草业学报 ›› 2022, Vol. 31 ›› Issue (10): 28-40.DOI: 10.11686/cyxb2021403
收稿日期:
2021-11-09
修回日期:
2021-12-13
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
解李娜,马成仓
作者简介:
E-mail: machengcang@163.com基金资助:
Chun-wen WANG(), Fang ZHAO, Chen ZHANG, Li-na XIE(), Cheng-cang MA()
Received:
2021-11-09
Revised:
2021-12-13
Online:
2022-10-20
Published:
2022-09-14
Contact:
Li-na XIE,Cheng-cang MA
摘要:
草原灌丛化已成为全球干旱和半干旱地区的普遍现象,关于灌木扩张对草地土壤固氮微生物群落的影响及其机制尚不清楚。小叶锦鸡儿是广泛生长于内蒙古草原的豆科灌木,研究其对土壤固氮微生物群落的影响具有重要意义。本研究采用传统培养法结合分子生物学技术,比较了荒漠草原(干旱地区)和典型草原(半干旱地区)小叶锦鸡儿灌丛内外不同土壤深度固氮微生物群落的差异,并从灌丛对群落物种的选择性、灌丛沃岛效应、灌丛效应和干旱效应的相互关系等方面探讨引起这些差异的机制。结果表明:小叶锦鸡儿灌丛不仅增加了固氮微生物群落的物种丰富度和多度,而且改变了群落组成。群落组成的改变表现在37.50%~58.33%种属的多度发生显著变化、优势属及其优势地位改变、灌丛内外Jaccard相异性指数较大(0.40~0.76)和灌丛内外NMDS(非度量多维度尺度分析)群落组成排序图的分异;ANOSIM检验表明灌丛内外群落组成差异显著。灌丛对固氮微生物群落的效应随着土层深度增加而衰减,随着干旱增加而加强。灌丛对固氮微生物群落的影响大于气候干旱对其的影响。灌木小叶锦鸡儿对固氮微生物群落影响机理是:1)灌丛对固氮微生物物种具有选择性;2)灌丛通过改变土壤理化性质而影响了固氮微生物群落;3)气候干旱增强了灌丛对固氮微生物群落的影响;4)灌丛还通过缓解干旱的作用而影响固氮微生物群落。
王春雯, 赵芳, 张晨, 解李娜, 马成仓. 小叶锦鸡儿灌丛对草地土壤固氮微生物群落的影响[J]. 草业学报, 2022, 31(10): 28-40.
Chun-wen WANG, Fang ZHAO, Chen ZHANG, Li-na XIE, Cheng-cang MA. Effects of Caragana microphylla shrubs on the soil nitrogen-fixing microbial communities in steppe land[J]. Acta Prataculturae Sinica, 2022, 31(10): 28-40.
图1 小叶锦鸡儿灌丛对土壤固氮微生物群落物种丰度和多度的影响*表示与0差异显著(P<0.05)。* indicates the significant differences with zero (P<0.05).
