草业学报 ›› 2021, Vol. 30 ›› Issue (1): 96-106.DOI: 10.11686/cyxb2020136
齐鹏1,2,3(), 王晓娇4(), 姚一铭5, 陈晓龙1, 武均1,2,3, 蔡立群1,2,3
收稿日期:
2020-03-24
修回日期:
2020-05-12
出版日期:
2021-01-20
发布日期:
2021-01-08
通讯作者:
王晓娇
作者简介:
Corresponding author. E-mail: 42321964@qq.com基金资助:
Peng QI1,2,3(), Xiao-jiao WANG4(), Yi-ming YAO5, Xiao-long CHEN1, Jun WU1,2,3, Li-qun CAI1,2,3
Received:
2020-03-24
Revised:
2020-05-12
Online:
2021-01-20
Published:
2021-01-08
Contact:
Xiao-jiao WANG
摘要:
全膜双垄沟播技术是近年来黄土高原旱作玉米主要的生产技术之一,其采用的耕作方法包括深松耕、免耕、旋耕和翻耕,因此,研究不同耕作方法下旱作玉米农田土壤CO2排放特征对农田生态系统固碳减排的综合评价和管理措施的选择具有一定的重要意义。本研究采用田间定位试验,研究4种耕作方式(深松耕、免耕、旋耕和翻耕)结合两种传统施氮量(300和200 kg·hm-2)处理下旱作玉米农田土壤CO2的排放规律及碳平衡。结果表明,土壤CO2日排放速率最大值和最小值分别出现在12:00-14:00和4:00-6:00,趋势与大气温度变化一致;生育期内各处理土壤CO2排放速率均随生育进程呈先增后降的变化趋势,各处理波动规律基本一致,峰值出现在拔节期、大喇叭期与花期交替期,谷值出现在成熟期,翻耕措施下土壤碳排放总量和作物碳排放效率均显著高于其他耕作方式(P<0.05),其他耕作方式间差异不显著(P>0.05);施肥量为300 kg·hm-2时土壤CO2排放总量显著高于200 kg·hm-2(P<0.05);农田净生态系统生产力、固碳潜力在耕作方式间差异显著,深松耕处理显著高于其他处理(P<0.05),施氮量间差异不显著(P>0.05)。综上,从固碳减排的角度,深松耕措施和传统施氮量(200 kg·hm-2)相结合是黄土高原旱区玉米较好的管理模式。
齐鹏, 王晓娇, 姚一铭, 陈晓龙, 武均, 蔡立群. 不同耕作方法和施氮量对旱作农田土壤CO2排放及碳平衡的影响[J]. 草业学报, 2021, 30(1): 96-106.
Peng QI, Xiao-jiao WANG, Yi-ming YAO, Xiao-long CHEN, Jun WU, Li-qun CAI. Effects of different tillage practices and nitrogen application rate on carbon dioxide emissions and carbon balance in rain-fed maize crops[J]. Acta Prataculturae Sinica, 2021, 30(1): 96-106.
