草业学报 ›› 2022, Vol. 31 ›› Issue (1): 57-68.DOI: 10.11686/cyxb2020478
马文明(), 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨
收稿日期:
2020-10-27
修回日期:
2020-12-28
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
马文明
作者简介:
马文明(1982-),男,四川盐源人,讲师,博士。E-mail: Mawmtf@swun.edu.cn。Corresponding author. E-mail: Mawmtf@swun.edu.cn
基金资助:
Wen-ming MA(), Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU
Received:
2020-10-27
Revised:
2020-12-28
Online:
2021-12-01
Published:
2021-12-01
Contact:
Wen-ming MA
摘要:
草地灌丛化是影响土壤有机碳库储量的驱动因子之一。本研究以川西高寒灌丛化和未灌丛化草地为对象,分析团聚体内有机碳、全氮、全磷、全钾含量、蔗糖酶、脲酶、磷酸酶、过氧化氢酶、蛋白酶和β-D葡萄糖苷酶活性及生态化学计量比特征。结果表明:1)有机碳、全氮和全磷主要富集在0.053~0.25 mm团聚体内,灌丛化降低了团聚体内生源物质含量。2)灌丛化后团聚体内C/N、C/P和N/P均呈增加趋势,且C/N最大值出现在>2 mm团聚体中,而C/P和N/P的最大值均出现在0.053~0.25 mm团聚体中,最小值分别出现在<0.002 mm和0.002~0.053 mm团聚体中(P>0.05)。3)灌丛化草地和未灌丛化草地土壤酶活性呈>0.25 mm团聚体内富集,灌丛化后土壤各粒径团聚体中蔗糖酶活性增加、而蛋白酶和磷酸酶活性降低。4)脲酶和β-D葡萄糖苷酶在灌丛化草地和未灌丛化草地中均与土壤有机碳和全氮含量呈正相关关系,蔗糖酶和过氧化氢酶与全钾含量呈正相关关系,蛋白酶和磷酸酶与全磷含量呈正相关关系。该区域土壤生源物质主要固存于大团聚体内,而大团聚体易被外界干扰破碎,可见灌丛化现象不利于该研究区有机碳的长期固存。
马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68.
Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68.
粒径 Particle size (mm) | 草地类型 Grassland type | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|
>2 | 未灌丛化草地Alpine grassland | 5.57±0.07a | 8.40±0.32a | 0.74±0.03a | 1.82±0.21a | 19.55±1.08a |
灌丛化草地Shrub encroachment | 5.49±0.22a | 8.06±0.52a | 0.70±0.02a | 1.69±0.07a | 19.58±1.69a | |
0.25~2 | 未灌丛化草地Alpine grassland | 5.77±0.06a | 8.41±0.46a | 0.74±0.04a | 1.92±0.26a | 19.68±0.95a |
灌丛化草地Shrub encroachment | 5.45±0.10a | 8.14±0.51a | 0.72±0.03a | 1.76±0.06b | 19.80±1.51a | |
0.053~0.25 | 未灌丛化草地Alpine grassland | 5.86±0.06a | 8.84±0.53a | 0.75±0.04a | 1.92±0.21a | 19.26±1.28a |
灌丛化草地Shrub encroachment | 5.67±0.07a | 8.71±0.65a | 0.76±0.05a | 1.74±0.10a | 20.10±1.65a | |
0.002~0.053 | 未灌丛化草地Alpine grassland | 5.92±0.09a | 6.59±0.38a | 0.59±0.03a | 1.49±0.21a | 18.80±0.86a |
灌丛化草地Shrub encroachment | 5.76±0.07a | 5.71±0.68a | 0.51±0.05a | 1.35±0.15a | 19.03±1.25a | |
<0.002 | 未灌丛化草地Alpine grassland | 6.03±0.06a | 7.21±0.34a | 0.66±0.44a | 1.97±0.27a | 20.20±1.34a |
灌丛化草地Shrub encroachment | 5.77±0.09a | 6.70±0.25a | 0.61±0.02a | 1.57±0.10a | 20.20±1.82a |
表1 灌丛化和未灌丛化草地土壤不同粒径团聚体理化性质
Table 1 Properties of the various aggregates in shrub encroachment and alpine grassland
粒径 Particle size (mm) | 草地类型 Grassland type | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|
>2 | 未灌丛化草地Alpine grassland | 5.57±0.07a | 8.40±0.32a | 0.74±0.03a | 1.82±0.21a | 19.55±1.08a |
灌丛化草地Shrub encroachment | 5.49±0.22a | 8.06±0.52a | 0.70±0.02a | 1.69±0.07a | 19.58±1.69a | |
