草业学报 ›› 2021, Vol. 30 ›› Issue (10): 191-200.DOI: 10.11686/cyxb2021117
• 综合评述 • 上一篇
汪辉1(), 田浩琦1(), 毛培胜2, 刘文辉3, 贾志锋3, 魏露萍1, 周青平1()
收稿日期:
2021-03-29
修回日期:
2021-05-17
出版日期:
2021-09-16
发布日期:
2021-09-16
通讯作者:
周青平
作者简介:
Corresponding author. E-mail: qpingzh@aliyun.com基金资助:
Hui WANG1(), Hao-qi TIAN1(), Pei-sheng MAO2, Wen-hui LIU3, Zhi-feng JIA3, Lu-ping WEI1, Qing-ping ZHOU1()
Received:
2021-03-29
Revised:
2021-05-17
Online:
2021-09-16
Published:
2021-09-16
Contact:
Qing-ping ZHOU
摘要:
植物的光合作用是最重要的化学反应之一,是生产人类和动物所需食物和氧气以及净化水源的重要过程。从光合作用着手提高植物产量一直是研究热点。挖掘植物非叶绿色器官光合潜力是提高植物整体光合能力的一个重要途径,一些植物非叶绿色器官在逆境条件下具有蒸腾速率较低、水分利用效率较高、渗透调节能力更强等特点,表现出优于叶片的光合抗逆性且具有可观的产量贡献。简要综述了非叶绿色器官光合作用的相关研究,主要包括植物繁殖器官及茎的光合表现、研究植物器官相对贡献率的方法、非生物胁迫对植物非叶绿色器官的影响、非叶绿色器官光合途径的鉴定及非叶绿色器官再固定CO2等方面,分析了非叶绿色器官光合贡献率评价方法上存在的优缺点,并对未来在非叶绿色器官光合研究方向上作以展望。
汪辉, 田浩琦, 毛培胜, 刘文辉, 贾志锋, 魏露萍, 周青平. 植物非叶绿色器官光合特征研究进展[J]. 草业学报, 2021, 30(10): 191-200.
Hui WANG, Hao-qi TIAN, Pei-sheng MAO, Wen-hui LIU, Zhi-feng JIA, Lu-ping WEI, Qing-ping ZHOU. Progress in research on the photosynthetic characteristics of green non-leaf organs in plants[J]. Acta Prataculturae Sinica, 2021, 30(10): 191-200.
1 | USCB. World population 1950-2050. (2012.1.5) [2021.6.22]. http://www.census.gov/population/international/data/idb/worldpopgraph.php. |
2 | FAO. Global agriculture towards 2050//Briefing paper for FAO high-level expert forum on “How to feed the world 2050”. Rome: The Food and Agriculture Organization, 2009: 21-23. |
3 | Tilman D, Christian B, Jason H, et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Ences of the United States of America, 2011, 108(50): 20260-20264. |
4 | Li X, Liu N, You L, et al. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security.PLoS One, 2016, 11(7): 1-18. |
5 | Ray D K, Navin R, Nathaniel D M, et al. Recent patterns of crop yield growth and stagnation. Nature Communication, 2012, 3(1): 1-7. |
6 | Long S, Marshall-Colon A, Zhu X. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161(1): 56-66. |
7 | Simkin A J, López-Calcagno P E, Raines C A. Feeding the world: Improving photosynthetic effciency for sustainable crop production. Journal of Experimental Botany, 2019, 70(4): 1119-1140. |
8 | Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118. |
9 | Loomis R S, Williams W A. Maximum crop poductivity: An extimate. Crop Science, 1963, 1(3): 67-72. |
10 | Simkin A J, Faralli M, Ramamoorthy S, et al. Photosynthesis in non‐foliar tissues: Implications for yield. Plant Journal, 2020, 101(4): 1001-1015. |
11 | Brazel A J, Ó’Maoiléidigh D S. Photosynthetic activity of reproductive organs. Journal of Experimental Botany, 2019, 70(6): 1734-1754. |
12 | Aschan G, Pfanz H. Non-foliar photosynthesis-a strategy of additional carbon acquisition. Flora, 2003, 198(2): 81-97. |
13 | Hu L, Zhang Y, Xia H, et al. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiologia Plantarum, 2019, 166(1): 226-239. |
14 | Wang H, Hou L, Mao P. Contribution of the pod wall to seed grain filling in alfalfa. Scientific Reports, 2016, 6(26586): 1-7. |
15 | Zhang C, Zhan D, Luo H, et al. Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica, 2016, 54(1): 12-18. |