土层 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus(mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
0~5 | 1.21 | 7.63 | 0.85 | 1.89 | 13.30 | 349.60 | 8.40 |
5~10 | 1.23 | 7.46 | 0.81 | 1.92 | 11.90 | 330.20 | 8.30 |
10~30 | 1.32 | 6.93 | 0.78 | 1.82 | 4.90 | 244.00 | 8.40 |
表1 试验地土壤主要理化性质
Table 1 Soil chemical and physical properties
土层 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus(mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
0~5 | 1.21 | 7.63 | 0.85 | 1.89 | 13.30 | 349.60 | 8.40 |
5~10 | 1.23 | 7.46 | 0.81 | 1.92 | 11.90 | 330.20 | 8.30 |
10~30 | 1.32 | 6.93 | 0.78 | 1.82 | 4.90 | 244.00 | 8.40 |
项目 Item | 处理 Treatments | 土壤CO2排放速率 Soil CO2 flux (μmol·m-2·s-1) |
---|---|---|
耕作方式 Tillage practice | T1 | 4.62±0.17a |
T2 | 4.61±0.21a | |
T3 | 4.42±0.32b | |
T4 | 4.52±0.42ab | |
施氮量 Nitrogen application rate | N1 | 4.51±0.58a |
N2 | 4.58±0.52a | |
耕作方式 Tillage practice (T) | * | |
施氮量 Nitrogen application rate (N) | ns | |
耕作方式×施氮量 T×N | ns |
表2 耕作方式和施肥量对土壤CO2日排放平均速率的影响
Table 2 Daily average soil CO2 flux in different treatments of tillage and nitrogen application
项目 Item | 处理 Treatments | 土壤CO2排放速率 Soil CO2 flux (μmol·m-2·s-1) |
---|---|---|
耕作方式 Tillage practice | T1 | 4.62±0.17a |
T2 | 4.61±0.21a | |
T3 | 4.42±0.32b | |
T4 | 4.52±0.42ab | |
施氮量 Nitrogen application rate | N1 | 4.51±0.58a |
N2 | 4.58±0.52a | |
耕作方式 Tillage practice (T) | * | |
施氮量 Nitrogen application rate (N) | ns | |
耕作方式×施氮量 T×N | ns |
项目 Item | 处理 Treatments | 土壤CO2排放速率 Soil CO2 flux (μmol·m-2·s-1) |
---|---|---|
耕作方式 Tillage practice | T1 | 3.91±0.23a |
T2 | 3.62±0.34b | |
T3 | 3.60±0.32b | |
T4 | 3.56±0.42b | |
施氮量 Nitrogen application rate | N1 | 3.58±0.39b |
N2 | 3.77±0.27a | |
耕作方式 Tillage practice (T) | * | |
施氮量 Nitrogen application rate (N) | * | |
耕作方式×施氮量 T×N | ns |
表3 耕作方式和氮肥处理对生育期土壤CO2排放平均速率的影响
Table 3 Average soil CO2 flux during growth period in different treatments of tillage and nitrogen application
项目 Item | 处理 Treatments | 土壤CO2排放速率 Soil CO2 flux (μmol·m-2·s-1) |
---|---|---|
耕作方式 Tillage practice | T1 | 3.91±0.23a |
T2 | 3.62±0.34b | |
T3 | 3.60±0.32b | |
T4 | 3.56±0.42b | |
施氮量 Nitrogen application rate | N1 | 3.58±0.39b |
N2 | 3.77±0.27a | |
耕作方式 Tillage practice (T) | * | |
施氮量 Nitrogen application rate (N) | * | |
耕作方式×施氮量 T×N | ns |
项目 Item | 处理 Treatments | 籽粒产量 Crop yield (kg·hm-2) | 总生物量 Total biomass (kg·hm-2) | 土壤碳排放量 CE (kg C·hm-2) | CEE (kg·kg-1) |
---|---|---|---|---|---|
耕作方式 Tillage practice | T1 | 13025.73±907.56c | 29148.81±681.03bc | 7213.78±356.40a | 0.56±0.15a |
T2 | 13335.49±982.24b | 30212.85±989.40ab | 6620.62±427.06b | 0.50±0.16b | |
T3 | 13993.19±869.69a | 30763.54±825.62a | 6451.60±376.37b | 0.46±0.05b | |