0.25~2 | 未灌丛化草地Alpine grassland | 5.77±0.06a | 8.41±0.46a | 0.74±0.04a | 1.92±0.26a | 19.68±0.95a |
灌丛化草地Shrub encroachment | 5.45±0.10a | 8.14±0.51a | 0.72±0.03a | 1.76±0.06b | 19.80±1.51a | |
0.053~0.25 | 未灌丛化草地Alpine grassland | 5.86±0.06a | 8.84±0.53a | 0.75±0.04a | 1.92±0.21a | 19.26±1.28a |
灌丛化草地Shrub encroachment | 5.67±0.07a | 8.71±0.65a | 0.76±0.05a | 1.74±0.10a | 20.10±1.65a | |
0.002~0.053 | 未灌丛化草地Alpine grassland | 5.92±0.09a | 6.59±0.38a | 0.59±0.03a | 1.49±0.21a | 18.80±0.86a |
灌丛化草地Shrub encroachment | 5.76±0.07a | 5.71±0.68a | 0.51±0.05a | 1.35±0.15a | 19.03±1.25a | |
<0.002 | 未灌丛化草地Alpine grassland | 6.03±0.06a | 7.21±0.34a | 0.66±0.44a | 1.97±0.27a | 20.20±1.34a |
灌丛化草地Shrub encroachment | 5.77±0.09a | 6.70±0.25a | 0.61±0.02a | 1.57±0.10a | 20.20±1.82a |
草地类型Grassland type | 土壤团聚体Soil aggregate (mm) | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|
灌丛化草地 Shrub encroachment | >2 | 11.45±0.35a | 4.79±0.70a | 0.41±0.04ab |
0.25~2 | 11.33±0.36ab | 4.62±0.62a | 0.40±0.04ab | |
0.053~0.25 | 11.43±0.34a | 5.01±0.68a | 0.43±0.04a | |
0.002~0.053 | 11.18±0.62ab | 4.27±0.90a | 0.37±0.03b | |
<0.002 | 11.02±0.22b | 4.27±0.47a | 0.38±0.03ab | |
未灌丛化草地 Alpine grassland | >2 | 11.37±0.27a | 4.52±0.45a | 0.39±0.03a |
0.25~2 | 11.41±0.24a | 4.39±0.21a | 0.38±0.02a | |
0.053~0.25 | 11.29±0.23ab | 4.44±0.56a | 0.40±0.04a | |
0.002~0.053 | 11.18±0.28ab | 4.48±0.69a | 0.40±0.58a | |
<0.002 | 11.00±0.19b | 4.08±0.39a | 0.37±0.03a |
表2 灌丛化和未灌丛化草地土壤各粒径团聚体内碳氮比、碳磷比和氮磷比
Table 2 The C/N, C/P, N/P in various aggregates under shrub encroachment and alpine grassland
草地类型Grassland type | 土壤团聚体Soil aggregate (mm) | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|
灌丛化草地 Shrub encroachment | >2 | 11.45±0.35a | 4.79±0.70a | 0.41±0.04ab |
0.25~2 | 11.33±0.36ab | 4.62±0.62a | 0.40±0.04ab | |
0.053~0.25 | 11.43±0.34a | 5.01±0.68a | 0.43±0.04a | |
0.002~0.053 | 11.18±0.62ab | 4.27±0.90a | 0.37±0.03b | |
<0.002 | 11.02±0.22b | 4.27±0.47a | 0.38±0.03ab | |
未灌丛化草地 Alpine grassland | >2 | 11.37±0.27a | 4.52±0.45a | 0.39±0.03a |
0.25~2 | 11.41±0.24a | 4.39±0.21a | 0.38±0.02a | |
0.053~0.25 | 11.29±0.23ab | 4.44±0.56a | 0.40±0.04a | |
0.002~0.053 | 11.18±0.28ab | 4.48±0.69a | 0.40±0.58a | |
<0.002 | 11.00±0.19b | 4.08±0.39a | 0.37±0.03a |
图3 各粒径团聚体内土壤蔗糖酶、脲酶、蛋白酶和β-D葡萄糖苷酶活性变化A: >2 mm; B: 0.25~2 mm; C: 0.053~0.25 mm; D: 0.002~0.053 mm; E: <0.002 mm. 图中不同字母代表相同草地类型不同粒径团聚体内酶活性在P<0.05水平上差异显著,下同。In the Figure, different letters represent significant difference among different particle size and the enzyme activity in the aggregates of the same grassland type (P<0.05), the same below.
