[1] Wang C T, Li S K. Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010, 43(6): 1136-1146. 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010, 43(6): 1136-1146. [2] Yan J B, Tang H, Huang Y Q, et al. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149(1/2): 121-131. [3] Li C, Li Y, Sun B, et al. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193(3): 303-316. [4] Zhao X Q, Fang P, Peng Y L, et al. QTL mapping for six ear-related traits based on two maize (Zea mays) related populations. Journal of Agricultural Biotechnology, 2018, 26(5): 729-742. 赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米6个穗部性状QTL定位. 农业生物技术学报, 2018, 26(5): 729-742. [5] Wang S S, Liu H, Meng P T, et al. Research on relationship between panicle traits and yield of summer corn under different furrow irrigation. Water Saving Irrigation, 2015, (12): 31-34. 汪顺生, 刘慧, 孟鹏涛, 等. 不同沟灌方式下夏玉米穗部性状与产量相互关系的试验研究. 节水灌溉, 2015, (12): 31-34. [6] Nikolic A, Andjelkovic A, Dodig D, et al. Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika-Belgrade, 2011, 43(2): 263-276. [7] Almeida G D, Nair S, Borém A, et al. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular Breeding, 2014, 34(2): 701-715. [8] Upadyayula N, Da S H, Bohn M O, et al. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theoretical & Applied Genetics, 2006, 112(4): 592-606. [9] Duvick D N, Cassman K G. Post-Green Revolution trends in yield potential of temperate maize in the North-central United States. Crop Science, 1999, 39(6): 1622-1630. [10] Qiu H G, Zhang S H, Yang J, et al. Development of China's maize industry, challenges in the future and policy suggestions. Journal of Agricultural Science and Technology, 2013, 15(1): 20-24. 仇焕广, 张世煌, 杨军, 等. 中国玉米产业的发展趋势、面临的挑战与政策建议. 中国农业科技导报, 2013, 15(1): 20-24. [11] Calderón C I, Yandell B S, Doebley J F. Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS One, 2016, 11(3): e0150276. [12] An Y Q. QTL Mapping and analysis for ear traits of 4 RIL populations in maize. Zhengzhou: Henan Agricultural University, 2016. 安允权. 4个玉米RIL群体穗部性状的QTL定位与分析. 郑州: 河南农业大学, 2016. [13] Liu L, Du Y F, Shen X M, et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11(11): e1005670. [14] Yang X H, Yan J B, Zheng Y P, et al. Reviews of association analysis for quantitative traits in plants. Acta Agronomica Sinica, 2007, 33(4): 523-530. 杨小红, 严建兵, 郑艳萍, 等. 植物数量性状关联分析研究进展. 作物学报, 2007, 33(4): 523-530. [15] Zhu C, Gore M, Buckler E S, et al. Status and prospects of association mapping in plants. Plant Genome, 2008, 1(1): 5-20. [16] Xu L. Study on the genetic diversity and association analysis of yield traits with SSR markers in maize inbred lines. Yangzhou: Yangzhou University, 2012. 徐亮. 玉米自交系遗传多样性及产量性状与SSR标记的关联分析. 扬州: 扬州大学, 2012. [17] Zhang Q Q. Association analysis of important agronomical traits of maize inbred lines. Taian: Shandong Agricultural University, 2012. 张倩倩. SSR标记与玉米自交系主要性状的关联分析. 泰安: 山东农业大学, 2012. [18] Dong Y Y. Study on phenotypic traits and genetic diversity of maize inbred lines. Taiyuan: Shanxi University, 2018. 董永军. 玉米自交系表型性状调查与遗传多样性分析. 太原: 山西大学, 2018. [19] Shi Y S, Li Y, Wang T Y. Description specification and data standards for maize germplasm resources. Beijing: China Agriculture Press, 2006: 1-98. 石云素, 黎裕, 王天宇. 玉米种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 1-98. [20] Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. [21] Li Y P, Tao H B, Wang R N, et al. Effect of drought on ear development and yield of maize. Chinese Journal of Eco-Agriculture, 2015, 23(4): 383-391. 