T4 | 13078.00±375.38c | 29022.36±778.87c | 6436.87±218.47b | 0.49±0.06b | |
施氮量 Nitrogen application rate | N1 | 13056.28±945.77a | 29316.00±963.63a | 6556.84±461.79b | 0.50±0.20a |
N2 | 13659.92±751.72a | 30257.77±816.82a | 6804.59±540.28a | 0.51±0.13a | |
耕作方式 Tillage practice (T) | * | * | ** | ** | |
施氮量 Nitrogen application rate (N) | ns | ns | * | ns | |
耕作方式×施氮量T×N | ns | ns | ns | ns |
表4 耕作方式和氮肥处理对农田作物产量和碳排放效率的影响
Table 4 Effects of crop yield and carbon emission efficiency in different treatments of tillage and nitrogen application
项目 Item | 处理 Treatments | 籽粒产量 Crop yield (kg·hm-2) | 总生物量 Total biomass (kg·hm-2) | 土壤碳排放量 CE (kg C·hm-2) | CEE (kg·kg-1) |
---|---|---|---|---|---|
耕作方式 Tillage practice | T1 | 13025.73±907.56c | 29148.81±681.03bc | 7213.78±356.40a | 0.56±0.15a |
T2 | 13335.49±982.24b | 30212.85±989.40ab | 6620.62±427.06b | 0.50±0.16b | |
T3 | 13993.19±869.69a | 30763.54±825.62a | 6451.60±376.37b | 0.46±0.05b | |
T4 | 13078.00±375.38c | 29022.36±778.87c | 6436.87±218.47b | 0.49±0.06b | |
施氮量 Nitrogen application rate | N1 | 13056.28±945.77a | 29316.00±963.63a | 6556.84±461.79b | 0.50±0.20a |
N2 | 13659.92±751.72a | 30257.77±816.82a | 6804.59±540.28a | 0.51±0.13a | |
耕作方式 Tillage practice (T) | * | * | ** | ** | |
施氮量 Nitrogen application rate (N) | ns | ns | * | ns | |
耕作方式×施氮量T×N | ns | ns | ns | ns |
项目 Item | 处理 Treatments | 碳固定量 NPP-C (kg C·hm-2) | 微生物呼吸 Rm-C (kg C·hm-2) | 净生态系统生产力 NEP-C (kg C·hm-2) | NPP-C/CE比值 NPP-C/CE ratio |
---|---|---|---|---|---|
耕作方式Tillage practice | T1 | 13989.55±321.89bc | 6239.93±302.28a | 7749.63±396.25c | 1.94±0.06c |
T2 | 14489.12±571.92ab | 5726.84±369.40b | 8762.29±428.38b | 2.19±0.14b | |
T3 | 14781.00±386.29a | 5580.63±325.56b | 9200.37±254.26a | 2.30±0.07a | |
T4 | 13936.16±370.86c | 5567.89±188.98b | 8368.29±387.45b | 2.17±0.09b | |
施氮量 Nitrogen application rate | N1 | 14066.84±513.54a | 5671.67±398.46a | 8395.17±412.21a | 2.15±0.18a |
N2 | 14531.08±561.07a | 5885.89±466.34a | 8645.11±487.35a | 2.14±0.15a | |
耕作方式 Tillage practice (T) | * | ** | ** | ** | |
施氮量 Nitrogen application rate (N) | ns | * | ns | ns | |
耕作方式×施氮量T | ns | ns | ns | ns |
表5 耕作方式和氮肥处理对农田系统碳平衡的影响
Table 5 The carbon balance of farmland system during the growth period in different treatments of tillage and nitrogen application
项目 Item | 处理 Treatments | 碳固定量 NPP-C (kg C·hm-2) | 微生物呼吸 Rm-C (kg C·hm-2) | 净生态系统生产力 NEP-C (kg C·hm-2) | NPP-C/CE比值 NPP-C/CE ratio |
---|---|---|---|---|---|
耕作方式Tillage practice | T1 | 13989.55±321.89bc | 6239.93±302.28a | 7749.63±396.25c | 1.94±0.06c |
T2 | 14489.12±571.92ab | 5726.84±369.40b | 8762.29±428.38b | 2.19±0.14b | |
T3 | 14781.00±386.29a | 5580.63±325.56b | 9200.37±254.26a | 2.30±0.07a | |