Fig.3 Changes of soil sucrace, urease, protease and β-D glucosidase activities in aggregates of different particle sizes
1 | Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
2 | Brandt J S, Haynes M A, Kuemmerle T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the Southern Himalayas. Biological Conservation, 2013, 158(2): 116-127. |
3 | Wang G, Qian J, Cheng G, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 2002, 291: 207-217. |
4 | Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676. |
5 | Pan G X, Zhou P, Li L Q, et al. Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 2007, 44(2): 327-337. |
潘根兴, 周萍, 李恋卿, 等. 固碳土壤学的核心问题与研究进展. 土壤学报, 2007, 44(2): 327-337. | |
6 | Wu X D, Song N P, Pan J. Effect of shrub (Caragana intermedia) encroachment under different sandy habitats on content and distribution of soil organic carbon in desert grassland. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 115-121. |
吴旭东, 宋乃平, 潘军. 不同沙地生境下柠条灌丛化对草地土壤有机碳含量及分布的影响. 农业工程学报, 2016, 32(10): 115-121. | |
7 | Li D W, Wang Z Q, Tian H X, et al. Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation. Acta Pedologica Sinica, 2017, 54(1): 160-170. |
李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 2017, 54(1): 160-170. | |
8 | Xie J, Chang S L, Zhang Y T, et al. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains. Acta Ecologica Sinica, 2016, 36(14): 4363-4372. |
谢锦, 常顺利, 张毓涛, 等. 天山北坡植物土壤生态化学计量特征的垂直地带性. 生态学报, 2016, 36(14): 4363-4372. | |
9 | Cao H, Sun H, Yang H. A review soil enzyme activity and its indication for soil quality. Chinese Journal of Applied and Environmental Biology, 2003, 9(1): 105-109. |
曹慧, 孙辉, 杨浩. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003, 9(1): 105-109. | |
10 | Trivedi P, Rochester I J, Trivedi C, et al. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biology and Biochemistry, 2015, 91: 169-181. |
11 | Li X, Ma R P, An S S, et al. Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau. Chinese Journal of Applied Ecology, 2015, 26(8): 2282-2290. |
李鑫, 马瑞萍, 安韶山, 等. 黄土高原不同植被带土壤团聚体有机碳和酶活性的粒径分布特征. 应用生态学报, 2015, 26(8): 2282-2290. | |
12 | Gong X, Wang J J, Pang W. Effects of different recovery modes on soil aggregates and enzyme activities in continuous cotton fields. Xinjiang Farm Research of Science and Technology, 2016, 39(5): 60-62. |
宫雪, 王建军, 庞玮. 长期连作棉田不同恢复模式对土壤团聚体及酶活性的影响. 新疆农垦科技, 2016, 39(5): 60-62. | |
13 | Ji X Y, Li Y H. Effects of different revegetation types on soil enzyme activities in different aggregates fractions in Loess Plateau. Bulletin of Soil and Water Conservation, 2018, 38(1): 24-28, 35. |
姬秀云, 李玉华. 黄土高原植被恢复对不同粒径土壤团聚体中酶活性的影响. 水土保持通报, 2018, 38(1): 24-28, 35. | |
14 | Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57: 1071-1076. |
15 | Guan S Y. Soil enzyme and its research methods. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
16 | Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79(1): 7-31. |