16 | Lu Z, Pan Y, Hu W, et al. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency.BMC Plant Biology, 2017, 17(1): 240. |
17 | AuBuchon-Elder T, Coneva V, Goad D M, et al. Sterile spikelets contribute to yield in sorghum and related grasses. The Plant Cell, 2020, 32(11): 3500-3518. |
18 | Ávila-Lovera E, Zerpa A J, Santiago L S. Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist, 2017, 216(4): 1119-1129. |
19 | Kitaya Y, Yabuki K, Kiyota M, et al. Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species. Trees, 2002, 16(2/3): 155-158. |
20 | Noodén L D, Jessica P. Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 2001, 52(364): 2151-2159. |
21 | Tambussi E A, Salvador N, José L A. Ear of durum wheat under water stress. Planta, 2005, 221(1): 446-458. |
22 | Martinez D E, Luquez V M, Bartoli C G, et al. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum). Physiologia Plantarum, 2010, 119(4): 519-525. |
23 | Hein J A, Mark E S, Kirk P M, et al. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress. BMC Plant Biology, 2016, 16(1): 1-12. |
24 | Allen E J, Morgan D G, Ridgman W J. A physiological analysis of the growth of oilseed rape. Journal of Agricultural Science, 1971, 77(2): 339-341. |
25 | Rut S B, Molero G, Reynolds P, et al. Photosynthetic contribution of the ear to grain filling in wheat: A comparison of different methodologies for evaluation. Journal of Experimental Botany, 2016, 67(9): 2787-2798. |
26 | Zhang Y P, Wang Z M, Wang P, et al. Photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Scientia Agricultura Sinica, 2003, 36(10): 1143-1149. |
张永平, 王志敏, 王璞, 等. 冬小麦节水高产栽培群体光合特征. 中国农业科学, 2003, 36(10): 1143-1149. | |
27 | Wang C. The relationship between photosynthetic organs and grain yield and protein content in different wheat varieties. Tai’an: Shandong Agriculture University, 2011. |
王超. 小麦不同光合器官与籽粒产量及蛋白质含量的关系. 泰安: 山东农业大学, 2011. | |
28 | Araus J L, Brown H R, Febrero A, et al. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell and Environment, 2006, 16(4): 383-392. |
29 | Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica, 2001, 39(2): 239-244. |
30 | Urs F, Iwona A, Tadahiko M. Rubiscolytics: Fate of rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 2007, 59(7): 1615-1624. |
31 | Lopes M S, Cortadellas N, Kichey T, et al. Wheat nitrogen metabolism during grain filling: Comparative role of glumes and the flag leaf. Planta, 2006, 225(1): 165-181. |
32 | Maydup M L, Antonietta M, Graciano C, et al. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Research, 2014, 167(10): 102-111. |
33 | Ishihara K, Takada A, Imaizumi N. On the contribution of panicle photosynthesis to grain yield in rice plants. Japanese Journal of Crop Science, 1991, 60(1): 122-123. |
34 | Imaizumi N, Usuda H, Nakamoto H, et al. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell and Physiology, 1990, 31(6): 835-844. |
35 | Hu Y, Zhang Y, Luo H, et al. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235(2): 325-336. |