Fig.1 Effects of C. microphylla shrubs on species richness and abundance for soil nitrogen-fixing microbial communities in desert steppe and typical steppe (RII)
图2 荒漠草原和典型草原小叶锦鸡儿灌丛内外土壤固氮微生物群落组成Meth: 甲基杆菌属Methylobacterium; Cell: 纤维微菌属Cellulosimicrobium; Vari: 贪噬菌属Variovorax; Rhiz: 根瘤菌属Rhizobium; Baci: 芽孢杆菌属Bacillus; Paen: 类芽孢杆菌属Paenibacillus; Brev: 短芽孢杆菌属Brevibacillus; Acti: 马杜拉放线菌属Actinomadura; Sino: 中华根瘤菌属Sinorhizobium; Arth: 节杆菌属Arthrobacter; Chit: 曼噬甲壳菌属Chitinophaga; Microv: 微枝形杆菌属Microvirga; Ente: 肠杆菌属Enterobacter; Chry: 金黄杆菌属Chryseobacterium; Micro: 小细菌属Microbacterium; Brevi: 短杆菌属Brevibacterium; Brevu: 短波单胞菌属Brevundimonas; Pseu: 假单胞菌属Pseudomonas; Sphi: 鞘氨醇杆菌属Sphingobacterium; Stre: 链霉菌属Streptomyces; Achr: 无色杆菌属Achromobacter; Cohn: 科恩菌属Cohnella; Exig: 微小杆菌属Exiguobacterium; Stap: 葡萄球菌属Staphylococcus; Mass: 马赛菌属Massilia; Curt: 短小杆菌属Curtobacterium。*表示灌丛内和灌丛外差异显著(t检验,P<0.05)。气泡图显示属多度(3个土层平均值, 空心黑点表示该属在这个地区没出现,实心黑点表示该属的多度在灌丛内或灌丛外为0),堆积图显示属相对多度(数字表示优势属的相对多度)* indicate significant differences between outside and inside shrub canopies (t-test, P<0.05). Bubble graph shows the abundance of genus (mean across three soil depths; Hollow black spots indicate that the genus is not present in this area, and solid black spots indicate that the abundance of the genus is 0 within or outside the shrub). Stacked graph shows relative abundance of genus (digit indicate the relative abundance of dominant genera).下同The same below.
Fig.2 Soil nitrogen-fixing microbial community composition outside and inside C. microphylla shrub canopies in desert steppe and typical steppe
项目 Item | 土层 Soil depth | 荒漠草原Desert steppe | 典型草原Typical steppe | ||
---|---|---|---|---|---|
灌丛内Inside-shrub | 灌丛外Outside-shrub | 灌丛内Inside-shrub | 灌丛外Outside-shrub | ||
共生 Symbiotic | 0~10 cm | 链霉菌属Streptomyces 23.84 节杆菌属Arthrobacter 16.25 金黄杆菌属Chryseobacterium 14.15 短小杆菌属Curtobacterium 10.58 | 芽孢杆菌属Bacillus 46.89 链霉菌属Streptomyces 25.73 | 链霉菌属Streptomyces 36.88 微杆菌属Microbacterium 21.25 芽孢杆菌属Bacillus 11.80 | 链霉菌属Streptomyces 47.81 微杆菌属Microbacterium 15.07 芽孢杆菌属Bacillus 14.88 |
10~20 cm | 链霉菌属Streptomyces 33.70 节杆菌属Arthrobacter 16.08 | 芽孢杆菌属Bacillus 44.59 链霉菌属Streptomyces 30.46 类芽孢杆菌属Paenibacillus 11.17 | 链霉菌属Streptomyces 34.90 微杆菌属Microbacterium 20.21 芽孢杆菌属Bacillus 15.30 节杆菌属Arthrobacter 14.83 | 链霉菌属Streptomyces 33.67 芽孢杆菌属Bacillus 23.68 微杆菌属Microbacterium 15.02 节杆菌属Arthrobacter 14.09 | |
