草业学报 ›› 2021, Vol. 30 ›› Issue (9): 193-202.DOI: 10.11686/cyxb2020331
• 综合评述 • 上一篇
收稿日期:
2020-07-14
修回日期:
2020-08-31
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
杨志民
作者简介:
Corresponding author. E-mail: nauyzm@njau.edu.cn基金资助:
Zhen-zhen TAN(), Xia-xiang ZHANG, Zhi-min YANG()
Received:
2020-07-14
Revised:
2020-08-31
Online:
2021-08-30
Published:
2021-08-30
Contact:
Zhi-min YANG
摘要:
冷季型草坪草耐寒性强,绿期长,观赏效果好,因此被广泛应用在气候过渡地带的公园、运动场及草坪中。但由于冷季型草坪草耐热性差,夏季高温会引起草坪草的一系列生理代谢过程紊乱,从而使其表观质量下降,病害频发,草坪休眠、枯黄甚至死亡,影响草坪观赏或运动功能的发挥。本研究从生理和分子机制两个方面,重点综述了冷季型草坪草在高温胁迫下碳代谢、抗氧化代谢、激素代谢、耐热基因和转录等方面研究进展,分析了目前冷季型草坪草耐热性研究存在的主要问题,并对其研究前景进行了展望,以期为进一步的冷季型草坪草耐热机理研究提供理论参考。
谭真真, 张夏香, 杨志民. 冷季型草坪草耐热性研究进展[J]. 草业学报, 2021, 30(9): 193-202.
Zhen-zhen TAN, Xia-xiang ZHANG, Zhi-min YANG. Research advances in heat resistance of cool-season turfgrasses[J]. Acta Prataculturae Sinica, 2021, 30(9): 193-202.
激素Hormone | 物种Species | 文献Reference |
---|---|---|
生长素Auxin | 高羊茅F. arundinacea | [ |
赤霉素GAs | 匍匐剪股颖A. stolonifera | [ |
草地早熟禾P. pratensis | [ | |
多年生黑麦草L. perenne | [ | |
细胞分裂素CTK | 匍匐剪股颖A. stolonifera | [ |
脱落酸ABA | 高羊茅F. arundinacea | [ |
匍匐剪股颖A. stolonifera | [ | |
多年生黑麦草L. perenne | [ | |
乙烯ETH | 匍匐剪股颖A. stolonifera | [ |
油菜素甾醇BRs | 高羊茅F. arundinacea | [ |
茉莉酸JA | 匍匐剪股颖A. stolonifera | [ |
水杨酸SA | 高羊茅F. arundinacea | [ |
褪黑素MT | 匍匐剪股颖A. stolonifera | [ |
高羊茅F. arundinacea | [ | |
多年生黑麦草L. perenne | [ | |
独脚金内酯SLs | 高羊茅F. arundinacea | [ |
表1 部分冷季型草坪草耐热性与激素研究
Table 1 Partially research on heat-resistance and hormone of cool-season turfgrasses
激素Hormone | 物种Species | 文献Reference |
---|---|---|
生长素Auxin | 高羊茅F. arundinacea | [ |
赤霉素GAs | 匍匐剪股颖A. stolonifera | [ |
草地早熟禾P. pratensis | [ | |
多年生黑麦草L. perenne | [ | |
细胞分裂素CTK | 匍匐剪股颖A. stolonifera | [ |
脱落酸ABA | 高羊茅F. arundinacea | [ |
匍匐剪股颖A. stolonifera | [ | |
多年生黑麦草L. perenne | [ | |
乙烯ETH | 匍匐剪股颖A. stolonifera | [ |
油菜素甾醇BRs | 高羊茅F. arundinacea | [ |
茉莉酸JA | 匍匐剪股颖A. stolonifera | [ |
水杨酸SA | 高羊茅F. arundinacea | [ |
褪黑素MT | 匍匐剪股颖A. stolonifera | [ |
高羊茅F. arundinacea | [ | |
多年生黑麦草L. perenne | [ | |
独脚金内酯SLs | 高羊茅F. arundinacea | [ |
1 | Beard J B. Turfgrass: Science and culture. Englewood Cliffs: Prentice-Hall, 1973. |
2 | Turgeon A L. Turfgrass management (8th Edition). Englewood Cliffs: Prentice-Hall, 2008. |
3 | Huang B R, Dacosta M, Jiang Y W. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: From physiology to molecular biology. Critical Reviews in Plant Sciences, 2014, 33(2/3): 141-189. |
4 | Beard J B. Turfgrass: Science and culture (2th Edition). Englewood Cliffs: Prentice Hall, 1995. |
5 | Zhang J M, Xie X M, Dong Z X. An evaluation on the heat tolerance of cool-season turf grasses under field heat stress. Pratacultural Science, 2007, 24(2): 105-109. |
张巨明, 解新明, 董朝霞. 高温胁迫下冷季型草坪草的耐热性评价. 草业科学, 2007, 24(2): 105-109. | |
6 | Ma J, Meng J. Approach to the technique for winter overseeding of warm-season lawn in the south of the Yangtze River. Journal of Jiangsu Forestry Science & Technology, 2001, 28(4): 37-39. |
马进, 孟瑾. 江南暖地型草坪冬季交播技术的探讨. 江苏林业科技, 2001, 28(4): 37-39. | |
7 | Allen M R, Dube O P, Solecki W, et al. Framing and context//In: Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 2018: 51-81. |
8 | Wang Y W, Zhai P M, Tian H. Extreme high temperatures in southern China in 2003 under the background of climate change. Meteorological Monthly, 2006, 32(10): 27-33. |
王亚伟, 翟盘茂, 田华. 近40年南方高温变化特征与2003年的高温事件. 气象, 2006, 32(10): 27-33. | |
9 | Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14. |
