[1] Shan L. To cope rationally with agricultural drought. Agricultural Research in the Arid Areas, 2011, 29(2): 1-5. 山仑. 科学应对农业干旱. 干旱地区农业研究, 2011, 29(2): 1-5. [2] Yang X C, Ming B, Tao H B, et al. Spatial distribution characteristics and impact on spring maize yield of drought in Northeast China. Chinese Journal of Eco-Agriculture, 2015, 23(6): 758-767. 杨晓晨, 明博, 陶洪斌, 等. 中国东北春玉米区干旱时空分布特征及其对产量的影响. 中国生态农业学报, 2015, 23(6): 758-767. [3] Cai F, Mi N, Ji R P, et al. Effects of drought stress and subsequent rewatering on major physiological parameters of spring maize during the key growth periods. Chinese Journal of Applied Ecology, 2017, 28(11): 3643-3652. 蔡福, 米娜, 纪瑞鹏, 等. 关键发育期干旱及复水过程对春玉米主要生理参数的影响. 应用生态学报, 2017, 28(11): 3643-3652. [4] Zhang R H, Zheng Y J, Ma G S, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecologica Sinica, 2011, 31(5): 1303-1311. 张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 2011, 31(5): 1303-1311. [5] Du W L, Gao J, Hu F L, et al. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agronomica Sinica, 2013, 39(3): 530-536. 杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39(3): 530-536. [6] Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell and Environment, 2010, 33: 453-467. [7] Christensen H N, Greene A A, Kakuda D K, et al. Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. Journal of Experimental Biology, 1994, 196: 297-305. [8] Jia Y, Zhao H W, Wang J G, et al. Research progress on γ-aminobulyric acid metabolism and function of crops under stress. Crops, 2014, 5: 9-15. 贾琰, 赵宏伟, 王敬国, 等. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展. 作物杂志, 2014, 5: 9-15. [9] Harsh N, Ramanpreet K, Simranjit K, et al. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation, 2014, 33: 408-419. [10] Luo H Y, Gao H B, Xia Q P, et al. Effects of exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stress. Scientia Agricultura Sinica, 2011, 44(4): 753-761. 罗黄颖, 高洪波, 夏庆平, 等. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响. 中国农业科学, 2011, 44(4): 753-761. [11] Yang L W, Li J R, Gao H B, et al. Effects of exogenous substances on active oxygen metabolism and photosynthesis in tomato seedlings under drought stress. Journal of Hebei Agricultural University, 2012, 35(2): 18-24. 杨丽文, 李敬蕊, 高洪波, 等. 干旱胁迫下外源物质对番茄幼苗活性氧代谢及光合作用的影响. 河北农业大学学报, 2012, 35(2): 18-24. [12] Giannopolitis C N, Ries S K. Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiology, 1977, 59: 315-318. [13] Zeng S X, Wang Y R, Liu H X. Some enzymatic reactions related to chlorophyll degradation in cucumber cotyledons under chilling in the light. Acta Phytophysiologica Sinica, 1991, 17(2): 177-182. 曾韶西, 王以柔, 刘鸿先. 低温光照下与黄瓜子叶叶绿素降低有关的酶促反应. 植物生理学报, 1991, 17(2): 177-182. [14] Gao J F. Plants physiology experimentation guidance. Beijing: Higher Education Press, 2006. 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. [15] Kuk Y I, Shin J S, Burgos N R, et al. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science, 2003, 43: 2109-2117. [16] Xie Z, Duan L, Tian X, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical scavenging activity. Journal of Plant Physiology, 2008, 165: 375-384. [17] Mukherjee S P, Choudhuri M A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiologia Plantarum, 1983, 58(2): 166-170. [18] Collino D J, Dardanelli J L, Sereno R, et al. Physiological responses of argentine peanut varieties to water stress. Field Crops Research, 2011, 70: 177-184. [19] Bo X P, Wang M X, Cui L, et al. Evaluation on correlations of three kinds of osmoregulation substances in tea fresh leaves with low temperature during winter and spring respectively and their difference among cultivars. