草业学报 ›› 2020, Vol. 29 ›› Issue (12): 73-85.DOI: 10.11686/cyxb2020040
马倩倩1(), 刘彤1(), 董合干1,2, 王寒月1, 赵文轩1, 王瑞丽1, 刘延1, 陈乐1
收稿日期:
2020-02-05
修回日期:
2020-03-30
出版日期:
2020-12-28
发布日期:
2020-12-28
通讯作者:
刘彤
作者简介:
Corresponding author. E-mail: 469004509@qq.com基金资助:
Qian-qian MA1(), Tong LIU1(), He-gan DONG1,2, Han-yue WANG1, Wen-xuan ZHAO1, Rui-li WANG1, Yan LIU1, Le CHEN1
Received:
2020-02-05
Revised:
2020-03-30
Online:
2020-12-28
Published:
2020-12-28
Contact:
Tong LIU
摘要:
明确有害入侵种在区域尺度上的潜在分布及其对气候变化的响应对入侵种的预警和具体防控意义重大。三裂叶豚草是全球公认的恶性入侵杂草,目前已经大面积入侵“一带一路”中亚枢纽—新疆伊犁河谷。为有效防控三裂叶豚草在新疆的扩散蔓延,本研究基于最大熵模型,预测了当前及未来两种气候情景(RCP4.5, RCP8.5)下2050s和2070s时期三裂叶豚草在新疆的潜在分布及变化趋势。结果表明:当前气候下三裂叶豚草在新疆的总适生面积达24.01万km2,约占全疆面积的14%,在RCP4.5情景下,至2050s、2070s时期将分别增至37.36万和39.23万km2;在RCP8.5情景下,将分别增至39.45万和42.94万km2。在未来两种气候情景下,随着时间的推移,潜在适生区总体均呈现向北增加转移的趋势,减少区域主要集中在准噶尔盆地。所有环境因子中,与降水相关的因子总贡献率为40.1%,与温度相关的因子总贡献率56.0%,其中最干月降水(36.2%)、温度季节性变化标准差(29.1%)是对三裂叶豚草分布贡献率较高的环境因子。耕地和建设用地是三裂叶豚草入侵风险最高的区域。建议管理的重点除了放在已预测到的适生区内,还应特别关注农田、草场、道路两侧这些人畜扰动大、水分充足的区域。
马倩倩, 刘彤, 董合干, 王寒月, 赵文轩, 王瑞丽, 刘延, 陈乐. 气候变化下三裂叶豚草在新疆的潜在地理分布[J]. 草业学报, 2020, 29(12): 73-85.
Qian-qian MA, Tong LIU, He-gan DONG, Han-yue WANG, Wen-xuan ZHAO, Rui-li WANG, Yan LIU, Le CHEN. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change[J]. Acta Prataculturae Sinica, 2020, 29(12): 73-85.