17 | Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68: A4-A9. |
18 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151. |
19 | Li Y F, Luo A C, Wu L H, et al. Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity. Chinese Journal of Applied Ecology, 2009, 20(5): 1072-1078. |
李永夫, 罗安程, 吴良欢, 等. 两个基因型水稻利用有机磷的差异及其与根系分泌酸性磷酸酶活性的关系. 应用生态学报, 2009, 20(5): 1072-1078. | |
20 | Chen C R, Condron L M, Davis M R, et al. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biology and Biochemistry, 2002, 34(4): 487-499. |
21 | Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. |
刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71. | |
22 | Zhou Y X, Lv M K, Xie J S, et al. Sources, characteristics and stability of organic carbon in deep soil. Journal of Subtropical Resources and Environment, 2013, 8(1): 48-55. |
周艳翔, 吕茂奎, 谢锦升, 等. 深层土壤有机碳的来源、特征与稳定性. 亚热带资源与环境学报, 2013, 8(1): 48-55. | |
23 | Wei K, Jiang H P, Qiao J F. Effect of livestock grazing on plant community and soil property in Junggar Desert, Xinjiang. Arid Land Geography, 2008, 31(5): 659-664. |
杨维康, 蒋慧萍, 乔建芳. 放牧对准噶尔荒漠植物群落及土壤特性的影响. 干旱区地理, 2008, 31(5): 659-664. | |
24 | Li W, Zheng Z C, Li T X. Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages. Chinese Journal of Applied Ecology, 2015, 26(1): 9-16. |
李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16. | |
25 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
26 | Xie G X, Lou X, Ruan Y F, et al. Characteristic and influencing factors of C/N ratio of farmland soil in Zhejiang Province. Acta Agriculturae Jiangxi, 2020, 32(2): 51-55. |
谢国雄, 楼旭, 阮弋飞, 等. 浙江省农田土壤碳氮比特征及影响因素分析. 江西农业学报, 2020, 32(2): 51-55. | |
27 | Cheng B, Zhao Y J, Zhang W G, et al. The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. |
程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. | |
28 | Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22(46): 24230-24253. |
29 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008(8): 3937-3947. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008(8): 3937-3947. | |
30 | Perl P L, Lencina M V, Bousson J, et al. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. Journal for Nature Conservation, 2016, 34: 51-64. |
31 | Wang H J, Ning L M, Xu L X, et al. Vertical distribution characteristics of soil organic carbon content in an alpine-cold zone of northwest Sichuan. Chinese Journal of Soil Science, 2012, 43(1): 76-80. |
王华静, 宁龙梅, 徐留兴, 等. 川西北高寒地区土壤有机碳含量垂直分布特征. 土壤通报, 2012, 43(1): 76-80. | |
32 | Qi S M, Han Y, Chen X W. Effect of vegetation restoration on soil aggregates enzyme activity in typical black soil region. Journal of Northeast Forestry University, 2017, 45(6): 42-46. |
齐思明, 韩瑛, 陈祥伟. 植被恢复对典型黑土表层土壤团聚体水解酶活性的影响. 东北林业大学学报, 2017, 45(6): 42-46. | |
33 | Ma R P, An S S, Dang T H, et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of Loess Plateau. Acta Pedologica Sinica, 2014, 51(1): 104-113. |
