Vallejo VE, Arbeli Z, et al. Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal of Soil Biology, 2016, 72: 42-50. [26] Fry EL, Manning P, Macdonald C, et al. Shifts in microbial communities do not explain the response of grassland ecosystem function to plant functional composition and rainfall change. Soil Biology and Biochemistry, 2016, 92: 199-210. [27] Xiong W, Zhao Q, Zhao J, et al. Different continuous cropping spans signifcantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015, 70: 209-218. [28] Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 2016, 222: 213-222. [29] Zhou H, Zhang D, Jiang Z, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651: 2281-2291. [30] Thomson BC, Ostle N, Mcnamara N, et al. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microbial Ecology, 2010, 59: 335-343. [31] Wang Y, Li C, Kou Y, et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology and Biochemistry, 2017, 115: 547-555. [32] De Boer W, Folman LB, Summerbell RC, et al. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29: 795-811. [33] Thakur MP, Milcu A, Manning P, et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21: 4076-4085. [34] Lange M, Eisenhauer N, Sierra CA, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6: 6707. |