模式名称 Model name | 单位名称及所属国家 Company name and country |
---|---|
ACCESS1-0 | CSIRO-BOM,澳大利亚 Australia |
BCC-CSM1-1 | BCC,中国 China |
CCSM4 | NCAR,美国 America |
CNRM-CM5 | CNRM,意大利 Italy |
GFDL-CM3 | NOAA GEDL,美国 America |
GISS-E2-R | NASA GISS,美国 America |
HadGEM2-AO | NIMA/KMA,韩国/英国 Korea/ United Kingdom |
HadGEM2-CC | MOHC,英国 United Kingdom |
HadGEM2-ES | MOHC,英国 United Kingdom |
INMCM4 | UNM,俄罗斯 Russia |
IPSL-CM5A-LR | IPSL,法国 France |
MIROC-ESM-CHEM | MIROC,日本 Japan |
MIROC-ESM | MIROC,日本 Japan |
MIROC5 | MIROC,日本 Japan |
MPI-ESM-LR | MPI-M,德国 Germany |
MRI-CGCM3 | MPI-M,德国 Germany |
NorESM1-M | NCC,挪威 Norway |
表1 17个GCMs的基本信息
Table 1 Information about the 17 GCMs
模式名称 Model name | 单位名称及所属国家 Company name and country |
---|---|
ACCESS1-0 | CSIRO-BOM,澳大利亚 Australia |
BCC-CSM1-1 | BCC,中国 China |
CCSM4 | NCAR,美国 America |
CNRM-CM5 | CNRM,意大利 Italy |
GFDL-CM3 | NOAA GEDL,美国 America |
GISS-E2-R | NASA GISS,美国 America |
HadGEM2-AO | NIMA/KMA,韩国/英国 Korea/ United Kingdom |
HadGEM2-CC | MOHC,英国 United Kingdom |
HadGEM2-ES | MOHC,英国 United Kingdom |
INMCM4 | UNM,俄罗斯 Russia |
IPSL-CM5A-LR | IPSL,法国 France |
MIROC-ESM-CHEM | MIROC,日本 Japan |
MIROC-ESM | MIROC,日本 Japan |
MIROC5 | MIROC,日本 Japan |
MPI-ESM-LR | MPI-M,德国 Germany |
MRI-CGCM3 | MPI-M,德国 Germany |
NorESM1-M | NCC,挪威 Norway |
代号Code | 变量Variables | 贡献率Percentage contribution (%) |
---|---|---|
Bio14 (mm) | 最干月降水Precipitation of driest month | 36.2 |
Bio4 (×100) | 温度季节性变化标准差Temperature seasonality | 29.1 |
Bio1 (℃×10) | 年均温Annual mean temperature | 18.3 |
Bio8 (℃×10) | 最湿季均温Mean temperature of wettest quarter | 4.1 |
Bio12 (mm) | 年降水Annual precipitation | 3.5 |
Bio7 (℃×10) | 气温年范围Temperature annual range | 3.1 |
Bio3 | 等温性Isothermality | 1.4 |
Elevation (m) | 海拔Elevation | 1.1 |
Slope | 坡度Slope | 1.1 |
Soil | 土壤类型Soil | 0.9 |
Land | 土地利用类型Land | 0.8 |
Bio15 | 降水季节性变异系数Precipitation seasonality (coefficient of variation) | 0.4 |
表2 环境因子对三裂叶豚草分布的贡献率
Table 2 Percentage contribution of environmental variables to A. trifida distribution
代号Code | 变量Variables | 贡献率Percentage contribution (%) |
---|---|---|
Bio14 (mm) | 最干月降水Precipitation of driest month | 36.2 |
Bio4 (×100) | 温度季节性变化标准差Temperature seasonality | 29.1 |
Bio1 (℃×10) | 年均温Annual mean temperature | 18.3 |
Bio8 (℃×10) | 最湿季均温Mean temperature of wettest quarter | 4.1 |
Bio12 (mm) | 年降水Annual precipitation | 3.5 |
Bio7 (℃×10) | 气温年范围Temperature annual range | 3.1 |
Bio3 | 等温性Isothermality | 1.4 |
Elevation (m) | 海拔Elevation | 1.1 |
Slope | 坡度Slope | 1.1 |
Soil | 土壤类型Soil | 0.9 |
Land | 土地利用类型Land | 0.8 |
Bio15 | 降水季节性变异系数Precipitation seasonality (coefficient of variation) | 0.4 |
相对适应性等级 Suitability classes | 划分标准 Classification criteria |