李叶蓓, 陶洪斌, 王若男, 等. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23(4): 383-391. [22] He D Y, Hu N, Liu J W, et al. Grey correlation analysis of corn ear traits and yield at different densities. Bulletin of Agricultural Science and Technology, 2011, (4): 73-75. 何代元, 胡宁, 刘经纬, 等. 不同密度下的玉米穗部性状与产量的灰色关联度分析. 农业科技通讯, 2011, (4): 73-75. [23] Qi Z Y, Yang H, Qiu Z G, et al. Correlation analysis of combining ability and general combining ability for ear characters in maize DH lines. Southwest China Journal of Agricultural Sciences, 2011, 24(5): 1642-1650. 祁志云, 杨华, 邱正高, 等. 玉米DH系穗部性状配合力及其一般配合力相关性分析. 西南农业学报, 2011, 24(5): 1642-1650. [24] Boakyewaa A G, Badu A B, Akromah R, et al. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS One, 2019, 14(4): 398-410. [25] Liu Z Z, Wu X, Liu H L, et al. Genetic diversity and population structure of important chinese maize inbred lines genetic diversity and population structure of important chinese maize inbred lines. Scientia Agricultura Sinica, 2012, 45(11): 2107-2138. 刘志斋, 吴迅, 刘海利, 等. 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012, 45(11): 2107-2138. [26] Sun Y W. Analysis of genetic diversity among maize inbred lines. Beijing: Chinese Academy of Agricultural Sciences, 2007. 孙友位. 利用SSR标记分析玉米自交系的遗传多样性. 北京: 中国农业科学院, 2007. [27] Tian B H. QTL mapping for maize ear and kernel trait under different environments and confirmation of a major QTLs for maize kernel row number. Beijing: China Agricultural University, 2013. 田宝华. 不同环境条件下玉米穗部和籽粒性状的QTL定位及玉米穗行数主效QTL的验证. 北京: 中国农业大学, 2013. [28] Yu J J. Sequence polymorphisms analysis of inflorescence development-related genes TD1 and FEA2 and their associations with yield-related traits in maize (Zea mays L.).Yangzhou: Yangzhou University, 2018. 喻俊杰. 玉米花序发育相关基因TD1与FEA2的序列变异及其与产量相关性状的关联分析. 扬州: 扬州大学, 2018. [29] Wang M. The genetic analysis of maize yield related traits. Wuhan: Huazhong Agricultural University, 2015. 王满. 玉米产量相关性状的遗传分析. 武汉: 华中农业大学, 2015. [30] Li W Z, Yao X Q, Xu C X, et al. Associational analysis of yield and quality traits with simple repeat sequence (SSR) markers in maize (Zea mays). Journal of Agricultural Biotechnology, 2012, 20(12): 1369-1377. 李伟忠, 姚希勤, 许崇香, 等. 玉米自交系产量和品质相关性状与简单重复序列(SSR)的关联分析. 农业生物技术学报, 2012, 20(12): 1369-1377. [31] Jiang S X, Ni Z B, Yin Z T, et al. Study on the genetic diversity and association analysis of yield and agronomic traits with SSR primers in waxy maize inbred lines. Journal of Anhui Agricultural Sciences, 2012, 40(6): 3212-3217, 3283. 蒋思霞, 倪正斌, 印志同, 等. 糯玉米自交系遗传多样性及其产量、农艺性状与SSR分子标记的关联研究. 安徽农业科学, 2012, 40(6): 3212-3217, 3283. [32] Ku L X. Studies on the molecular genetic mechanism of plant architecture traits in maize (Zea Mays L.). Zhengzhou: Henan Agricultural University, 2010. 库丽霞. 玉米株型相关性状分子遗传机理研究. 郑州: 河南农业大学, 2010. [33] Zhang J. QTL mapping and analysis on plant architectures and yield related traits in maize. Zhengzhou: Henan Agricultural University, 2010. 张君. 玉米株型及产量相关性状QTL定位与分析. 郑州: 河南农业大学, 2010. [34] Wang H W. Genetic analysis and gene mapping of a new virescent-yellow leaf mutant in maize. Yaan: Sichuan Agricultural University, 2014. 汪宏维. 全生育期整株黄化玉米新材料的遗传分析及其基因定位. 雅安: 四川农业大学, 2014. [35] Zhao X Q. Genetic mechanisms study of drought tolerance related to plant architecture in maize (Zea mays L.). Lanzhou: Gansu Agricultural University, 2018. 赵小强. 玉米株型相关耐旱遗传机理研究. 兰州: 甘肃农业大学, 2018. |