36 | Zhang J X, Xue L H, Yin L, et al. Effect of pod shading on pod and seed matter accumulation at soybean seed formation stage. Agricultural Research in Arid Areas, 2008, 26(3): 128-132. |
章建新, 薛丽华, 伊力, 等. 大豆始粒期荚遮光对荚粒物质积累的影响. 干旱地区农业研究, 2008, 26(3): 128-132. | |
37 | Yang Y, Cang J, Wang X D, et al. Photosynthetic characteristics of soybean pod and its contribution to yield.Journal of Northeast Agricultural University, 2008, 39(12): 51-56. |
杨阳, 苍晶, 王学东, 等. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12): 51-56. | |
38 | Li J X, Zhang J X, Lv S P. Photosynthetic characteristics in pod and leaves of high-yield spring soybean. Soybean Science, 2009, 28(6): 1026-1030. |
李金霞, 章建新, 吕淑萍. 高产春大豆豆荚与叶片的光合性能研究. 大豆科学, 2009, 28(6): 1026-1030. | |
39 | Liu H M, Li Y, Bu G J, et al. Effects of photosynthate transportation and distribution in soybean pods on the development of soybean seeds. Journal of Nuclear Agricultural Sciences, 2008, 22(4): 519-523. |
刘洪梅, 李英, 卜贵军, 等. 豆荚光合物质转运与分配对籽粒发育的影响. 核农学报, 2008, 22(4): 519-523. | |
40 | Hetherington S E, Smillie R M, Davies W J. Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 1998, 49(324): 1173-1181. |
41 | Birkhold K T, Koch K E, Darnell R L. Carbon and nitrogen economy of developing rabbiteye blueberry fruit. Journal of the American Society for Horticultural Science, 1992, 117(1): 139-145. |
42 | Chen J, Zhang S, Zhang L, et al. Fruit photosynthesis and assimilate translocation and partitioning: Their characteristics and role in sugar accumulation in developing Citrus unshiu fruit.Acta Botanica Sinica, 2002, 44(2): 158-163. |
43 | Wang W J, Zu Y G, Meng Q H, et al. CO2 exchange characteristics of Eupatorium adenophorum Spreng. Acta Ecological Sinica, 2005, 25(8): 1898-1907. |
王文杰, 祖元刚, 孟庆焕, 等. 紫茎泽兰的CO2交换特性. 生态学报, 2005, 25(8): 1898-1907. | |
44 | Zu Y G, Zhang Z H, Wang W J, et al. Different characteristics of photosynthesis in stems and leaves of Mikania micranth. Chinese Journal of Plant Ecology, 2006, 30(6): 998-1004. |
祖元刚, 张衷华, 王文杰, 等. 薇甘菊叶和茎的光合特性. 植物生态学报, 2006, 30(6): 998-1004. | |
45 | Esteban R, Olascoaga B, Becerril J M, et al. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiologia Plantarum, 2010, 140(1): 69-78. |
46 | Tinoco-Ojanguren C. Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert. Journal of Arid Environments, 2008, 72(3): 127-140. |
47 | Marshall C, Sagar G R. The distribution of assimilates in Lolium multiflorum Lam. following differential defoliation. Annals of Botany, 1968, 32(4): 715-719. |
48 | Hodgkinson K C. Influence of partial defoliation on photosynthesis, photorespiration and transpiration by lucerne leaves of different ages. Functional Plant Biology, 1974, 1(4): 561-578. |
49 | Heichel G H, Turner N C. CO2 assimilation of primary and regrowth foliage of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): Response to defoliation. Oecologia, 1983, 57(1): 14-19. |
50 | Leng S H, Zhu G R. The effects of leaves during flowering and pod formation on rape seed yield. Chinese Journal of Oil Crop Science, 1989, 5(3): 25-29. |
冷锁虎, 朱耕如. 油菜花角期叶片对产量的影响. 中国油料作物学报, 1989, 5(3): 25-29. | |