10 | Xu Q Z, Huang B R. Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Science, 2000, 40(5): 1363-1368. |
11 | Liu X Z, Huang B R. Seasonal changes and cultivar difference in turf quality, photosynthesis, and respiration of creeping bentgrass. Hortscience, 2001, 36(6): 1131-1135. |
12 | Xu Q Z, Huang B R. Seasonal changes in carbohydrate accumulation for two creeping bentgrass cultivars. Crop Science, 2003, 43(1): 266-271. |
13 | Fry J, Huang B R. Applied turfgrass science and physiology. New Jersey: John Wiley & Sons Inc, 2004. |
14 | Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 2007, 61(3): 199-223. |
15 | Nilsen E T, Orcutt D M. The physiology of plants under stress. New York: Wiley, 1996. |
16 | Bolhar-Nordenkampe H R, Long S P, Baker N R, et al. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Functional Ecology, 1989, 3(4): 497-514. |
17 | Huang B R, Fry J D. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Science, 1998, 38(4): 1017-1022. |
18 | Jiang Y W, Huang B R. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 2001, 41(2): 436-442. |
19 | Xu Q Z, Huang B R. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science, 2001, 41(1): 127-133. |
20 | Rossi S, Burgess P, Jespersen D, et al. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Science, 2017, 57: 169-178. |
21 | Kobza J, Edwards G E. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiology, 1987, 83(1): 69-74. |
22 | Salvucci M E, Crafts-Brandner D J. Mechanism for deactivation of Rubisco under moderate heat stress. Physiologia Plantarum, 2004, 122(4): 513-519. |
23 | Demirevska K K, Holzer R, Simova S L, et al. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biologia Plantarum, 2005, 49(4): 521-525. |
24 | Yu J J, Du H M, Xu M, et al. Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. Journal of the American Society for Horticultural Science, 2012, 137(4): 221-228. |
25 | Liu X Z, Huang B R. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. Journal of Plant Physiology, 2008, 165(18): 1947-1953. |
26 | Chen K, Sun X Y, Amombo E, et al. High correlation between thermotolerance and photosystem Ⅱ activity in tall fescue. Photosynthesis Research, 2014, 122(3): 305-314. |
27 | Huang B R, Gao H W. Growth and carbohydrate metabolism of creeping bentgrass cultivars in response to increasing temperatures. Crop Science, 2000, 40(4): 1115-1120. |
28 | Liu X Z, Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 2000, 40(2): 503-510. |
29 | Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 1993, 125(1): 27-58. |
30 | Du H M, Wang Z L, Huang B R. Differential responses of warm-season and cool-season turfgrass species to heat stress associated with antioxidant enzyme activity. Journal of the American Society for Horticultural Science, 2009, 134(4): 417-422. |
31 | Liu X Z, Huang B R. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. Journal of the American Society for Horticultural Science, 2000, 125(4): 442-447. |
32 | Huang B R, Liu X Z, Xu Q Z. Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Science, 2001, 41(2): 430-435. |
33 | Wang Z L, Pote J, Huang B R. Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. Journal of the American Society for Horticultural Science, 2003, 128(5): 648-655. |
34 | Almeselmani M, Deshmukh P S, Sairam R K, et al. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006, 171(3): 382-388. |
35 | Dash S, Mohanty N. Response of seedlings to heat-stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. Journal of Plant Physiology, 2002, 159(1): 49-59. |