---|---|
非适生区Unsuitable category | <0.1000 |
最不适区Most unsuitable | <0.0006 |
重度不适区Severe unsuitable | 0.0006~0.0046 |
中度不适区Moderate unsuitable | 0.0046~0.0131 |
轻度不适区Slightly unsuitable | 0.0131~0.1000 |
适生区Suitable category | >0.1000 |
轻度适生区Slightly suitable | 0.1000~0.1356 |
中度适生区Moderate suitable | 0.1356~0.1896 |
显著适生区Noteworthy suitable | 0.1896~0.2560 |
最适区域Most suitable | >0.2560 |
表3 适生等级划分
Table 3 Suitability grade classification
相对适应性等级 Suitability classes | 划分标准 Classification criteria |
---|---|
非适生区Unsuitable category | <0.1000 |
最不适区Most unsuitable | <0.0006 |
重度不适区Severe unsuitable | 0.0006~0.0046 |
中度不适区Moderate unsuitable | 0.0046~0.0131 |
轻度不适区Slightly unsuitable | 0.0131~0.1000 |
适生区Suitable category | >0.1000 |
轻度适生区Slightly suitable | 0.1000~0.1356 |
中度适生区Moderate suitable | 0.1356~0.1896 |
显著适生区Noteworthy suitable | 0.1896~0.2560 |
最适区域Most suitable | >0.2560 |
相对适应性类别 Suitability classes | 耕地 Farmland | 林地 Forestland | 草地 Grassland | 水域 Water area | 建设用地 Construction land | 未利用地 Unused land |
---|---|---|---|---|---|---|
最不适区Most unsuitable | 0.01 | 9.08 | 26.52 | 76.64 | 0.29 | 18.27 |
重度不适区Severe unsuitable | 5.06 | 22.19 | 18.45 | 4.36 | 8.73 | 24.50 |
中度不适区Moderate unsuitable | 16.27 | 25.66 | 15.81 | 4.65 | 14.40 | 26.24 |
轻度不适区Slightly unsuitable | 38.27 | 33.44 | 25.52 | 6.62 | 34.48 | 18.80 |
轻度适生区Slightly suitable | 11.30 | 3.26 | 4.01 | 0.93 | 12.57 | 2.69 |
中度适生区Moderate suitable | 10.58 | 2.06 | 3.65 | 1.57 | 11.83 | 2.92 |
显著适生区Noteworthy suitable | 5.98 | 1.88 | 3.00 | 3.23 | 6.46 | 3.52 |
最适区域Most suitable | 12.53 | 2.42 | 3.05 | 2.00 | 11.24 | 3.05 |
表4 不同土地利用类型中三裂叶豚草各适生等级的分布比例
Table 4 Ratios of each suitable classes of A. trifida in different lands (%)
相对适应性类别 Suitability classes | 耕地 Farmland | 林地 Forestland | 草地 Grassland | 水域 Water area | 建设用地 Construction land | 未利用地 Unused land |
---|---|---|---|---|---|---|
最不适区Most unsuitable | 0.01 | 9.08 | 26.52 | 76.64 | 0.29 | 18.27 |
重度不适区Severe unsuitable | 5.06 | 22.19 | 18.45 | 4.36 | 8.73 | 24.50 |
中度不适区Moderate unsuitable | 16.27 | 25.66 | 15.81 | 4.65 | 14.40 | 26.24 |
轻度不适区Slightly unsuitable | 38.27 | 33.44 | 25.52 | 6.62 | 34.48 | 18.80 |
轻度适生区Slightly suitable | 11.30 | 3.26 | 4.01 | 0.93 | 12.57 | 2.69 |
中度适生区Moderate suitable | 10.58 | 2.06 | 3.65 | 1.57 | 11.83 | 2.92 |
显著适生区Noteworthy suitable | 5.98 | 1.88 | 3.00 | 3.23 | 6.46 | 3.52 |
最适区域Most suitable | 12.53 | 2.42 | 3.05 | 2.00 | 11.24 | 3.05 |
图4 当前气候下三裂叶豚草在新疆的潜在适生区(a), (c)为三裂叶豚草的潜在二元分布图,(b), (d)为潜在适生分布图。 (a), (c) are the potential binary distribution map and (b), (d) are the potential suitability map of A. trifida, respectively.