30~40 cm | 链霉菌属Streptomyces 30.69 假单胞菌属Pseudomonas 13.43 金黄杆菌属Chryseobacterium 12.32 | 芽孢杆菌属Bacillus 52.48 链霉菌属Streptomyces 28.36 | 链霉菌属Streptomyces 37.46 节杆菌属Arthrobacter 36.84 芽孢杆菌属Bacillus 19.43 | 链霉菌属Streptomyces 42.52 芽孢杆菌属Bacillus 21.29 微杆菌属Microbacterium 20.95 | |
自生 Free-living | 0~10 cm | 芽孢杆菌属Bacillus 49.26 链霉菌属Streptomyces 23.10 中华根瘤菌属Sinorhizobium 15.67 | 链霉菌属Streptomyces 85.37 | 链霉菌属Streptomyces 49.87 中华根瘤菌属Sinorhizobium 21.97 | 链霉菌属Streptomyces 83.02 |
10~20 cm | 芽孢杆菌属Bacillus 49.98 链霉菌属Streptomyces 29.93 | 链霉菌属Streptomyces 89.78 | 链霉菌属Streptomyces 54.26 中华根瘤菌属Sinorhizobium 28.67 | 链霉菌属Streptomyces 80.95 中华根瘤菌属Sinorhizobium 10.44 | |
30~40 cm | 链霉菌属Streptomyces 48.36 芽孢杆菌属Bacillus 41.38 | 链霉菌属Streptomyces 93.81 | 链霉菌属Streptomyces 41.11 芽孢杆菌属Bacillus 36.40 中华根瘤菌属Sinorhizobium 12.74 | 链霉菌属Streptomyces 86.31 |
表1 荒漠草原和典型草原小叶锦鸡儿灌丛内外土壤固氮微生物群落优势属和相对多度
Table 1 Dominant genus and relative abundance of soil nitrogen-fixing microbial communities outside and inside C. microphylla shrub canopies in desert steppe and typical steppe (%)
项目 Item | 土层 Soil depth | 荒漠草原Desert steppe | 典型草原Typical steppe | ||
---|---|---|---|---|---|
灌丛内Inside-shrub | 灌丛外Outside-shrub | 灌丛内Inside-shrub | 灌丛外Outside-shrub | ||
共生 Symbiotic | 0~10 cm | 链霉菌属Streptomyces 23.84 节杆菌属Arthrobacter 16.25 金黄杆菌属Chryseobacterium 14.15 短小杆菌属Curtobacterium 10.58 | 芽孢杆菌属Bacillus 46.89 链霉菌属Streptomyces 25.73 | 链霉菌属Streptomyces 36.88 微杆菌属Microbacterium 21.25 芽孢杆菌属Bacillus 11.80 | 链霉菌属Streptomyces 47.81 微杆菌属Microbacterium 15.07 芽孢杆菌属Bacillus 14.88 |
10~20 cm | 链霉菌属Streptomyces 33.70 节杆菌属Arthrobacter 16.08 | 芽孢杆菌属Bacillus 44.59 链霉菌属Streptomyces 30.46 类芽孢杆菌属Paenibacillus 11.17 | 链霉菌属Streptomyces 34.90 微杆菌属Microbacterium 20.21 芽孢杆菌属Bacillus 15.30 节杆菌属Arthrobacter 14.83 | 链霉菌属Streptomyces 33.67 芽孢杆菌属Bacillus 23.68 微杆菌属Microbacterium 15.02 节杆菌属Arthrobacter 14.09 | |
30~40 cm | 链霉菌属Streptomyces 30.69 假单胞菌属Pseudomonas 13.43 金黄杆菌属Chryseobacterium 12.32 | 芽孢杆菌属Bacillus 52.48 链霉菌属Streptomyces 28.36 | 链霉菌属Streptomyces 37.46 节杆菌属Arthrobacter 36.84 芽孢杆菌属Bacillus 19.43 | 链霉菌属Streptomyces 42.52 芽孢杆菌属Bacillus 21.29 微杆菌属Microbacterium 20.95 | |
自生 Free-living | 0~10 cm | 芽孢杆菌属Bacillus 49.26 链霉菌属Streptomyces 23.10 中华根瘤菌属Sinorhizobium 15.67 | 链霉菌属Streptomyces 85.37 | 链霉菌属Streptomyces 49.87 中华根瘤菌属Sinorhizobium 21.97 | 链霉菌属Streptomyces 83.02 |
10~20 cm | 芽孢杆菌属Bacillus 49.98 链霉菌属Streptomyces 29.93 | 链霉菌属Streptomyces 89.78 | 链霉菌属Streptomyces 54.26 中华根瘤菌属Sinorhizobium 28.67 | 链霉菌属Streptomyces 80.95 中华根瘤菌属Sinorhizobium 10.44 | |
