草业学报 ›› 2020, Vol. 29 ›› Issue (3): 157-170.DOI: 10.11686/cyxb2018184
谢开云1, 王玉祥1, 万江春1, 张树振1, 隋晓青1, 赵云2, 张博1,*
收稿日期:
2018-03-27
出版日期:
2020-03-20
发布日期:
2020-03-20
通讯作者:
*E-mail: xjauzb@163.com
作者简介:
谢开云(1984-),男,甘肃武威人,副教授,博士。E-mail: xkycah@163.com
基金资助:
XIE Kai-yun1, WANG Yu-xiang1, WAN Jiang-chun1, ZHANG Shu-zhen1, SUI Xiao-qing1, ZHAO Yun2, ZHANG Bo1,*
Received:
2018-03-27
Online:
2020-03-20
Published:
2020-03-20
摘要: 混播草地中豆科牧草与禾本科牧草(简称豆/禾牧草)之间的氮转移在草地农业系统氮循环中具有重要作用。在豆科/禾本科牧草混播系统和豆科/禾谷类作物间作系统存在一种氮素共享的通道,即在间(混)作中,豆科植物固定大气中的氮在满足自身生长需求前提下,还通过各种途径为伴生的禾本科植物提供氮源。在混播草地中氮素转移途径主要分地上和地下两种。地上途径主要是豆科牧草的地上部分经放牧家畜采食后粪便归还土壤,后又被禾本科牧草吸收利用或者地上凋落物在土壤中经微生物分解矿化释放出有效氮被另一种植物吸收利用(反之亦成立)。地下途径相对复杂,可能有以下3种:1)通过植物根际沉积氮转移。2)通过菌根真菌的菌丝传递。3)通过植物根系分泌物中含氮化合物来转移。目前的研究虽然明确了有可能转移的途径,但哪一种途径是主要的方式?在氮素转移的过程中,某一途径会部分的发生,还是好几种途径同时发生,每一个途径的贡献为多少?这仍缺少关键的证据。本研究针对国内外关于豆/禾混播草地中豆科牧草生物固氮、豆/禾牧草间氮转移的研究现状,重点对混播草地中豆/禾牧草之间的氮素转移数量、转移途径及影响因素等方面进行了分析与总结,并对可能存在的氮素转移机理进行了综述,对今后的研究方向进行了展望,以期为下一步通过将豆科植物引入我国农牧业种植结构来实现农牧业可持续发展模式的研究提供理论资料。
谢开云, 王玉祥, 万江春, 张树振, 隋晓青, 赵云, 张博. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素[J]. 草业学报, 2020, 29(3): 157-170.
XIE Kai-yun, WANG Yu-xiang, WAN Jiang-chun, ZHANG Shu-zhen, SUI Xiao-qing, ZHAO Yun, ZHANG Bo. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review[J]. Acta Prataculturae Sinica, 2020, 29(3): 157-170.