Fig.4 Potential distribution of A. trifida in Xinjiang under current climate
图5 基于17个不同GCMs气候数据驱动的模拟,在RCP4.5和RCP8.5情景下,对21世纪中、后期三裂叶豚草的适宜生境的一致投票
Fig.5 Voting consensus map for suitable habitats of A. trifida under the RCP4.5 and RCP8.5 scenarios by the mid- and late 21 st century, as based on simulations driven by 17 different GCMs climate data
气候情景Climate cenarios | 时期 Period | 三裂叶豚草适生区 A. trifida suitable habitat area (×104 km2) | ||
---|---|---|---|---|
增加Increased | 减少Decreased | 不变Unchanged | ||
RCP4.5 | 2050s | 14.06 | 0.71 | 23.30 |
2070s | 15.89 | 0.67 | 23.34 | |
RCP8.5 | 2050s | 16.34 | 0.90 | 23.11 |
2070s | 20.00 | 1.07 | 22.94 |
表5 未来气候情景下三裂叶豚草潜在分布面积与当前气候情景的比较
Table 5 Changes in potential habitat area for A. trifida under future climate scenarios in comparison with the current
气候情景Climate cenarios | 时期 Period | 三裂叶豚草适生区 A. trifida suitable habitat area (×104 km2) | ||
---|---|---|---|---|
增加Increased | 减少Decreased | 不变Unchanged | ||
RCP4.5 | 2050s | 14.06 | 0.71 | 23.30 |
2070s | 15.89 | 0.67 | 23.34 | |
RCP8.5 | 2050s | 16.34 | 0.90 | 23.11 |
2070s | 20.00 | 1.07 | 22.94 |
图6 基于17个不同GCMs模拟未来气候情景(RCP4.5和RCP8.5)下,21世纪中期(2050s)和后期(2070s)三裂叶豚草的适生区面积从上到下的5条水平线分别是上边缘、上四分位数、中位数、下四分位数和下边缘,空心正方形代表奇异值。The five horizontal lines (from top to bottom) are the upper edge, the upper quartile, the median value, the lower quartile and the lower edge, respectively; the empty black dots represent outliers.
Fig.6 Suitable habitat areas of A. trifida in 2050s and 2070s under different future climate scenarios (RCP4.5 and RCP8.5) according to the results of simulations driven by 17 different GCM climate projections
图7 在RCP4.5和RCP8.5情境下,21世纪中期和后期三裂叶豚草的潜在适生区变化
Fig.7 Changes in the potential habitat of A. trifida under the RCP4.5 and RCP8.5 scenarios by the mid- and late 21 st century
1 | Montagnani C, Gentili R, Smith M, et al. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Critical Reviews in Plant Sciences, 2017, 36(3): 139-178. |
2 | Wan F H, Zheng X B, Guo J Y. Biology and control of important invasive species in agriculture and forestry. Beijing: Science Press, 2003: 662-688. |
万方浩, 郑小波, 郭建英. 重要农林外来入侵物种的生物学与控制. 北京: 科学出版社, 2003: 662-688. | |
3 | Bullock J M, Chapman D, Schafer S, et al. Assessing and controlling the spread and the effects of common ragweed in Europe. Final Report to the European Commission, DG Environment, 2012. |
4 | Qin Z, Ditommaso A, Wu R S, et al. Potential distribution of two Ambrosia species in China under projected climate change. Weed Research, 2014, 54(5): 520-531. |
5 | Dong H G, Zhou M D, Liu Z Q, et al. Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. Journal of Arid Land Resources and Environment, 2017, 31(11): 175-180. |
董合干, 周明冬, 刘忠权, 等. 豚草和三裂叶豚草在新疆伊犁河谷的入侵及扩散特征.干旱区资源与环境, 2017, 31(11): 175-180. | |
6 | Ward N L, Masters G J. Linking climate change and species invasion: An illustration using insect herbivores. Global Change Biology, 2007, 13(8): 1605-1615. |
7 | Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013: 95-123. |
8 | Shi Y F, Shen Y P, Hu R J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. |
施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号, 影响和前景初步探讨. 冰川冻土, 2002, 24(3): 219-226. | |
9 | Byers J E, Reichard S, Randall J M, et al. Directing research to reduce the impacts of nonindigenous species. Conservation Biology, 2002, 16(3): 630-640. |
10 | Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620. |
11 | Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190(3/4): 231-259. |