30~40 cm | 链霉菌属Streptomyces 48.36 芽孢杆菌属Bacillus 41.38 | 链霉菌属Streptomyces 93.81 | 链霉菌属Streptomyces 41.11 芽孢杆菌属Bacillus 36.40 中华根瘤菌属Sinorhizobium 12.74 | 链霉菌属Streptomyces 86.31 |
图3 荒漠草原和典型草原小叶锦鸡儿灌丛内外土壤固氮微生物群落组成的非度量多维度尺度分析(NMDS)和ANOSIM检验
Fig.3 Non-metric multi-dimensional scale analysis (NMDS) and ANOSIM test of the soil nitrogen-fixing microbial community composition outside and inside C. microphylla shrub canopies in desert steppe and typical steppe
图4 荒漠草原和典型草原小叶锦鸡儿灌丛内和灌丛外土壤固氮微生物群落的Jaccard相异性指数
Fig.4 The Jaccard dissimilarity index of soil nitrogen-fixing microbial communities between outside and inside C. microphylla shrub canopies in desert steppe and typical steppe
图5 小叶锦鸡儿灌丛内或灌丛外土壤固氮微生物群落在荒漠草原和典型草原之间的Jaccard相异性指数
Fig.5 The Jaccard dissimilarity index of nitrogen-fixing microbial communities between desert steppe and typical steppe outside or inside C. microphylla shrub canopies
项目 Item | 土层 Soil depth | 荒漠草原Desert steppe | 典型草原Typical steppe | ||||
---|---|---|---|---|---|---|---|
正选择 Positive-selective | 负选择 Negative-selective | 总选择 Total selective | 正选择 Positive-selective | 负选择 Negative-selective | 总选择 Total selective | ||
共生Symbiotic | 0~10 cm | 52.94 | 17.65 | 70.59 | 25.00 | 12.50 | 37.50 |
10~20 cm | 27.78 | 16.67 | 44.45 | 6.67 | 20.00 | 26.67 | |
30~40 cm | 20.00 | 20.00 | 40.00 | 14.29 | 28.57 | 42.86 | |
自生Free-living | 0~10 cm | 54.55 | 0.00 | 54.55 | 55.56 | 0.00 | 55.56 |
10~20 cm | 44.44 | 0.00 | 44.44 | 37.50 | 12.50 | 50.00 | |
30~40 cm | 33.33 | 16.67 | 50.00 | 60.00 | 20.00 | 80.00 |
表2 荒漠草原和典型草原小叶锦鸡儿灌丛对土壤固氮微生物的选择性物种比例
Table 2 The percentage of selective species of C. microphylla shrub canopies on soil nitrogen-fixing microbial communities in desert steppe and typical steppe (%)
项目 Item | 土层 Soil depth | 荒漠草原Desert steppe | 典型草原Typical steppe | ||||
---|---|---|---|---|---|---|---|
正选择 Positive-selective | 负选择 Negative-selective | 总选择 Total selective | 正选择 Positive-selective | 负选择 Negative-selective | 总选择 Total selective | ||
共生Symbiotic | 0~10 cm | 52.94 | 17.65 | 70.59 | 25.00 | 12.50 | 37.50 |
10~20 cm | 27.78 | 16.67 | 44.45 | 6.67 | 20.00 | 26.67 | |
30~40 cm | 20.00 | 20.00 | 40.00 | 14.29 | 28.57 | 42.86 | |
自生Free-living | 0~10 cm | 54.55 | 0.00 | 54.55 | 55.56 | 0.00 | 55.56 |
10~20 cm | 44.44 | 0.00 | 44.44 | 37.50 | 12.50 | 50.00 | |
30~40 cm | 33.33 | 16.67 | 50.00 | 60.00 | 20.00 | 80.00 |
图7 土壤固氮微生物和环境因子的冗余分析AP:速效磷Available phosphorous; AK:速效钾Available potassium; OM:有机质Organic matter; WC:含水量Water content; NO3- -N:硝态氮Nitrate nitrogen; NH4+-N:铵态氮Ammonium nitrogen; AI:干旱指数Aridity index.