51 | Liu W D, Yin J, Li L. Effect of leaf removal on photosynthetic rate and yield per stem in different spike-type wheat varieties. Journal of Triticeae Crops, 2007, 27(2): 318-322. |
刘万代, 尹钧, 李磊. 剪叶对不同穗型小麦品种光合速率及单茎产量的影响. 麦类作物学报, 2007, 27(2): 318-322. | |
52 | Frioni T, Acimovic D, Tombesi S, et al. Changes in within-shoot carbon partitioning in Pinot noir grapevines subjected to early basal leaf removal. Frontiers in Plant Science, 2018, 9: 1122. |
53 | Liu H, Chu W K, Teng A D, et al. The influence of defoliation on tuber biomass and matter allocation in Jerusalem artichoke. Acta Agrestia Sinica, 2016, 24(5): 1114-1118. |
刘辉, 初文凯, 滕爱娣, 等. 去叶对菊芋块茎产量及物质分配规律的相关性研究. 草地学报, 2016, 24(5): 1114-1118. | |
54 | Maydup M L, Antonietta M, Guiamet J J, et al. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Research, 2010, 119(1): 48-58. |
55 | Saeidi M, Moradi F, Jalali-Honarmand S. The effect of post anthesis source limitation treatments on wheat cultivars under water deficit. Australian Journal of Crop Science, 2012, 6(7): 1179-1187. |
56 | Gebbing T, Schnyder H. 13C labeling kinetics of sucrose in glumes indicates significant refixation of respiratory CO2 in the wheat ear. Functional Plant Biology, 2001, 28(10): 1047-1053. |
57 | Kriedemann P. The photosynthetic activity of the wheat ear. Annals of Botany, 1966, 30(3): 349-363. |
58 | Cernusak L A, Tcherkez G, Keitel C, et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants?Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36(3): 199-213. |
59 | Robert C, Bancal M O, Ney B, et al. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytologist, 2005, 165(1): 227-241. |
60 | Tiedemann A V, Firsching K H. Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environmental Polluttion, 2000, 108(3): 357-363. |
61 | Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63(5): 635-674. |
62 | Vicente R, Vergara-Díaz O, Medina S, et al. Durum wheat ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environmental and Experimental Botany, 2018, 153(1): 271-285. |
63 | Tambussi E A, Bort J, Guiamet J J, et al. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. Critical Reviews in Plant Sciences, 2007, 26(1): 1-16. |
64 | Wardlaw I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Annals of Botany, 2002, 90(4): 469-476. |
65 | Jia S, Lv J, Jiang S, et al. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 2015, 53(1): 95-109. |
66 | Abebe T, Melmaiee K, Berg V, et al. Drought response in the spikes of barley: Gene expression in the lemma, palea, awn, and seed. Functional and Integrative Genomics, 2010, 10(2): 191-205. |
67 | Li X, Wang H, Li H, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 2006, 127(4): 701-709. |
68 | Bort J, Brown R H, Araus J L. Refixation of respiratory CO2 in the ears of C3 cereals. Journal of Experimental Botany, 1996, 47(10): 1567-1575. |
69 | Zhan D X. Spatial cariation of photosynthetic capacity and physiological mechanism of water response of leaf and non-leaf green organs in cotton canopy. Shihezi: Shihezi University, 2014. |
占东霞.棉花冠层叶片与非叶绿色器官光合能力的空间变化及对水分响应的生理机制. 石河子: 石河子大学, 2014. | |