T4 | 13936.16±370.86c | 5567.89±188.98b | 8368.29±387.45b | 2.17±0.09b | |
施氮量 Nitrogen application rate | N1 | 14066.84±513.54a | 5671.67±398.46a | 8395.17±412.21a | 2.15±0.18a |
N2 | 14531.08±561.07a | 5885.89±466.34a | 8645.11±487.35a | 2.14±0.15a | |
耕作方式 Tillage practice (T) | * | ** | ** | ** | |
施氮量 Nitrogen application rate (N) | ns | * | ns | ns | |
耕作方式×施氮量T | ns | ns | ns | ns |
1 | Liu S W, Cheng J, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget. Ecology Letters, 2018, 21(1): 1108-1118. |
2 | Zhang Z Q, Zhang L X, Xu W, et al. Several important issues of soil respiration under climate warming. Acta Prataculturae Sinica, 2019, 28(9): 164-173. |
张智起, 张立旭, 徐炜, 等. 气候变暖背景下土壤呼吸研究的几个重要问题. 草业学报, 2019, 28(9): 164-173. | |
3 | Chen Z M, Xu Y H, Fan J L, et al. Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biology and Biochemistry, 2017, 110(6): 103-115. |
4 | Chen H X, Liu J J, Zhang A F, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of consecutive wheat-maize rotation cycles. Science of the Total Environment, 2017, 579(2): 814-824. |
5 | Xiong Z Q, Zhang X X. Key role of efficient nitrogen application in low carbon agriculture. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1433-1440. |
熊正琴, 张晓旭. 氮肥高效施用在低碳农业中的关键作用. 植物营养与肥料学报, 2017, 23(6): 1433-1440. | |
6 | Feng J F, Chen C Q, Zhang Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agriculture, Ecosystems & Environment, 2013, 164(1): 220-228. |
7 | Chen L F, He Z B, Du J, et al. Response of soil carbon cycling to climate warming: Challenges and perspectives. Acta Prataculturae Sinica, 2015, 24(11): 183-194. |
陈龙飞, 何志斌, 杜军, 等. 土壤碳循环主要过程对气候变暖响应的研究进展. 草业学报, 2015, 24(11): 183-194. | |
8 | Xie J H, Zhang R Z, Li L L, et al. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2015, 23(11): 1384-1393. |
谢军红, 张仁陟, 李玲玲, 等. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响. 中国生态农业学报, 2015, 23(11): 1384-1393. | |
9 | Li H B, Han X Z. Carbon balance in black soil under different land use and fertilization methods. Chinese Journal of Eco-Agriculture, 2014, 22(1): 16-21. |
李海波, 韩晓增. 不同土地利用和施肥方式下黑土碳平衡的研究. 中国生态农业学报, 2014, 22(1): 16-21. | |
10 | Kan Y C, Huang X Y, Wang Y T, et al. Study of different disturbances impact on grassland carbon cycle. Pratacultural Science, 2012, 29(12): 1855-1861. |
阚雨晨, 黄欣颖, 王宇通, 等. 干扰对草地碳循环影响的研究与展望. 草业科学, 2012, 29(12): 1855-1861. | |
11 | Gao W P, Xiong X, Zhou H. Research progress on carbon sinks and carbon sources in the turf grass ecosystem. Pratacultural Science, 2012, 29(5): 717-723. |
高伟平, 熊雪, 周禾. 草坪生态系统中碳汇与碳源的研究进展. 草业科学, 2012, 29(5): 717-723. | |
12 | Zhang Y M, Hu C S, Zhang J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 967-973. |
张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4): 967-973. | |
