欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2020, Vol. 29 ›› Issue (11): 91-101.DOI: 10.11686/cyxb2020009

• 研究论文 • 上一篇    下一篇

施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响

张永亮*, 于铁峰, 郝凤, 高凯   

  1. 内蒙古民族大学农学院,内蒙古 通辽 028042
  • 收稿日期:2020-01-07 修回日期:2020-03-19 出版日期:2020-11-20 发布日期:2020-11-20
  • 通讯作者: *E-mail: zyl8802@163.com
  • 作者简介:张永亮(1959-),男,内蒙古包头人,教授,博士。E-mail: zyl8802@163.com

Effects of fertilization and legume-grass ratio on forage yield and NPK utilization efficiency

ZHANG Yong-liang*, YU Tie-feng, HAO Feng, GAO Kai   

  1. College of Agronomy, Inner Mongolia University for Nationalities, Tongliao 028042, China
  • Received:2020-01-07 Revised:2020-03-19 Online:2020-11-20 Published:2020-11-20
  • Contact: *E-mail: zyl8802@163.com
  • Supported by:
    国家自然科学基金项目(31560673,31960352)和内蒙古自治区科技储备项目(2018MDCB03-02)资助

摘要: 氮磷钾施量、豆禾混播比例是影响混播草地产量和肥料利用效率的关键因素,分析不同氮磷钾组合与混播比例下牧草产量和氮磷钾利用效率,为豆禾混播草地高产栽培管理提供科学依据。以紫花苜蓿+无芒雀麦混播草地为对象,采用2个间行混播比例(豆禾比2:2和1:2)和7个氮磷钾组合[N280P150K0(A1),N350P100K360(A2),N140P300K300(A3),N420P250K120(A4),N70P50K60(A5),N210P0K240(A6)和N0P200K180(A7)]进行田间试验。结果表明,全年豆禾总产量以A2处理最高(11.68 t·hm-2),极显著(P<0.01)高于其他处理;A1处理禾草产量(3.80 t·hm-2)极显著(P<0.01)高于其他处理;A2处理苜蓿产量(8.60 t·hm-2)极显著(P<0.01)高于A1,A5,A6,A7处理;缺氮(A7)处理全年禾草及豆禾总产量最低。氮肥及氮钾互作与豆禾产量、氮钾互作与苜蓿产量显著相关(P<0.05)。禾草、苜蓿及豆禾NPK偏生产力和吸收率随着NPK施量增加而逐渐下降,A5处理极显著(P<0.01)高于其他处理。缺钾(A1)和低钾(A5)处理苜蓿N利用率明显降低,缺磷(A6)和高磷(A3)处理禾草、苜蓿及豆禾K利用率明显下降。豆禾2:2混播全年苜蓿产量及豆禾总产量极显著(P<0.01)高于1:2混播。豆禾2:2混播苜蓿NPK偏生产力、吸收量和吸收率、豆禾NPK偏生产力、N吸收量和吸收率极显著高于1:2混播,禾草NPK偏生产力、吸收量和吸收率极显著(P<0.01)低于1:2混播。综合考虑牧草产量及养分利用效率,豆禾2:2间行混播,氮磷钾施量以N 140 kg·hm-2,P2O5 100 kg·hm-2,K2O 120 kg·hm-2较适宜。

关键词: 紫花苜蓿, 无芒雀麦, 混播草地, 施肥, 牧草产量, 肥料利用效率

Abstract: The amounts of nitrogen, phosphorus and potassium applied and the ratio of legume to grass in mixed sowings are key factors affecting the yield and fertilizer use efficiency of mixed grassland. The forage yield and utilization efficiency of nitrogen, phosphorus and potassium under different application ratios of those nutrients were analyzed to provide a scientific basis to manage cultivation of mixed grass-legume grassland for high yield. Field experiments were conducted on mixed swards of alfalfa and smooth brome. The experiment comprised two row configurations (legume:grass inter-row pattern 2:2 and 1:2) and seven nitrogen, phosphorus and potassium combinations: N280P150K0 (A1), N350P100K360 (A2), N140P300K300(A3), N420P250K120 (A4), N70P50K60 (A5), N210P0K240 (A6) and N0P200K180 (A7), where subscripts after each element indicate the application rate as kg·ha-1 N, P2O5, and K2O, respectively. The highest value for annual total yield of mixed legume-grass forage (11.68 t DM·ha-1) occurred in the A2 treatment, and yield in this treatment was significantly higher than in other treatments (P<0.01). Alfalfa yield in the A2 treatment was 8.60 t DM·ha-1, and it was significantly higher than A1, A5, A6 and A7 treatments (P<0.01). Grass yield in the A1 treatment was 3.80 t DM·ha-1, and it was significantly higher than in other treatments (P<0.01). Yields of grass and grass-legume forage were lowest in the zero nitrogen treatment, A7. The combined grass-legume yield was significantly related to the rate of N fertilizer. Both combined grass-legume yield and alfalfa yield displayed a N×K interaction (P<0.05). The NPK partial productivity, and uptake efficiency of grass, alfalfa and grass-legume forage all showed a downward trend with increase in NPK level, and the A5 treatment was significantly superior to other treatments (P<0.01). The nitrogen utilization efficiency of alfalfa decreased significantly in the zero potassium (A1) and low potassium (A5) treatments, and the potassium utilization efficiency of grass, alfalfa and grass-legume forage decreased significantly in the zero phosphorus (A6) and high phosphorus (A3) treatments. The annual total yield of alfalfa and legume-grass forage in the 2:2 row configuration were significantly higher than in the 1:2 configuration, with extreme significance (P<0.01). Also, the partial productivity, uptake rate and uptake efficiency of alfalfa NPK, and partial productivity of NPK, N uptake rate and N uptake efficiency of grass-legume forage in the 2:2 row configuration mixture were significantly higher than in the 1:2 configuration with extreme significance (P<0.01), and the partial productivity, uptake amount and absorption efficiency of grass NPK were significantly lower in the 2:2 than in the 1:2 configuration with extreme significance (P<0.01). Considering forage yield and nutrient utilization efficiency, alfalfa-smooth brome mixed sowing in a 2:2 row configuration, and fertilizer application of 140 kg·ha-1 N, 100 kg·ha-1 P2O5, and 120 kg·ha-1 K2O can be recommended, based on these results.

Key words: alfalfa, smooth brome, mixed pastures, fertilization, forage yield, fertilizer use efficiency