Fig.7 Relationships between soil nitrogen-fixing microbial community composition and environmental factors by redundancy analysis (RDA)
项目 Item | 土层 Soil depth | 灌丛 Shrub canopies | 气候干旱 Climate aridity |
---|---|---|---|
共生 Symbiotic | 0~10 cm | 45.27 | 16.67 |
10~20 cm | 53.61 | 26.47 | |
30~40 cm | 69.03 | 0.00 | |
自生 Free-living | 0~10 cm | 74.47 | 28.69 |
10~20 cm | 33.61 | 7.00 | |
30~40 cm | 49.39 | 0.00 |
表3 灌丛和气候干旱对土壤固氮微生物影响的相对重要性
Table 3 The relative effects of shrub canopies and climatic aridity on soil nitrogen-fixing microbial communities (%)
项目 Item | 土层 Soil depth | 灌丛 Shrub canopies | 气候干旱 Climate aridity |
---|---|---|---|
共生 Symbiotic | 0~10 cm | 45.27 | 16.67 |
10~20 cm | 53.61 | 26.47 | |
30~40 cm | 69.03 | 0.00 | |
自生 Free-living | 0~10 cm | 74.47 | 28.69 |
10~20 cm | 33.61 | 7.00 | |
30~40 cm | 49.39 | 0.00 |
1 | Zhou L H, Shen H H, Chen L Y, et al. Ecological consequences of shrub encroachment in the grasslands of Northern China. Landscape Ecology, 2019, 34(1): 119-130. |
2 | Chen L Y, Li H, Zhang P J, et al. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 2015, 30(9): 1627-1641. |
3 | Peng H Y, Li X Y, Li G Y, et al. Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 2013, 109: 39-48. |
4 | Jia M Q, Huang J, Yang Y H, et al. Effects of simulated nitrogen deposition and precipitation manipulation on soil microorganisms in the desert steppe of Northern China. Revista Brasileira de Ciência do Solo, 2019, 43: e0180031. |
5 | Wei N, Zhao L P, Tan S T, et al. Research progress on shrub encroachment in grasslands. Ecological Science, 2019, 38(6): 208-216. |
魏楠, 赵凌平, 谭世图, 等. 草地灌丛化研究进展. 生态科学, 2019, 38(6): 208-216. | |
6 | Zhou D W. Study on distribution of the genus Caragana Fabr. Bulletin of Botanical Research, 1996, 16(4): 61-68. |
周道玮. 锦鸡儿属植物分布研究. 植物研究, 1996, 16(4): 61-68. | |
7 | Ratajczak Z, Nippert J B, Collins S L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology, 2012, 93(4): 697-703. |
8 | Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 2008, 14(3): 615-623. |
9 | Koyama A, Sasaki T, Jamsran U, et al. Shrub cover regulates population dynamics of herbaceous plants at individual shrub scale on the Mongolian steppe. Journal of Vegetation Science, 2015, 26(3): 441-451. |
10 | Williams A, de Vries F T. Plant root exudation under drought: Implications for ecosystem functioning. New Phytologist, 2020, 225(5): 1899-1905. |
11 | Collins S L, Belnap J, Grimm N B, et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology Evolution and Systematics, 2014, 45: 397-419. |
12 | Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Annals of Botany, 2013, 111(5): 743-767. |
13 | Graham E B, Stegen J C. Dispersal-based microbial community assembly decreases biogeochemical function. Processes, 2017, 5(4): 65. |
14 | Wang Y S, Li C N, Tu B, et al. Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biology and Biochemistry, 2021, 160: 108338. |
15 | Suleiman M K, Quoreshi A M, Bhat N R, et al. Divulging diazotrophic bacterial community structure in Kuwait desert ecosystems and their N2-fixation potential. PLoS One, 2019, 14: e0220679. |
16 | Peng D H, Yang J B, Li J, et al. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane. Chinese Journal of Plant Ecology, 2014, 38(9): 959-969 |
彭东海, 杨建波, 李健, 等. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响. 植物生态学报, 2014, 38(9): 959-969. | |