13 | Jian Z L, Zhao L L, Wang J H, et al. Effect of intercrop of maize white clover on maize photosynthesis, yield, and soil respiration with different row spacing in a Karst area. Pratacultural Science, 2019, 36(2): 480-489. |
简忠领, 赵丽丽, 王家豪, 等. 喀斯特地区不同行距玉米白三叶间作对玉米光合、产量及土壤呼吸的影响. 草业科学, 2019, 36(2): 480-489. | |
14 | Yang Q, Zhang Q P, Jiang H L, et al. Effects of conservation tillage on soil respiration and microorganism amount in maize rhizosphere soil in Loess Plateau. Pratacultural Science, 2012, 29(12): 1810-1815. |
杨倩, 张清平, 蒋海亮, 等. 保护性耕作对黄土旱塬玉米土壤呼吸及微生物数量的影响. 草业科学, 2012, 29(12): 1810-1815. | |
15 | Yan P Y. Characteristics and influencing factors of greenhouse gas emissions from different cultivation models of maize farmland in dryland of Loess Plateau. Yangling: Northwest A & F University, 2013. |
阎佩云. 黄土旱塬旱作玉米农田不同栽培模式温室气体排放特征及影响因素. 杨凌: 西北农林科技大学, 2013. | |
16 | Zhu X P, Jia H T, Zhou J Q, et al. Effects of rainfall on short-term release of CO2 from wetland and farmland soils in arid and semi-arid areas. Journal of Agricultural Resources and Environment, 2017, 34(1): 54-58. |
朱新萍, 贾宏涛, 周建勤, 等. 降雨对干旱半干旱区湿地和农田土壤CO2短期释放的影响. 农业资源与环境学报, 2017, 34(1): 54-58. | |
17 | Zhang J L. Soil respiration and soil carbon balance in rainfed summer maize field under tillage and nitrogen application. Yangling: Northwest A & F University, 2014. |
张俊丽. 耕作和施氮措施下旱作夏玉米田土壤呼吸与土壤碳平衡研究. 杨凌: 西北农林科技大学, 2014. | |
18 | Lu X L. Soil CO2 emission rate in dry land maize field under different tillage and wheat straw returning conditions. Yangling: Northwest A & F University, 2014. |
禄兴丽. 耕作和秸秆还田措施下旱作夏玉米田土壤CO2排放速率的研究. 杨凌: 西北农林科技大学, 2014. | |
19 | Zhang P P. Effect of straw management and fertilization on soil carbon storage and carbon cycle in oasis farmland. Shihezi: Shihezi University, 2017. |
张鹏鹏. 秸秆管理和施肥措施对绿洲农田土壤碳库及碳循环影响的研究. 石河子: 石河子大学, 2017. | |
20 | Zhang H Y, Lu X T, Hartmann H, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27(4): 1-7. |
21 | Franzluebbers A, Hons F, Zuberer D. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil and Tillage Research, 1995, 34(1): 41-60. |
22 | Lü P Y, Chai Q, Li G. Effects of fertilizing nitrogen levels on soil respiration during growing season in maize field. Pratacultural Science, 2011, 28(11): 1919-1923. |
吕佩毓, 柴强, 李广. 不同施氮水平对玉米生长季土壤呼吸的影响. 草业科学, 2011, 28(11): 1919-1923. | |
23 | Zhang Y H, Zhu H X, Li Y X, et al. Effects of nitrogen fertilization on temperature sensitivity of rhizosphere respiration during maize growing stages. Journal of Agro-Environment Science, 2011, 30(10): 2033-2039. |
张耀鸿, 朱红霞, 李映雪, 等. 氮肥施用对玉米根际呼吸温度敏感性的影响. 农业环境科学学报, 2011, 30(10): 2033-2039. | |
24 | Jacinthe P A, Lal R, Kimble J M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil & Tillage Rearch, 2002, 67: 147-157. |