36 | Zhang L, Hu T, Amombo E, et al. The alleviation of heat damage to photosystem Ⅱ and enzymatic antioxidants by exogenous spermidine in tall fescue. Frontiers in Plant Science, 2017, 8: 1747. |
37 | Chen K, Zhang M N, Zhu H H, et al. Ascorbic acid alleviates damage from heat stress in the photosystem Ⅱ of tall fescue in both the photochemical and thermal phases. Frontiers in Plant Science, 2017, 8: 1373. |
38 | Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars (in Chinese). Scientia Sinica Vitae, 2019, 49(10): 1227-1281. |
黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49(10): 1227-1281. | |
39 | Hu Q N, Zhang S X, Huang B R. Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and downregulation of auxin transport genes in tall fescue under different temperature regimes. International Journal of Molecular Sciences, 2019, 20(8): 1836. |
40 | Hu Q N, Zhang S X, Huang B R. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Science, 2018, 271: 34-39. |
41 | Krishnan S, Ma Y M, Merewitz E. Leaf trimming and high temperature regulation of phytohormones and polyamines in creeping bentgrass leaves. Journal of the American Society for Horticultural Science, 2016, 141(1): 66-75. |
42 | Alam M N, Zhang L H, Yang L, et al. Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 2018, 19: 224. |
43 | Jespersen D, Huang B R. Effects of trinexapac-ethyl and daconil action (acibenzolar-s-methyl and chlorothalonil) on heat and drought tolerance of creeping bentgrass. Crop Science, 2017, 57: 138-146. |
44 | McCann S E, Huang B R. Effects of trinexapac-ethyl foliar application on creeping bentgrass responses to combined drought and heat stress. Crop Science, 2007, 47(5): 2121-2128. |
45 | Ervin E H, Koski A J. Kentucky bluegrass growth responses to trinexapac-ethyl, traffic, and nitrogen. Crop Science, 2001, 41(6): 1871-1877. |
46 | Ervin E H, Koski A J. Growth responses of Lolium perenne L. to trinexapac-ethyl. Hortscience, 1998, 33(7): 1200-1202. |
47 | Wang Z L, Xu Q Z, Huang B R. Endogenous cytokinin levels and growth responses to extended photoperiods for creeping bentgrass under heat stress. Crop Science, 2004, 44(1): 209-213. |
48 | Liu X H, Huang B R. Cytokinin effects on creeping bentgrass response to heat stress: Ⅱ. Leaf senescence and antioxidant metabolism. Crop Science, 2002, 42(2): 466-472. |
49 | Liu X H, Huang B R, Banowetz G. Cytokinin effects on creeping bentgrass responses to heat stress: Ⅰ. Shoot and root growth. Crop Science, 2002, 42(2): 457-465. |
50 | Veerasamy M, He Y L, Huang B R. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science, 2007, 132(4): 467-472. |
51 | Zhang X X, Wang X Y, Zhuang L L, et al. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiologia Plantarum, 2019, 167(4): 488-501. |
52 | Ihtisham M, Fahad S, Luo T, et al. Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Frontiers in Plant Science, 2018, 9: 487. |
53 | Larkindale J, Huang B R. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 2004, 161(4): 405-413. |
54 | Pirnajmedin F, Majidi M M, Taleb H, et al. Amelioration of high temperature stress by exogenously applied salicylic acid: Genotype-specific response of physiological traits. Agronomy Journal, 2020, 112(3): 1573-1579. |
55 | Merewitz E B, Liu S. Improvement in heat tolerance of creeping bentgrass with melatonin, rutin, and silicon. Journal of the American Society for Horticultural Science, 2019, 144(2): 141-148. |
56 | Zhang J, Shi Y, Zhang X Z, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany, 2017, 138: 36-45. |