70 | Zhang Y P, Zhang Y H, Wang Z M. Photosynthetic diurnal variation characteristics of leaf and non-leaf organs in winter wheat under different irrigation regimes. Acta Ecologica Sinica, 2011, 31(5): 1312-1322. |
张永平, 张英华, 王志敏. 不同供水条件下冬小麦与非叶绿色器官光合日变化特征. 生态学报, 2011, 31(5): 1312-1322. | |
71 | Zhang Y P, Wang ZM, Huang Q, et al. Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agronomica Sinica, 2008, 34(7): 1213-1219. |
张永平, 王志敏, 黄琴, 等. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008, 34(7): 1213-1219. | |
72 | Kong L, Si J, Zhang B, et al. Environmental modification of wheat grain protein accumulation and associated processing quality: A case study of China. Australian Journal of Crop Science, 2013, 7(2): 173-181. |
73 | Wang X, Dinler B S, Vignjevic M, et al. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science, 2015, 230(10): 33-50. |
74 | Ehleringer J, Pearcy R W. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology, 1983, 73(3): 555-559. |
75 | Kong L, Sun M, Xie Y, et al. Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Frontiers in Plant Science, 2015, 6(358): 1-10. |
76 | Zhang Y H, Yang Y M, Cao L, et al. Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat. Acta Agronomica Sinica, 2015, 41(1): 136-144. |
张英华, 杨佑明, 曹莲, 等. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响. 作物学报, 2015, 41(1): 136-144. | |
77 | Bolin B. The greenhouse effect, climate change, and ecosystems. SCOPE, 1986, 29(541): 35-96. |
78 | Ward J Y K, Tissue D T, Thomas R B, et al. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 1999, 5(8): 857-867. |
79 | Baluar N, Badicean D, Peterhaensel C, et al. The peculiarities of carbon metabolism in the ears of C3 cereals CO2 exchange kinetics, chloroplasts structure and ultra-structure in the cells from photosynthetic active components of the ear. Journal of Tissue Culture and Bioengineering, 2018, 2018(1): 1-14. |
80 | Rangan P, Furtado A, Henry R J. New evidence for grain specific C4 photosynthesis in wheat. Scientific Reports, 2016, 6(1): 1-12. |
81 | Guliyev N, Bayramov S, Babayev H. Effect of water deficit on RUBISCO and carbonic anhydrase activities in different wheat genotypes//Allen J F, Gantt E, Golbeck J H, et al. Photosynthesis. Dordrecht: Springer, 2008: 1465-1468. |
82 | Wei A L, Wang Z M, Zhai Z X, et al. Effect of soil drought on C4 photosynthesis enzyme activities of flag leaf and ear in wheat.Scientia Agricultura Sinica, 2003, 36(5): 508-512. |
魏爱丽, 王志敏, 翟志席, 等. 土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响. 中国农业科学, 2003, 36(5): 508-512. | |
83 | Ziegler-Jöns A. Gas-exchange of ears of cereals in response to carbon dioxide and light: II. Occurrence of a C3-C4 intermediate type of photosynthesis. Planta, 1989, 178(2): 164-175. |
84 | Sage R F. C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends in Plant Science, 2002, 7(7): 283-285. |
85 | Bort J, Brown R H, Araus J L. Lack of C4 photosynthetic metabolism in ears of C3 cereals. Plant Cell and Environment, 1995, 18(6): 697-702. |
86 | Wirth E, Kelly G J, Fischbeck G, et al. Enzyme activities and products of CO2 fixation in various photosynthetic organs of wheat and oat. Zeitschrift für Pflanzenphysiologie, 1977, 82(1): 78-87. |