25 | Shi X H. CO2 emissions and soil organic carbon contents of cropland soil under differernt tillage practices-case studies on a black soil Northeast China and a Argiaquoll in Ontario, Canada. Changchun: Chinese Academy of Sciences, 2012. |
时秀焕. 不同耕作方式下农田土壤CO2排放和土壤有机碳含量的研究—以中国东北黑土和加拿大安省潮软土为例. 长春: 中国科学院, 2012. | |
26 | Stephen Y, Shirley L, Cai L Q, et al. Short-term effects of biochar amendment on greenhouse gas emissions from rainfed agricultural soils of the semi-arid loess plateau region. Agronomy, 2018, 8(74): 2-12. |
27 | Yin W, Shi Q Q, Guo Y, et al. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping. Chinese Journal of Eco-Agriculture, 2016, 24(6): 716-724. |
殷文, 史倩倩, 郭瑶, 等. 秸秆还田、一膜两年用及间作对农田碳排放的短期效应. 中国生态农业学报, 2016, 24(6): 716-724. | |
28 | Lu R K. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science Press, 1999. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. | |
29 | Dong L G, Xu H, Zhang Y R, et al. Characteristics of soil respiration of winter wheat farmland and the affecting factors in the Loess hilly region of Ningxia. Journal of Arid Land Resources and Environment, 2013, 27(1): 75-80. |
董立国, 许浩, 张源润, 等. 宁夏黄土丘陵区冬小麦农田土壤呼吸特征及影响因素分析. 干旱区资源与环境, 2013, 27(1): 75-80. | |
30 | Wang J H, Fang Y, Wang W, et al. Diurnal dynamics of soil respiration: Relationship with temperature and the most suitable measuring time. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1): 59-170. |
王嘉慧, 方圆, 王娓, 等. 土壤呼吸日动态同温度的关系以及最适测定时间. 北京大学学报(自然科学版), 2015, 51(1): 159-170. | |
31 | Chen J L. Analysis of soil respiratory flux of dry-cropped corn field in Semi-arid Loess Plateau. Lanzhou: Lanzhou University, 2013. |
陈计玲. 半干旱黄土高原旱作覆膜玉米农田土壤呼吸通量分析. 兰州: 兰州大学, 2013. | |
32 | Song M, Cai L Q, Qi P, et al. Diurnal variations of greenhouse gases emissions under different biochar applications. Chinese Journal of Ecol-Agriculture, 2016, 24(10): 1300-1309. |
宋敏, 蔡立群, 齐鹏, 等. 不同生物质炭输入水平下旱作农田温室气体排放日变化研究. 中国生态农业学报, 2016, 24(10): 1300-1309. | |
33 | Ren J H. Effects and mechanisms of long-term conservation tillage on carbon emissions from loessial soil in semi-arid areas. Lanzhou: Gansu Agricultural University, 2017. |
任金虎. 长期保护性耕作对半干旱区黄绵土碳排放的影响及机制. 兰州: 甘肃农业大学, 2017. | |
34 | Zhang Q B, Yang L, Wang J, et al. Effects of different irrigation methods and fertilization measures on soil respiration and its component contributions in cotton field in arid region. Scientia Agricultura Sinica, 2012, 45(12): 2420-2430. |
张前兵, 杨玲, 王进, 等. 干旱区不同灌溉方式及施肥措施对棉田土壤呼吸及各组分贡献的影响. 中国农业科学, 2012, 45(12): 2420-2430. | |
35 | Niu L A, Hao J M, Zhang B Z, et al. Soil respiration and carbon balance in farmland ecosystems on North China Plains. Ecology and Environment, 2009, 18(3): 1054-1060. |