17 | Yang Y D, Feng X M, Hu Y G, et al. Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria. Chinese Journal of Applied Ecology, 2017, 28(3): 957-965. |
杨亚东, 冯晓敏, 胡跃高, 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响. 应用生态学报, 2017, 28(3): 957-965. | |
18 | Li Y Y, Pan F X, Yao H Y. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. Journal of Soils and Sediments, 2019, 19(4): 1948-1958. |
19 | Xu Y D, Wang T, Li H, et al. Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the Loess Plateau of China. Catena, 2019, 174: 316-323. |
20 | Ouyang S N, Tian Y Q, Liu Q Y, et al. Symbiotic nitrogen fixation and interspecific transfer by Caragana microphylla, in a temperate grassland with 15N dilution technique. Applied Soil Ecology,2016, 108: 221-227. |
21 | Zhou Z Y, Yu M H, Ding G D, et al. Effects of Hedysarum leguminous plants on soil bacterial communities in the Mu Us Desert, Northwest China. Ecology and Evolution, 2020, 10(20): 11423-11439. |
22 | Soliveres S, Eldridge D J, Hemmings F, et al. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspectives in Plant Ecology Evolution and Systematics, 2012, 14(6): 402-410. |
23 | Xie L N, Soliveres S, Allan E, et al. Woody species have stronger facilitative effects on soil biota than on plants along an aridity gradient. Journal of Vegetation Science, 2021, 32(3): e13034 |
24 | Chen J G, Yang Y, Wang S W, et al. Shrub facilitation promotes selective tree establishment beyond the climatic treeline. Science of the Total Environment, 2020, 708(15): 134618. |
25 | Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 1996, 77(2): 364-374. |
26 | Xiong X G, Han X G, Bai Y F, et al. Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin. Acta Prataculturae Sinica, 2003, 12(3): 57-62. |
熊小刚, 韩兴国, 白永飞, 等. 锡林河流域草原小叶锦鸡儿分布增加的趋势、原因和结局. 草业学报, 2003, 12(3): 57-62. | |
27 | Peng H Y, Li X Y, Tong S Y. Effects of shrub (Caragana microphalla Lam.) encroachment on water redistribution and utilization in the typical steppe of Inner Mongolia. Acta Ecologica Sinica, 2014, 34(9): 2256-2265. |
彭海英, 李小雁, 童绍玉. 内蒙古典型草原小叶锦鸡儿灌丛化对水分再分配和利用的影响. 生态学报, 2014, 34(9): 2256-2265. | |
28 | Tao L, Gao H W, Fan F C. The dynamics of nitrogen fixtion ability to root nodule of Caragana microphylla Lam. Grassland of China, 2005, 27(3): 53-56. |
陶林, 高洪文, 樊奋成. 小叶锦鸡儿根瘤固氮活性的动态变化. 中国草地, 2005, 27(3): 53-56. | |
29 | Brenner, Don J, Krieg, et al. Bergey’s manual of systematic bacteriology. US: Springer, 2005. |
30 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
31 | Armas C, Ordiales R, Pugnaire F I. Measuring plant interactions: A new comparative index. Ecology, 2004, 85(10): 2682-2686. |
32 | Dufrêne M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 1997, 67(3): 345-366. |
33 | Li Q. Indicator value (IndVal) method and its application. Chinese Journal of Applied Entomology, 2011, 48(2): 457-462. |
李巧. 指示值方法及其在昆虫中的应用. 应用昆虫学报, 2011, 48(2): 457-462. | |
34 | Maestre F T, Castillo-Monroy A P, Bowker M A, et al. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 2012, 100(2): 317-330. |
35 | Buttigieg P L, Ramette A. A guide to statistical analysis in microbial ecology: A community-focused, living review of multivariate data analyses. Fems Microbiology Ecology, 2014, 90(3): 543-550. |