87 | Huo R, Feng C Y, Lv M C, et al. Dynamic changes in stomatal density and stomatal index during the flower opening of Hibiscus rosa-sinensis L. Ecological Science, 2015, 34(3): 49-52. |
霍然, 冯婵莹, 吕梦骋, 等. 扶桑花展开过程中气孔密度和气孔指数的动态变化. 生态科学, 2015, 34(3): 49-52. | |
88 | Li H B, Bai K Z, Hu Y X, et al. Stomatal frequency on some non-leaf organs of four crop species and their significance in photosynthesis. Chinese Journal of Plant Ecology, 2002, 26(3): 351-354. |
李寒冰, 白克智, 胡玉熹, 等. 4种作物部分非叶器官气孔频度及其在光合作用中的意义. 植物生态学报, 2002, 26(3): 351-354. | |
89 | Constable G A, Rawson H M. Carbon production and utilization in cotton: Inferences from a carbon budget. Functional Plant Biology, 1980, 7(5): 539-553. |
90 | Hiratsuka S, Suzuki M, Nishimura H, et al. Fruit photosynthesis in Satsuma mandarin. Plant Science, 2015, 241(10): 65-69. |
91 | Sui X, Shan N, Hu L, et al. The complex character of photosynthesis in cucumber fruit. Journal of Experimental Botany, 2017, 68(7): 1625-1637. |
92 | Puthur J T, Shackira A M, Saradhi P P, et al. Chloroembryos: A unique photosynthesis system. Journal of Plant Physiology, 2013, 170(13): 1131-1138. |
93 | Ruuska S A, Schwender J, Ohlrogge J B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiology, 2004, 136(1): 2700-2709. |
94 | Zhang J Y, Liu J X, Ju G S, et al. Chloroplast photosynthetic characteristics of non-leaf photosynthetic tissues (cortex) of Salix matsudana. Forest Science, 2014, 50(11): 30-35. |
张金尧, 刘俊祥, 巨关升, 等. 旱柳非叶光合组织(皮层)叶绿体光合特性. 林业科学, 2014, 50(11): 30-35. | |
95 | Pfanz H, Aschan G, Langenfeld-Heyser R, et al. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften, 2002, 89(4): 147-162. |
[1] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104. |
[2] | 王泳超, 张颖蕾, 闫东良, 何灵芝, 李卓, 燕博文, 邵瑞鑫, 郭家萌, 杨青华. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J]. 草业学报, 2020, 29(6): 191-203. |
[3] | 黄曦叶, 何林江, 刘金平, 游明鸿, 刘航江. 葎草水分和光合特征及抗性物质含量响应冬季降温的性别差异[J]. 草业学报, 2020, 29(2): 103-113. |
[4] | 王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168-178. |
[5] | 郭海燕, 段婧, 刘金平, 游明鸿, 谢瑞娟. 温度对雌雄葎草花芽分化和色素含量及光合作用影响的性别差异[J]. 草业学报, 2017, 26(8): 104-112. |
[6] | 李杨, 史娟, 崔娜娜, 韩宇. 苜蓿褐斑病对紫花苜蓿光合作用及草品质的影响[J]. 草业学报, 2017, 26(10): 149-157. |
[7] | 寇江涛, 康文娟, 苗阳阳, 师尚礼. 外源2,4-表油菜素内酯对NaCl胁迫下紫花苜蓿幼苗光合特性及离子吸收、运输和分配的影响[J]. 草业学报, 2016, 25(4): 91-103. |
[8] | 闫玉龙, 张立欣, 万志强, 谷蕊, 苏力德, 杨劼, 高清竹. 模拟增温与增雨对克氏针茅光合作用的影响[J]. 草业学报, 2016, 25(2): 240-250. |
[9] | 李晓宇,刘兴土,李秀军,张继涛,文波龙. 不同干湿交替频率对芦苇生长和生理的影响[J]. 草业学报, 2015, 24(3): 99-107. |
[10] | 董立花,韩巧红,杨勇,袁明. 短时强光处理对金心吊兰光合特性的影响[J]. 草业学报, 2015, 24(12): 245-252. |
[11] | 刘金平, 游明鸿, 曾晓琳, 蔡捡, 张小晶. 老芒麦种子发育时不同位叶光合速率和生物量变化与种子产量的相关分析[J]. 草业学报, 2015, 24(11): 118-127. |
[12] | 张金政,张起源,孙国峰,何卿,李晓东,刘洪章. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1): 167-176. |
[13] | 刘庆超,刘庆华,马宗骧,王奎玲. 三桠乌药耐阴性研究[J]. 草业学报, 2013, 22(6): 93-99. |
[14] | 祁娟,师尚礼,徐长林,闫伟红,张小娇. 4种披碱草属植物光合作用光响应特性的比较[J]. 草业学报, 2013, 22(6): 100-107. |
[15] | 朱成刚,李卫红,马建新,马晓东. 地上生物量负向扰动对干旱荒漠区补植沙拐枣幼株光化学过程的影响[J]. 草业学报, 2013, 22(2): 281-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||