57 | Goss R M, Baird J H, Kelm S L, et al. Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions. Crop Science, 2002, 42(2): 472-479. |
58 | Fagerness M J, Yelverton F H. Plant growth regulator and mowing height effects on seasonal root growth of penncross creeping bentgrass. Crop Science, 2001, 41(6): 1901-1905. |
59 | Fagerness M J, Yelverton F H, Livingston D P, et al. Temperature and trinexapac-ethyl effects on bermudagrass growth, dormancy, and freezing tolerance. Crop Science, 2002, 42(3): 853-858. |
60 | Ervin E H, Zhang X Z, Askew S D, et al. Trinexapac-ethyl, propiconazole, iron, and biostimulant effects on shaded creeping bentgrass. Hort Technology, 2004, 14(4): 500-506. |
61 | Agarwal P K, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum, 2010, 54(2): 201-212. |
62 | Yoshida T, Fujita Y, Sayama H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 2010, 61(4): 672-685. |
63 | Suzuki N, Bassil E, Hamilton J S, et al. ABA is required for plant acclimation to a combination of salt and heat stress. PloS One, 2016, 11(1): e0147625. |
64 | Balfagón D, Zandalinas S I, Gómez-Cadenas A. High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiologia Plantarum, 2019, 165(2): 183-197. |
65 | Wang X Y, Zhuang L L, Shi Y, et al. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. International Journal of Molecular Sciences, 2017, 18(9): 1981. |
66 | Hu T, Liu S Q, Amombo E, et al. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea schreb.) in response to high-temperature stress. Frontiers in Plant Science, 2015, 6: 403. |
67 | Qu A L, Ding Y F, Jiang Q, et al. Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207. |
68 | Huang B R, Rachmilevitch S, Xu J C. Root carbon and protein metabolism associated with heat tolerance. Journal of Experimental Botany, 2012, 63(9): 3455-3465. |
69 | Wang W X, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9(5): 244-252. |
70 | Li Z Y, Long R C, Zhang T J, et al. Research progress on plant heat shock protein. Biotechnology Bulletin, 2016, 32(2): 7-13. |
栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展. 生物技术通报, 2016, 32(2): 7-13. | |
71 | Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). Journal of Proteomics, 2008, 71(4): 391-411. |
72 | Mian M R, Zhang Y, Wang Z Y, et al. Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages. BMC Plant Biology, 2008, 8: 27. |
73 | Kotak S, Larkindale J, Lee U, et al. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10(3): 310-316. |
74 | Wang X Y, Huang B R. Lipid- and calcium-signaling regulation of HsfA2c-mediated heat tolerance in tall fescue. Environmental and Experimental Botany, 2017, 136: 59-67. |
75 | Li Z, Peng Y, Huang B R. Alteration of transcripts of stress-protective genes and transcriptional factors by aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences, 2018, 19(6): 1623. |
76 | Liu T, Liu Z Q, Li Z, et al. Regulation of heat shock factor pathways by gamma-aminobutyric acid (GABA) associated with thermotolerance of creeping bentgrass. International Journal of Molecular Sciences, 2019, 20(19): 4713. |
77 | Sun X B, Sun C Y, Li Z G, et al. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant Cell and Environment, 2016, 39(6): 1320-1337. |
78 | Bi A Y. Physiological responses analysis to heat-resistance and molecular cloning of HSP17.8 and HSP17.9 in tall fescue. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. |
毕傲月. 高羊茅耐高温生理分析及HSP17.8和HSP17.9分子克隆. 武汉: 中国科学院武汉植物园, 2017. | |