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817. 薄晓培, 王梦馨, 崔林, 等. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价. 中国农业科学, 2016, 49(19): 3807-3817. [20] Monreal J A, Jiménez E T, Remesal E, et al. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany, 2007, 60: 257-267. [21] Hao Z B, Cang J, Xu Z. Plant physiological experiment. Harbin: Harbin Institute of Technology Press, 2004. 郝再彬, 苍晶, 徐仲. 植物生理实验. 哈尔滨: 哈尔滨工业大学出版社, 2004. [22] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 2004, 102(1): 15-27. [23] Li L J, Gu W R, Meng Y, et al. Physiological and biochemical mechanism of spermidine improving drought resistance in maize seedlings under drought stress. Chinese Journal of Applied Ecology, 2018, 29(2): 554-564. 李丽杰, 顾万荣, 孟瑶, 等. 干旱胁迫下亚精胺对玉米幼苗抗旱性影响的生理生化机制. 应用生态学报, 2018, 29(2): 554-564. [24] Yu L Y, Yao Q, Li P L, et al. Effects of exogenous γ-aminobutyric acid on growth of melon seedlings under drought stress. Journal of Shanghai Jiaotong University (Agricultural Science), 2018, 35(5): 22-27. 于立尧, 姚琪, 李彭丽, 等. 外源γ-氨基丁酸对干旱胁迫下甜瓜幼苗生长的影响. 上海交通大学学报(农业科学版), 2018, 35(5): 22-27. [25] Peter K, Corey E. Integrated approach to the mechanisms of thyroid toxins: Electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. Journal of Receptor and Signal Transduction Research, 2010, 30(3): 133-142. [26] Jia H, Qi L M G, Li T R G, et al. Sodium nitroprusside role on antioxidant enzymes activities in leaves of different potato cultivars under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3): 551-557. 贾慧, 其力木格, 李特日根, 等. 外源SNP对干旱胁迫下不同马铃薯品种叶片抗氧化酶活性的影响. 西北植物学报, 2016, 36(3): 551-557. [27] Liu C, Zhao L, Yu G. The dominant glutamic acid metabolic flux to produce γ-aminobutyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. Journal of Integrative Plant Biology, 2011, 53(8): 608-618. [28] Wang S, Zhou Q, Zhu Z L. Physiological and biochemical characteristics of Carpinus betulus seedlings under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(12): 2459-2466. 王飒, 周琦, 祝遵凌. 干旱胁迫对欧洲鹅耳枥幼苗生理生化特征的影响. 西北植物学报, 2013, 33(12): 2459-2466. [29] Alberte R S, Thornber J P, Fiscus E L. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheath chloroplasts of maize. Plant Physiology, 1977, 59(3): 351-353. [30] Dalal V K, Tripathy B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell & Environment, 2012, 35(9): 1685-1703. [31] Kaewsuksaeng S. Chlorophyll degradation in horticultural crops. Walailak Journal of Science & Technology, 2011, 8(1): 987-1005. [32] Esmaeil R C, Seyyed M S, Elnaz E, et al. Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops & Products, 2018, 112: 741-748. [33] Farooq M, Nawaz A, Chaudhry M, et al. Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 2017, 203: 464-472. [34] Wingler A, Quick W P, Bungard R A, et al. The role of photorespiration during drought stress: An analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell & Environment, 2010, 22(4): 361-373. [35] Cao H, Xu X, Han Z, et al. Changes of physiological characteristic on photosynthesis in malus seedling leaves during water stress. Acta Horticulturae Sinica, 2004, 31(3): 285-290. [36] Wang R M, Wang Z Q, Xiang Z X. Effect of exogenous γ-aminobutyric acid on the antioxidant defense system and phytohormones metabolism under high temperature stress in perennial ryegrass. Pratacultural Science, 2019, 36(1): 111-122. 王日明, 王志强, 向佐湘. 外源γ-氨基丁酸对高温胁迫下黑麦草抗氧化防御系统及激素代谢的影响. 草业科学, 2019, 36(1): 111-122. [37] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345. [38] Jutur P, Reddy A R. BpaI and BpnI: Novel type II restriction endonucleases from Bacillus pasteurii and Bacillus pantothenticus. Biotechnology Letters, 2004, 26(11): 929-932. |