12 | Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alienspecies’ potential distribution models. Biodiversity Science, 2007, 15(4): 365-372. |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15(4): 365-372. | |
13 | Fang F, Zhang C X, Huang H J, et al. Potential distribution of Tausch’s goatgrass (Aegilops tauschii) in both China and the rest of the world as predicted by Maxent. Acta Prataculturae Sinica, 2013, 22(2): 65-73. |
房锋, 张朝贤, 黄红娟, 等. 基于MaxEnt的麦田恶性杂草节节麦的潜在分布区预测. 草业学报, 2013, 22(2): 65-73. | |
14 | Wang C, Lin H L, He L, et al. Research on responses of Eupatorium adenophorum’s potential distribution to climate change. Acta Prataculturae Sinica, 2014, 23(4): 20-30. |
王翀, 林慧龙, 何兰, 等. 紫茎泽兰潜在分布对气候变化响应的研究. 草业学报, 2014, 23(4): 20-30. | |
15 | Wu Z N, Hou X Y, Ren W B, et al. Prediction of the potential geographic distribution of Leymus chinensis based on MaxEnt and collection and protection of germplasm. Acta Prataculturae Sinica, 2018, 27(10): 127-137. |
武自念, 侯向阳, 任卫波, 等. 基于MaxEnt模型的羊草适生区预测及种质资源收集与保护. 草业学报, 2018, 27(10): 127-137. | |
16 | Cui S P, Luo X, Li C W, et al. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodiversity Science, 2018, 26(2): 171-176. |
崔绍朋, 罗晓, 李春旺, 等. 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 2018, 26(2): 171-176. | |
17 | Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498. |
18 | Alfonso C C, Naranjo L F, Clark T R, et al. Effects of environmental changes on the occurrence of Oreomunnea mexicana (Juglandaceae) in a biodiversity hotspot cloud forest. Forests, 2017, 8(8): 261. |
19 | Wei B, Wang R, Hou K, et al. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 2018, 16: e00477. |
20 | Qin A, Liu B, Guo Q, et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from Southwestern China. Global Ecology and Conservation, 2017, 10: 139-146. |
21 | Xu X, Zhang H, Xie T, et al. Effects of climate change on the potentially suitable climatic geographical range of Liriodendron chinense. Forests, 2017, 8(10): 399. |
22 | Lioubimtseva E, Cole R. Uncertainties of climate change in arid environments of Central Asia. Reviews in Fisheries Science, 2006, 14(1/2): 29-49. |
23 | Li J Y, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275: 243-254. |
24 | Phillips S J, Dudík M, Schapire R E. A maximum entropy approach to species distribution modeling. New York: Proceedings of the Twenty-first International Conference on Machine Learning, 2004: 655-662. |
25 | Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive Cardiovascular and Thoracic Surgery, 2004, 3(2): 319-322. |
26 | Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293. |
27 | Pearson R G, Raxworthy C J, Nakamura M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 2007, 34(1): 102-117. |
28 | Chen H, Chen L J, Albright T P. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China. Chinese Science Bulletin, 2007, 52(9): 1223-1230. |
29 | Liu Y, Dong H G, Liu T, et al. Relationship between seed germination and invasion of Ambrosia artemisiifolia and A. trifida at different positions. Acta Ecologica Sinica, 2019, 39(24): 9079-9088. |
刘延, 董合干, 刘彤, 等. 豚草和三裂叶豚草不同植株部位种子萌发与入侵扩散关系. 生态学报, 2019, 39(24): 9079-9088. | |
30 | Wang G J, Sun B, Li J D, et al. Physiological response of invasive ragweed (Ambrosia trifida) to different water conditions. Hubei Agricultural Sciences, 2014(5): 1054-1058. |
王国骄, 孙备, 李建东, 等. 外来入侵种三裂叶豚草对不同水分条件的生理响应. 湖北农业科学, 2014(5): 1054-1058. | |