79 | Kim K H, Alam I, Kim Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters, 2012, 34(2): 371-377. |
80 | Wang D F, Luthe D S. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiology, 2003, 133(1): 319-327. |
81 | Sun X B, Zhu J F, Li X, et al.AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biology, 2020, 20(1):184. |
82 | Liu K L, Chen W G. Recent advances in plant heat-related genes. Journal of Plant Genetic Resources, 2015, 16(1): 127-132. |
刘克禄, 陈卫国. 植物耐热相关基因研究进展.植物遗传资源学报, 2015, 16(1): 127-132. | |
83 | Ogawa D, Yamaguchi K, Nishiuchi T. High level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany, 2007, 58(12): 3373-3383. |
84 | Liu H C, Charng Y Y. Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signaling & Behavior, 2012, 7(5): 547-550. |
85 | Xue G P, Sadat S, Drenth J, et al. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 2014, 65(2): 539-557. |
86 | Wang Y, Dai Y, Tao X, et al. Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis. Frontiers in Plant Science, 2015, 6: 1226. |
87 | Zhuang L L, Cao W, Wang J, et al. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. International Journal of Molecular Sciences, 2018, 19(9): 2702. |
88 | Sathish P, Withana N, Biswas M, et al. Transcriptome analysis reveals season-specific rbcS gene expression profiles in diploid perennial ryegrass (Lolium perenne L.). Plant Biotechnology Journal, 2007, 5(1): 146-161. |
89 | Studer B, Byrne S, Nielsen R O, et al. A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics, 2012, 13: 140. |
90 | Farrell J D, Byrne S, Paina C, et al.De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy. PLoS One, 2014, 9(8): e103567. |
91 | Wang K H, Liu Y R, Tian J L, et al. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science, 2017, 8: 1032. |
92 | Hu T, Sun X Y, Zhang X Z, et al. An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance. BMC Genomics, 2014, 15: 1147. |
93 | Xu Y, Wang J Y, Bonos S A, et al. Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences, 2018, 19(1): 116. |
94 | Qian Y G, Cao L W, Zhang Q, et al. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC Plant Biology, 2020, 20(1): 366. |
[1] | 章武, 杨锦玉, 卢翔, 林金梅, 牛学礼. 木霉菌对草坪草病原菌的抑菌效果及其机理初步研究[J]. 草业学报, 2021, 30(9): 137-149. |
[2] | 谢文刚, 万依阳, 张宗瑜, 张俊超. 禾本科植物落粒机理研究进展[J]. 草业学报, 2021, 30(8): 186-198. |
[3] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[4] | 徐晓霞, 刘金平, 游明鸿, 张小晶, 谢瑞娟. 遮阴和干旱对荩草克隆生长和有性繁殖及权衡关系的影响[J]. 草业学报, 2019, 28(2): 121-132. |
[5] | 刘天增, 王旭盛, 张巨明. 新型草坪模拟践踏器的研制及暖季型草坪草耐践踏性评价[J]. 草业学报, 2019, 28(12): 41-52. |
[6] | 李小冬, 尚以顺, 武语迪, 王学敏, 熊先勤, 陈光吉, 孙方, 张文, 蔡一鸣. 紫花苜蓿MsMBF1c基因在拟南芥中表达提高转基因植株的耐热性[J]. 草业学报, 2019, 28(10): 187-198. |
[7] | 杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J]. 草业学报, 2017, 26(12): 77-88. |
[8] | 曾庆飞, 韦鑫, 蔡一鸣, 舒健虹, 吴佳海, 王小利. 过表达FaSAMDC基因提高黑麦草属植物的抗旱性和耐热性[J]. 草业学报, 2017, 26(12): 117-127. |
[9] | 王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响[J]. 草业学报, 2016, 25(8): 81-90. |
[10] | 马娇, 宗人旭, 刘金平, 张丽慧, 伍德. 丝茅侵入量对3种冷季型草坪草竞争力及生长潜力影响的差异[J]. 草业学报, 2016, 25(7): 140-147. |
[11] | 于景金, 李冉, 刘梦娴, 杨志民. 暖季型与冷季型草坪草差异响应干旱及旱后复水的生理生态机制[J]. 草业学报, 2016, 25(11): 86-93. |
[12] | 章武, 刘国道, 南志标. 4种暖季型草坪草币斑病病原菌鉴定及其生物学特性[J]. 草业学报, 2015, 24(1): 124-131. |
[13] | 徐佩贤,费凌,陈旭兵,王兆龙. 四种冷季型草坪植物对镉的耐受性与积累特性[J]. 草业学报, 2014, 23(6): 176-188. |
[14] | 王竞红,多多. 多效唑对6种草坪草苗期抗旱性影响的研究[J]. 草业学报, 2014, 23(6): 253-258. |
[15] | 孙凌霞,孙萍,蔡仕珍,李西. 四种冷季型草坪草对二氧化硫胁迫的生理响应研究[J]. 草业学报, 2014, 23(4): 237-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||