[1] Anjana S U, Iqbal M.Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agronomy for Sustainable Development, 2007, 27(1): 45-57. [2] Deutsch B, Kahle P, Voss M.Assessing the source of nitrate pollution in water using stable N and O isotopes. Agronomy for Sustainable Development, 2006, 26(4): 19-29. [3] Min J S, Kong X Z.Research development of agricultural non-point source pollution in China. Journal of Huazhong Agricultural University (Social Science Edition), 2016, (2): 59-66. 闵继胜, 孔祥智. 我国农业面源污染问题的研究进展. 华中农业大学学报(社会科学版), 2016, (2): 59-66. [4] Sierra J, Nygren P.Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biology and Biochemistry, 2006, 38(7): 1893-1903. [5] Sierra J, Desfontaines L.Role of root exudates and root turnover in the below-ground N transfer from [6] Carlsson G, Huss-Danell K.Does nitrogen transfer between plants confound N-based quantifications of N fixation? Plant and Soil, 2014, 374(1/2): 345-358. [7] Vertés F, Hatch D, Velthof G, [8] Eriksen J, Askegaard M, Soegaard K.Residual effect and nitrate leaching in grass-arable rotations: Effect of grassland proportion, sward type and fertilizer history. Soil Use and Management, 2010, 24(4): 373-382. [9] Robertson G P, Vitousek P M.Nitrogen in agriculture: Balancing the cost of an essential resource. Annual Review of Environment and Resources, 2009, 34: 97-125. [10] Kondorosi E, Mergaert P, Kereszt A.A paradigm for endosymbiotic life: Cell differentiation of rhizobium bacteria provoked by host plant factors. Annual Review of Microbiology, 2013, 67(1): 611-628. [11] Guo Y J, Yu N, Huang J G.Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Tropical Grasslands, 2010, 44: 109-114. [12] Chmelíková L, Hejcman M.Root system variability in common legumes in central Europe. Biologia, 2012, 67(1): 116-125. [13] Boller B C, Nosberger J.Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of 15N-fertilization. Plant and Soil, 1987, 104(2): 219-226. [14] Yang H, Unkovich M, Mcneill A, [15] Martins L M V, Xavier G R, Rangel F W, [16] Rouquette F M J, Smith G R. Effects of biological nitrogen fixation and nutrient cycling on stocking strategies for cow-calf and stocker programs. Professional Animal Scientist, 2010, 26(2): 131-141. [17] Unkovich M J, Baldock J, Peoples M B.Prospects and problems of simple linear models for estimating symbiotic N2 fixation by crop and pasture legumes. Plant and Soil, 2010, 329(1/2): 75-89. [18] Xie K Y, Li X L, He F, [19] Wedin D A, Russelle M P.Nutrient cycling in forage production systems//Barnes R F, Nelson C J, Moore K J, et al. Forages: The science of grassland agriculture. Volume II, 6th edition. Malden, MA: Blackwell Publishing, 2006: 137-148. [20] Thilakarathnar M M S, Papadopoulosy A, Rodda V, [21] Chapagain T, Riseman A.Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Research, 2014, 166(9): 18-25. [22] Chapagain T, Riseman A.Nitrogen and carbon transformations, water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems. Nutrient Cycling in Agroecosystems, 2015, 101(1): 107-121. [23] Hogh J H, Schjoerring J K.Below-ground nitrogen transfer between different grassland species: Directquantification by N-15 leaf feeding compared with indirect dilution of soil N-15. Plant and Soil, 2000, 227(2): 171-183. [24] Høgh-Jensen H, Schjoerring J K.Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant and Soil, 1997, 197(2): 187-199. [25] Rasmussen J, Eriksen J, Jensen E S, [26] Vallis I, Haydock K P, Ross P J, [27] Chalk P M, Peoples M B, Mcneill A M, [28] Wilton A C, Frank A B.Survival and agronomic performance of 25 alfalfa cultivars and strains interseeded into rangeland. Journal of Range Management, 1989, 42(4): 312-316. [29] Berdahl J D, Karn J F, Hendrickson J R.Dry matter yields of cool-season grass monocultures and grass-alfalfa binary mixtures. Agronomy Journal, 2001, 93(2): 463-467. [30] Moyerhenry K A, Burton J W, Israel D W, [31] Stern W R.Nitrogen fixation and transfer in intercrop systems. Field Crops Research, 1993, 34(3): 335-356. [32] Ledgard S F, Steele K W.Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil, 1992, 141(1/2): 137-153. [33] Ryle G J A, Powell C E, Gordon A J. Effect of source of nitrogen on the growth of Fiskeby soya bean: The carbon economy of whole plants. Annals of Botany, 1978, 42(3): 637-648. [34] Haystead A, Marriott C.Transfer of legume nitrogen to associated grass. Soil Biology and Biochemistry, 1979, 11(2): 99-104. [35] Trannin W S, Urquiaga S, Guerra G, [36] Dilkes N B, Jones D L, Farrar J.Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiology, 2004, 134(2): 706-715. [37] Yao H, Thornton B, Paterson E.Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biology and Biochemistry, 2012, 53(1): 72-77. [38] Muñoz-Romero V, López-Bellido R J, Redondo R, [39] Mayer J, Buegger F, Jensen E S, [40] Jensen E S.Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biology and Biochemistry, 1996, 28(1): 65-71. [41] Wichern F, Mayer J, Joergensen R G, [42] Sawatsky N, Soper R J.A quantitative measurement of the nitrogen loss from the root system of field pea ( [43] Schmidtke K.How to calculate nitrogen rhizodeposition: A case study in estimating N rhizodeposition in the pea ( [44] Pausch J, Loeppmann S, Kühnel A, [45] Cao Y, Lu C, Quan Z, [46] Parniske M.Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 2008, 6(10): 763-775. [47] Dodd J C, Burton C C, Burns R G, [48] Smith S E, Read D J.Colonization of roots and anatomy of VA mycorrhizas//Mycorrhizal Symbiosis. Dover ,England: Academic Press, 1997: 33-80. [49] Breuninger M, Trujillo C G, Serrano E, [50] Johansen A, Jensen E S.Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology and Biochemistry, 1996, 28(1): 73-81. [51] Haystead A, Malajczuk N, Grove T S.Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytologist, 1988, 108(4): 417-423. [52] Frey B, Schuepp H.Transfer of symbiotically fixed nitrogen from berseem ( [53] Singleton P W.Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiology, 1985, 79(2): 562-563. [54] Li Y, Wei R, Zhang R, [55] Rogers J B, Laidlaw A S, Christie P.The role of arbuscular mycorrhizal fungi in the transfer of nutrients between white clover and perennial ryegrass. Chemosphere, 2001, 42(2): 153-159. [56] Høgh-Jensen H.The nitrogen transfer between plants: An important but difficult flux to quantify. Plant and Soil, 2006, 282(1/2): 1-5. [57] Meng L, Zhang A, Wang F, [58] Jiang S N, Zhai M P.Nitrogen transfer between N-fixing plant and non-N-fixing plant. Journal of Forestry Research, 2000, 11(2): 75-80. [59] Zhu Y G, Laidlaw A S, Christie P, [60] He X H, Critchley C, Bledsoe C.Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in Plant Sciences, 2003, 22(6): 531-567. [61] Hodge A, Fitter A H.Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. [62] Hamel C, Barrantes-Cartín U, Furlan V, [63] Jannoura R, Kleikamp B, Dyckmans J, [64] Cavagnaro T R, Barrios-Masias F H, Jackson L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil, 2012, 353(1/2): 181-194. [65] Van D H, Marcel G A, Horton T R.Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150. [66] Asghari H R, Cavagnaro T R.Arbuscular mycorrhizas reduce nitrogen loss via leaching. PLoS One, 2012, 7(1): e29825. [67] He X, Xu M, Guo Y Q, [68] Paynel F.N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds. Agronomie, 2003, 23(5/6): 503-510. [69] Fustec J, Lesuffleur F, Mahieu S, [70] Steinauer K, Chatzinotas A, Eisenhauer N.Root exudate cocktails: The link between plant diversity and soil microorganisms. Ecology and Evolution, 2016, 6(20): 7387-7396. [71] Walker T S, Bais H P, Grotewold E, [72] Prithiviraj B, Paschke M W, Vivanco J M.Root communication: The role of root exudates//Encyclopedia of Plant and Crop Science. England and Wales: Taylor & Francis, 2006: 1-4. [73] Badri D V, Vivanco J M.Regulation and function of root exudates. Plant Cell and Environment, 2009, 32(6): 666-681. [74] Brophy L S, Heichel G H.Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant and Soil, 1989, 116(1): 77-84. [75] Lesuffleur F, Salon C, Jeudy C, [76] Paynel F, Murray P J, Cliquet J B.Root exudates: A pathway for short-term N transfer from clover and ryegrass. Plant and Soil, 2001, 229(2): 235-243. [77] Sierra J.Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell and Environment, 2010, 32(10): 1366-1376. [78] Ganeteg U.Uptake of organic nitrogen by plants. New Phytologist, 2009, 182(1): 31-48. [79] Sierra J, Daudin D, Domenach A M, [80] Paynel F, Lesuffleur F, Bigot J, [81] Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, [82] Frankow-Lindberg B E, Dahlin A S. N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant and Soil, 2013, 370(1/2): 567-581. [83] Louarn G, Pereira-Lopès E, Fustec J, [84] Mallarino A P, Wedin W F, Perdomo C H, [85] Sturite I, Henriksen T M, Breland T A.Longevity of white clover ( [86] Elgersma A, Schlepers H, Nassiri M.Interactions between perennial ryegrass ( [87] Thilakarathna R M M S. Genotypic variability among diverse red clover cultivars for nitrogen fixation and transfer. Nova Scotia: Dalhousie University Halifax, 2013. [88] Laidlaw A S, Christie P, Lee H W.Effect of white clover cultivar on apparent transfer of nitrogen from clover to grass and estimation of relative turnover rates of nitrogen in roots. Plant and Soil, 1996, 179(2): 243-253. [89] Rmms T, Papadopoulos Y A, Sae F, [90] Seker H, Rowe D E, Brink G E.White clover morphology changes with stress treatments. Crop Science, 2003, 43(6): 2218-2225. [91] Marty C, Pornon A, Escaravage N, [92] Sincik M, Acikgoz E.Effects of white clover inclusion on turf characteristics, nitrogen fixation, and nitrogen transfer from white clover to grass species in turf mixtures. Communications in Soil Science and Plant Analysis, 2007, 38(13/14): 1861-1877. [93] Tarui A, Matsumura A, Asakura S, [94] Ayres E, Dromph K M, Cook R, [95] Dromph K M, Cook R, Ostle N J, [96] Paterson E, Thornton B, Sim A, [97] Hamilton E W, Frank D A.Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 2001, 82(9): 2397-2402. [98] Mawdsley J L, Bardgett R D.Continuous defoliation of perennial ryegrass ( [99] Edward A, James H, Malcolm P, [100] Saj S, Mikola J, Ekelund F.Legume defoliation affects rhizosphere decomposers, but not the uptake of organic matter N by a neighbouring grass. Plant and Soil, 2008, 311(1/2): 141-149. [101] Davey A G, Simpson R J.Nitrogen fixation by subterranean clover at varying stages of nodule dehydration ii. efficiency of nitrogenase functioning. Journal of Experimental Botany, 1990, 41: 1189-1197. [102] Marquez-Garcia B, Shaw D, Cooper J W, [103] Wang P, Wang T H, Zhou D W.The productivity of grass-legume mixture in Songnen area of China. Science Paper Online, 2007, 2(2): 121-128. 王平, 王天慧, 周道玮. 松嫩地区禾-豆混播草地生产力研究. 中国科技论文在线, 2007, 2(2): 121-128. [104] Arrese-Igor C, González E M, Marino D, [105] Marino D, Frendo P, Ladrera R, [106] Mhadhbi H, Djébali N, Chihaoui S, [107] Fierer N, Schimel J P.Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787. [108] Schipanski M E, Drinkwater L E, Russelle M P.Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant and Soil, 2010, 329(1/2): 379-397. [109] Hogh-Jensen H, Schjoerring J.Measurement of biological dinitrogen fixation in grassland: Comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant and Soil, 1994, 166(2): 153-163. [110] Schipanski M E, Drinkwater L E.Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant and Soil, 2012, 357(1/2): 147-159. [111] Carlsson G, Huss-Danell K.Nitrogen fixation in perennial forage legumes in the field. Plant and Soil, 2003, 253(2): 353-372. [112] Suter M, Connolly J, Finn J A, [113] Brophy L S, Heichel G H, Russelle M P.Nitrogen transfer from forage legumes to grass in a systematic planting design. Crop Science, 1987, 27(4): 753-758. [114] Li Q, Yu P, Li G, [115] Nyfeler D, Hugueninelie O, Suter M, [116] Rasmussen J, Soegaard K, Pirhofer-Walzl K, [117] Mahieu S, Germon F, Hauggaardnielsen H, [118] Li Q, Song Y, Li G, [119] Jorgensen F V, Jensen E S, Schjoerring J K.Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution method. Plant and Soil, 1999, 208(2): 293-305. [120] Soon Y K, Harker K N, Clayton G W.Plant competition effects on the nitrogen economy of field pea and the subsequent crop. Soil Science Society of America Journal, 2004, 68: 552-557. [121] Ta T C, Faris M A.Species variation in the fixation and transfer of nitrogen from legumes to associated grasses. Plant and Soil, 1987, 98(2): 265-274. [122] Kounosuke F, Shoitsu O, Katsushi M, [123] Daudin D, Sierra J.Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. Agriculture Ecosystems and Environment, 2008, 126(3/4): 275-280. [124] Schweinsberg-Mickan M S Z, Joergensen R G, Müller T. Fate of 13C- and 15N-labelled rhizodeposition of [125] Rasmussen J, Gylfadóttir T, Loges R, [126] Hoghjensen H, Schjoerring J K.Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biology and Biochemistry, 2001, 33(4/5): 439-448. [127] Laberge G, Haussmann B I G, Ambus P, [128] Heichel G H, Henjum K I.Dinitrogen fixation, nitrogen transfer, and productivity of forage legume-grass communities. Crop Science, 1991, 31(1): 202-208. [129] Dahlin A S, Stenberg M.Transfer of N from red clover to perennial ryegrass in mixed stands under different cutting strategies. European Journal of Agronomy, 2010, 33(3): 149-156. [130] Zang H, Yang X, Feng X, |
[1] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[2] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[3] | 郭家萌, 何灵芝, 闫东良, 李卓, 王泳超, 邵瑞鑫, 杨青华. 控释氮肥和尿素配比对不同品种夏玉米氮素累积、转移及其利用效率的影响[J]. 草业学报, 2021, 30(1): 81-95. |
[4] | 谢开云, 曹凯, 万江春, 王玉祥, 赵云, 朱进忠. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究[J]. 草业学报, 2020, 29(4): 29-40. |
[5] | 张永亮, 于铁峰, 郝凤, 高凯. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响[J]. 草业学报, 2020, 29(11): 91-101. |
[6] | 刘慧, NZABANITAClement, 李彦忠. 苜蓿籽蜂寄生沙打旺种子的时期研究[J]. 草业学报, 2019, 28(4): 146-156. |
[7] | 段兵红, 陆姣云, 刘敏国, 杨梅, 王亚亚, 王振南, 杨惠敏. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系[J]. 草业学报, 2016, 25(12): 76-83. |
[8] | 李慧芳,王瑜,袁庆华,赵桂琴. 铅胁迫对禾本科牧草生长、生理及Pb2+富集转运的影响[J]. 草业学报, 2015, 24(9): 163-172. |
[9] | 杨晓丹, 原现军, 郭刚, 崔棹茗, 李君风, 白晰, 巴桑, 邵涛. 西藏豆科牧草青贮饲料中耐低温优良乳酸菌的筛选[J]. 草业学报, 2015, 24(6): 99-107. |
[10] | 郑伟,加娜尔古丽,唐高溶,朱进忠. 不同混播方式下豆禾混播草地群落稳定性的测度与比较[J]. 草业学报, 2015, 24(3): 155-167. |
[11] | 张哲, 杨姝,杜桂娟,黄淑萍,马凤江. 遮阴对三种豆科牧草光合特性和叶绿素荧光参数的影响[J]. 草业学报, 2013, 22(5): 212-219. |
[12] | 曹莉,秦舒浩,张俊莲,师尚礼,王蒂. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响[J]. 草业学报, 2013, 22(3): 139-. |
[13] | 谢开云,赵云,李向林,何峰,万里强,王丹,韩冬梅. 豆-禾混播草地种间关系研究进展[J]. 草业学报, 2013, 22(3): 284-. |
[14] | 马霞,王丽丽,李卫军,宋江平,何媛,罗明. 不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响[J]. 草业学报, 2013, 22(1): 95-102. |
[15] | 郑伟,朱进忠,加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价[J]. 草业学报, 2012, 21(6): 242-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||