31 | Wei S H, Qu Z, Zhang C X, et al. Invasive alien species giant ragweed (Ambrosia trifida L.) and its risk assessment. Plant Protection, 2006, 32(4): 14-19. |
魏守辉, 曲哲, 张朝贤, 等. 外来入侵物种三裂叶豚草(Ambrosia trifida L.)及其风险分析. 植物保护, 2006, 32(4): 14-19. | |
32 | Cao X F, Qian G L, Hu B S, et al. Prediction of potential suitable distribution area of Flaveria bidentis in China based on niche models. Chinese Journal of Applied Ecology, 2010, 21(12): 3063-3069. |
曹向锋, 钱国良, 胡白石, 等. 采用生态位模型预测黄顶菊在中国的潜在适生区. 应用生态学报, 2010, 21(12): 3063-3069. | |
33 | Essl F, Biró K, Brandes D, et al. Biological flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 2015, 103(4): 1069-1098. |
34 | Baskin J M, Baskin C C. Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology, 1980, 61(3): 475-480. |
35 | Bassett I J, Crompton C W. The Biology of Canadian weeds: 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Canadian Journal of Plant Science, 1975, 55(2): 463-476. |
36 | Insausti P, Soriano A, Sanchez R A. Effects of flood-influenced factors on seed germination of Ambrosia tenuifolia. Oecologia, 1995, 103(1): 127-132. |
37 | Davis W E. Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifid. American Journal of Botany, 1930, 17(1): 58-76. |
38 | Bazzaz F A. The physiological ecology of plant succession. Annual review of Ecology and Systematics, 1979, 10(1): 351-371. |
39 | Abul‐Fatih H A, Bazzaz F A. The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytologist, 1979, 83(3): 817-827. |
40 | Ballard T O, Foley M E, Bauman T T. Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed. Journal of Plant Physiology, 1996, 149(1/2): 229-232. |
41 | Bassett I J, Crompton C W. The biology of Canadian weeds: 55. Ambrosia trifida L. Canadian Journal of Plant Science, 1982, 62(4): 1003-1010. |
42 | Makra L, Matyasovszky I, Hufnagel L, et al. The history of ragweed in the world. Applied Ecology and Environmental Research, 2015, 13(2): 489-512. |
43 | Cunze S, Leiblein M C, Tackenberg O. Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecology, 2013, 61(1): 133-143. |
44 | Storkey J, Stratonovitch P, Chapman D S, et al. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One, 2014, 9(2): e88156. |
45 | Chapman D S, Haynes T, Beal S, et al. Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology, 2014, 20(1): 192-202. |
[1] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[2] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[3] | 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. |
[4] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[5] | 王百竹, 朱媛君, 刘艳书, 马风云, 张晓, 时忠杰, 杨晓晖. 典型草原建群种长芒草(Stipa bungeana)在中国的潜在分布范围预测及主要影响因子分析[J]. 草业学报, 2019, 28(7): 3-13. |
[6] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[7] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[8] | 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14. |
[9] | 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2018, 27(1): 1-13. |
[10] | 王亚领, 李浩, 杨旋, 郭彦龙, 李维德. 基于MaxEnt模型和不同气候变化情景的单叶蔓荆潜在地理分布预测[J]. 草业学报, 2017, 26(7): 1-10. |
[11] | 张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14. |
[12] | 张明莉, 常宏磊, 马淼. 基于Biolog技术的外来种意大利苍耳与本地种苍耳根际土壤微生物功能多样性的比较[J]. 草业学报, 2017, 26(10): 179-187. |
[13] | 陈奕兆, 李建龙, 孙政国, 刚成诚. 欧亚大陆草原带1982-2008年间净初级生产力时空动态及其对气候变化响应研究[J]. 草业学报, 2017, 26(1): 1-12. |
[14] | 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2016, 25(12): 4-13. |
[15] | 马晓芳, 陈思宇, 邓婕, 冯琦胜, 黄晓东. 青藏高原植被物候监测及其对气候变化的响应[J]. 草业学报, 2016, 25(1): 13-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||