马瑞萍, 安韶山, 党廷辉, 等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究. 土壤学报, 2014, 51(1): 104-113. | |
34 | Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Ecological Agriculture, 2011, 19(2): 447-455. |
刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455. | |
35 | Tietjen T, Wetzel G R. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquatic Ecology, 2004, 37(4): 331-339. |
36 | Zeng X J, Liu D K, Zhu S M. Effects of different concentration of atrazine on soil catalase activity under three soil fertilise. Hunan Agricultural Sciences, 2005(6): 33-35. |
曾宪军, 刘登魁, 朱世民. 不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响. 湖南农业科学, 2005(6): 33-35. | |
37 | Xu L, Yan J J, Chen C, et al. Relationship between soil enzyme activity and nutrient content in irrigated calcareous soil. Southwest China Journal of Agricultural Sciences, 2018, 31(11): 2378-2385. |
徐莉, 闫俊杰, 陈晨, 等. 灌耕灰钙土农田土壤酶活性与养分的关系. 西南农业学报, 2018, 31(11): 2378-2385. | |
38 | Wang L D, Wang F L, Guo C X, et al. Review: Progress of soil enzymology. Soils, 2016, 48(1): 12-21. |
王理德, 王方琳, 郭春秀, 等. 土壤酶学研究进展. 土壤, 2016, 48(1): 12-21. | |
39 | Mccarron J K, Knapp A K. C3 woody plant expansion in a C4 grassland: Are grasses and shrubs functionally distinct? American Journal of Botany, 2001, 88(10): 1818-1823. |
40 | Naidja A, Huang P M, Bollag J M. Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. Journal of Environmental Quality, 2000, 29(3): 677-691. |
[1] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[2] | 程分生, 尤龙辉, 余锦林, 徐惠昌, 游惠明, 聂森, 李建民, 叶功富. 冷季型绿肥对锥栗园土壤生化性质及微生物群落的影响[J]. 草业学报, 2021, 30(11): 62-75. |
[3] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[4] | 宗文贞, 郭家昊, 贾云龙, 郑永兴, 杨旭, 胡芳弟, 王静. 单宁在植物-土壤氮循环中作用的研究进展[J]. 草业学报, 2020, 29(7): 174-183. |
[5] | 冯军, 石超, 门胜男, Hafiz Athar Hussain, 柯剑鸿, Linna Cholidah, 陈锦芬, 郭欣, 武海燕, 冉泰霖, 向信华, 王龙昌. 不同降雨下旱地油菜节水节肥技术对土壤养分及酶活性的调控效应[J]. 草业学报, 2020, 29(4): 51-62. |
[6] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[7] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[8] | 李国旗, 赵盼盼, 邵文山, 靳长青. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报, 2019, 28(7): 49-59. |
[9] | 李明, 秦洁, 红雨, 杨殿林, 周广帆, 王宇, 王丽娟. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019, 28(12): 29-40. |
[10] | 秦燕, 刘文辉, 何峰, 仝宗永, 李向林. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响[J]. 草业学报, 2019, 28(1): 5-14. |
[11] | 刘明, 陈远学, 陈强, 彭丹, 喻晓, 杨军伟, 徐开未. 翻压接种根瘤菌的紫花苕子对植烟土壤肥力的影响[J]. 草业学报, 2019, 28(1): 162-169. |
[12] | 赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 阿不都赛买提·乃合买提, 米日尼沙·买买提明, 迪里努尔·艾力. 察布查尔草原土壤酶活性垂直分布及土壤理化性质相关性研究[J]. 草业学报, 2018, 27(3): 116-125. |
[13] | 蒋腊梅, 杨晓东, 杨建军, 何学敏, 吕光辉. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. |
[14] | 刘栋, 崔政军, 高玉红, 剡斌, 张中凯, 吴兵, 谢亚萍, 牛俊义. 不同轮作序列对旱地胡麻土壤有机碳稳定性的影响[J]. 草业学报, 2018, 27(12): 45-57. |
[15] | 李文彬, 宁楚涵, 徐孟, 刘润进, 郭绍霞. 丛枝菌根真菌和高羊茅对压实土壤的改良效应[J]. 草业学报, 2018, 27(11): 131-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||