牛灵安, 郝晋珉, 张宝忠, 等. 长期施肥对华北平原农田土壤呼吸及碳平衡的影响. 生态环境学报, 2009, 18(3): 1054-1060. | |
36 | Zhang Y, Zhang H L, Chen J K, et al. Influence of tillage measures on CO2 emission from farmland in North China and analysis of water-heat relationship. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 47-53. |
张宇, 张海林, 陈继康, 等. 耕作措施对华北农田CO2排放影响及水热关系分析. 农业工程学报, 2009, 25(4): 47-53. | |
37 | Yang L, Liao Y C, Gao M S, et al. Analysis of CO2 emission rate and soil water and heat in dryland wheat field under different tillage measures. Northwest Agricultural Journal, 2011, 20(1): 70-75. |
杨玲, 廖允成, 高茂盛, 等. 不同耕作措施下旱作麦田CO2排放速率与土壤水热关系分析. 西北农业学报, 2011, 20(1): 70-75. | |
38 | Duan C Q, Zhang R Z, Cai L Q, et al. Effects of conservation tillage on daily dynamics of greenhouse gases flux from spring wheat during mature stage in dry land of the Loess Plateau. Chinese Agricultural Science Bulletin, 2013, 29(21): 35-40. |
段翠清, 张仁陟, 蔡立群, 等. 保护性耕作对黄土高原旱地春小麦成熟期农田温室气体通量日变化的影响. 中国农学通报, 2013, 29(21): 35-40. | |
39 | Liu H L. Effects of different tillage methods on soil properties and growth and development of maize. Shenyang: Shenyang Agricultural University, 2016. |
刘红亮. 不同耕作方式对土壤特性及玉米生长发育的影响. 沈阳: 沈阳农业大学, 2016. |
[1] | 郭家萌, 何灵芝, 闫东良, 李卓, 王泳超, 邵瑞鑫, 杨青华. 控释氮肥和尿素配比对不同品种夏玉米氮素累积、转移及其利用效率的影响[J]. 草业学报, 2021, 30(1): 81-95. |
[2] | 吴晓娟, 杨梅, 芦奕晓, 杨惠敏. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响[J]. 草业学报, 2020, 29(9): 106-116. |
[3] | 杨叶华, 张松, 王帅, 刘正兰, 方林发, 张学良, 刘瑞, 张建伟, 张宇亭, 石孝均. 中国不同区域常见绿肥产量和养分含量特征及替代氮肥潜力评估[J]. 草业学报, 2020, 29(6): 39-55. |
[4] | 高丽敏, 田倩, 苏晶, 沈益新. 施氮水平对甜高粱干物质产量及氮肥利用率的影响[J]. 草业学报, 2020, 29(4): 192-198. |
[5] | 高丽敏, 苏晶, 田倩, 沈益新. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. |
[6] | 张建军, 党翼, 赵刚, 樊廷录, 王磊, 程万莉, 李尚中, 王淑英, 雷康宁, 张朝伟. 秸秆还田与氮肥减施对旱地春玉米产量及生理指标的影响[J]. 草业学报, 2019, 28(10): 156-165. |
[7] | 刘晶, 曲广鹏, 田新会, 杜文华. 基于响应面设计的饲草型小黑麦新品系C31栽培条件优化筛选[J]. 草业学报, 2019, 28(1): 37-49. |
[8] | 于华荣, 郭园, 朱爱民, 鲁富英, 王乐, 张玉霞. 氮素水平对沙地燕麦叶片非结构性碳氮代谢的影响[J]. 草业学报, 2018, 27(5): 61-72. |
[9] | 李韦柳, 覃维治, 熊军, 韦民政, 唐秀桦, 闫海锋. 施氮对狼尾草在南方贫瘠旱坡地生长、能源品质及氮肥利用率的影响[J]. 草业学报, 2018, 27(3): 144-153. |
[10] | 廖建军, 申小云, 霍宾, 熊康宁. 喀斯特山区草地施肥对放牧乌蒙半细毛羊抗氧化系统功能的影响[J]. 草业学报, 2018, 27(1): 169-176. |
[11] | 吴雅薇, 李强, 豆攀, 马晓君, 余东海, 罗延宏, 孔凡磊, 袁继超. 氮肥对不同耐低氮性玉米品种生育后期叶绿素含量和氮代谢酶活性的影响[J]. 草业学报, 2017, 26(10): 188-197. |
[12] | 熊瑛, 王龙昌, 赵琳璐, 杜娟, 张赛, 周泉. 保护性耕作下蚕豆田土壤呼吸及碳平衡特性[J]. 草业学报, 2017, 26(1): 13-22. |
[13] | 谢开云,李向林,何峰,万里强,王栋,秦燕,余群. 单播与混播下紫花苜蓿与无芒雀麦生物量对氮肥的响应[J]. 草业学报, 2014, 23(6): 148-156. |
[14] | 陈远学,陈曦,陈新平,罗永,牟勇,吕世华,徐开未. 不同施氮对饲草玉米产量品质及养分吸收的影响[J]. 草业学报, 2014, 23(3): 255-261. |
[15] | 陈远学,陈晓辉,唐义琴,张福锁,陈新平,张朝春,刘静,徐开未. 不同氮用量下小麦/玉米/大豆周年体系的干物质积累和产量变化[J]. 草业学报, 2014, 23(1): 73-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||