36 | Dinnage R, Simonsen A K, Barrett L G, et al. Larger plants promote a greater diversity of symbiotic nitrogen-fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107(2): 977-991. |
37 | Gargouri M, Karray F, Chebaane A, et al. Increasing aridity shapes beta diversity and the network dynamics of the belowground fungal microbiome associated with Opuntia ficus-indica. Science of the Total Environment, 2021, 773: 145008. |
38 | Ferjani R, Marasco R, Rolli E, et al. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. Biomed Research International, 2015: 153851. |
39 | Narula N, Kothe E, Behl R K. Role of root exudates in plant-microbe interactions. Journal of Applied Botany & Food Quality, 2008, 82(2): 122-130. |
40 | Wang L, Wang J, Zhang A J, et al. Effects of long-term organic fertilization on soil diazotrophic community structure and diversity under wheat-sweet potato rotation system. Acta Ecologica Sinica, 2020, 40(16): 5571-5782. |
王磊, 王静, 张爱君, 等. 小麦-甘薯轮作长期增施有机肥对碱性土壤固氮菌群落结构及多样性的影响. 生态学报, 2020, 40(16): 5771-5782. | |
41 | Zhang Y J. Study on microbial ecology and actinomycete resources in aline soil of Shannxi Province. Xi’an: Xi’an University of Science and Technology, 2019. |
张彦军. 陕西盐渍土微生物生态及放线菌资源的分析研究.西安: 西安科技大学, 2019. | |
42 | Cui H, Sun W, Delgado-Baquerizo M, et al. Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland. Plant and Soil, Online, 2022, 473(1): 73-87. |
43 | Zhang Z. The responses of steppe plants and soil phosphorus pool to fertilization and grazing exclusion. Chongqing: Southwest University, 2016. |
张震. 草地植物与土壤磷库对施肥和围封的响应. 重庆: 西南大学, 2016. | |
44 | Hu X, Liu J, Zhu P, et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of Northeast China. Journal of Soils and Sediments, 2018, 18(5): 2053-2062. |
45 | Ji Z J, Yuan X X, Mu S M L, et al. The biogeographic distribution of the Caragana rhizobia. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2019, 34(5): 421-423, 460. |
冀照君, 袁晓霞, 穆莎茉莉, 等. 锦鸡儿属植物根瘤菌生物地理分布研究进展. 内蒙古民族大学学报(自然科学版), 2019, 34(5): 421-423, 460. | |
46 | Ma C C, Zhang J H, Guo H Y, et al. Alterations in canopy size and reproduction of Caragana stenophylla along a climate gradient on the Inner Mongolian Plateau. Flora, 2013, 208(2): 97-103. |
47 | Xie L N, Guo H Y, Christophe A, et al. Changes in spatial patterns of Caragana stenophylla along a climatic drought gradient on the Inner Mongolian Plateau. PLoS One, 2015, 10(3): e0121234. |
48 | Li F L. Study on water relationships and drought resisitance of the three species seedlings of Caragana Fabr. Hohhot: Inner Mongolia University, 2009. |
李凤玲. 锦鸡儿属(Caragana Fabr.)三种植物水分关系与抗旱性研究. 呼和浩特: 内蒙古大学, 2009. |
[1] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[2] | 贺国宝. 祁连山北坡植物群落空间分布格局与多样性研究[J]. 草业学报, 2021, 30(12): 194-201. |
[3] | 刘荣荣, 王平, 代心灵, 陈科宇, 李国梁, 宛新荣, 纪宝明. 不同密度布氏田鼠对内蒙古典型草原菌根真菌群落的影响[J]. 草业学报, 2021, 30(11): 76-86. |
[4] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[5] | 董雪, 郝玉光, 辛智鸣, 段瑞兵, 黄雅茹, 李新乐, 马媛, 刘芳. 浑善达克沙地3种灌木土壤分形特征与养分关系[J]. 草业学报, 2020, 29(6): 172-181. |
[6] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[7] | 张志华, 李小雁, 蒋志云, 王艳梅. 内蒙古典型草原灌丛化与土壤性质的关系研究[J]. 草业学报, 2017, 26(2): 224-230. |
[8] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[9] | 宝音陶格涛,刘美玲,包青海,呼格吉勒图. 氮素添加对典型草原区割草场植物群落结构及草场质量指数的影响[J]. 草业学报, 2011, 20(1): 7-14. |
[10] | 林燕,白永飞. 内蒙古典型草原小叶锦鸡儿灌丛地上净初级生产力和种群结构对火烧的响应[J]. 草业学报, 2010, 19(5): 170-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||