草业学报 ›› 2022, Vol. 31 ›› Issue (7): 144-156.DOI: 10.11686/cyxb2021017
• 研究论文 • 上一篇
收稿日期:
2021-04-14
修回日期:
2022-02-28
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
季波
作者简介:
E-mail: nxjibo311@163.com基金资助:
Tong JI(), Qi JIANG, Zhan-jun WANG, Bo JI()
Received:
2021-04-14
Revised:
2022-02-28
Online:
2022-07-20
Published:
2022-06-01
Contact:
Bo JI
摘要:
以7种多年生禾本科牧草(蒙古冰草-宁夏、蒙古冰草-内蒙古、沙生冰草、扁穗冰草、细茎冰草、格兰马草、老芒麦)为研究对象,系统分析了农艺性状(绿叶数和株高)收益与土壤水分收益的权衡关系,将权衡值(RMSD)与土壤含水量作为分位数模型变量,确定维持植物正常生长的土壤含水量的响应阈值,同时研究干旱胁迫下生理指标综合评价值,进行抗旱性评价。结果表明:1)干旱胁迫程度越高,牧草的绿叶数和株高受到的负面影响就越大;2)不同牧草对干旱胁迫的耐受程度和范围有差异,其中,细茎冰草和格兰马草的绿叶数-土壤含水量阈值分别为9.1%和9.7%,细茎冰草、格兰马草和蒙古冰草-宁夏的株高-土壤含水量阈值分别为4.6%、5.6%和13.0%,其余牧草分位数模型均未通过显著性检验;3)通过7项生理指标评价分析,7种多年生禾本科牧草抗旱性强弱表现为:蒙古冰草-宁夏>格兰马草>细茎冰草>蒙古冰草-内蒙古>沙生冰草>扁穗冰草>老芒麦;4) 综合土壤含水量阈值与抗旱生理评价,细茎冰草与格兰马草可作为中度干旱区的引选牧草。
纪童, 蒋齐, 王占军, 季波. 7种禾本科牧草抗旱性研究与评价[J]. 草业学报, 2022, 31(7): 144-156.
Tong JI, Qi JIANG, Zhan-jun WANG, Bo JI. An evaluation of drought resistance of seven Poaceous forages[J]. Acta Prataculturae Sinica, 2022, 31(7): 144-156.
编号Number | 牧草品种 Forage species | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 蒙古冰草-宁夏A. mongolicum-Ningxia | 野生驯化自繁种Wild domesticated self breeding seeds | 宁夏农林科学院荒漠化治理研究所 Institute of Deser Manage, Ningxia Agriculture and Forestry Science Academy |
B | 蒙古冰草-内蒙古A. mongolicum-Inner Mongolia | 育成种Breeding seeds | 内蒙古农牧业科学研究院草原研究所Institute of Grassland Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences |
C | 沙生冰草A. desertorum | 商品种Commodity seeds | 克劳沃生态科技有限公司Beijing Clover Seed &TURF Co. |
D | 扁穗冰草A. cristatum | 育成种Breeding seeds | 内蒙古农牧业科学研究院草原研究所Institute of Grassland Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences |
E | 细茎冰草A. trach | 商品种Commodity seeds | 宁夏远声绿阳林草生态工程有限公司Ningxia Yuansheng Lvyang Grass Industry Ecological Engineering Co., Ltd. |
F | 格兰马草B. gracilis | 自繁种Self breeding seeds | 宁夏农林科学院荒漠化治理研究所Institute of Deser Manage, Ningxia Agriculture and Forestry Science Academy |
G | 老芒麦E. sibiricus | 商品种Commodity seeds | 宁夏西贝农林牧生态科技公司Xibei Agriculture-Forest-Stockbreeding Biology and Technology Co., Ltd. |
表1 供试植物
Table 1 Test plants
编号Number | 牧草品种 Forage species | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 蒙古冰草-宁夏A. mongolicum-Ningxia | 野生驯化自繁种Wild domesticated self breeding seeds | 宁夏农林科学院荒漠化治理研究所 Institute of Deser Manage, Ningxia Agriculture and Forestry Science Academy |
B | 蒙古冰草-内蒙古A. mongolicum-Inner Mongolia | 育成种Breeding seeds | 内蒙古农牧业科学研究院草原研究所Institute of Grassland Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences |
C | 沙生冰草A. desertorum | 商品种Commodity seeds | 克劳沃生态科技有限公司Beijing Clover Seed &TURF Co. |
D | 扁穗冰草A. cristatum | 育成种Breeding seeds | 内蒙古农牧业科学研究院草原研究所Institute of Grassland Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences |
E | 细茎冰草A. trach | 商品种Commodity seeds | 宁夏远声绿阳林草生态工程有限公司Ningxia Yuansheng Lvyang Grass Industry Ecological Engineering Co., Ltd. |
F | 格兰马草B. gracilis | 自繁种Self breeding seeds | 宁夏农林科学院荒漠化治理研究所Institute of Deser Manage, Ningxia Agriculture and Forestry Science Academy |
G | 老芒麦E. sibiricus | 商品种Commodity seeds | 宁夏西贝农林牧生态科技公司Xibei Agriculture-Forest-Stockbreeding Biology and Technology Co., Ltd. |
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali hydrolysis nitrogen (g·kg-1) |
---|---|---|---|---|---|
0.45±0.045 | 0.44±0.009 | 18.78±0.560 | 208.95±3.510 | 2.70±1.080 | 14.14±2.930 |
有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | 5-8月土壤平均含水量 Average soil moisture content from May to August (%) | 5-8月土壤最低含水量 Minimum soil moisture content from May to August (%) | |
6.17±0.990 | 8.21±0.060 | 2.27±0.139 | 12.35±3.420 | 8.000 |
表2 供试田间土壤理化性质
Table 2 The physical and chemical properties of the tested field soil
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali hydrolysis nitrogen (g·kg-1) |
---|---|---|---|---|---|
0.45±0.045 | 0.44±0.009 | 18.78±0.560 | 208.95±3.510 | 2.70±1.080 | 14.14±2.930 |
有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | 5-8月土壤平均含水量 Average soil moisture content from May to August (%) | 5-8月土壤最低含水量 Minimum soil moisture content from May to August (%) | |
6.17±0.990 | 8.21±0.060 | 2.27±0.139 | 12.35±3.420 | 8.000 |
项目Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
编号Number | A | B | C | D | E | F | G | A | B | C | D | E | F | G |
建模样本数Modeling samples | 26 | 36 | 30 | 30 | 30 | 42 | 30 | 34 | 23 | 31 | 42 | 25 | 42 | 30 |
检验样本数Number of inspection samples | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
≥0权衡样本数Weigh the number of ≥0 samples | 8 | 13 | 17 | 19 | 12 | 12 | 13 | 10 | 6 | 20 | 29 | 7 | 16 | 15 |
分位点Tracking area update (TAU) | 0.70 | 0.64 | 0.56 | 0.37 | 0.60 | 0.72 | 0.57 | 0.71 | 0.74 | 0.36 | 0.31 | 0.72 | 0.62 | 0.50 |
表3 各牧草权衡值≥0的分位点
Table 3 The quantile with the weighted value of each forage ≥0
项目Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
编号Number | A | B | C | D | E | F | G | A | B | C | D | E | F | G |
建模样本数Modeling samples | 26 | 36 | 30 | 30 | 30 | 42 | 30 | 34 | 23 | 31 | 42 | 25 | 42 | 30 |
检验样本数Number of inspection samples | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
≥0权衡样本数Weigh the number of ≥0 samples | 8 | 13 | 17 | 19 | 12 | 12 | 13 | 10 | 6 | 20 | 29 | 7 | 16 | 15 |
分位点Tracking area update (TAU) | 0.70 | 0.64 | 0.56 | 0.37 | 0.60 | 0.72 | 0.57 | 0.71 | 0.74 | 0.36 | 0.31 | 0.72 | 0.62 | 0.50 |
图2 禾本科牧草绿叶数A~G分别为蒙古冰草-宁夏、蒙古冰草-内蒙古、沙生冰草、扁穗冰草、细茎冰草、格兰马草、老芒麦,不同小写字母表示各胁迫日期处理组与对照组在0.05水平上差异显著,下同。 A-G are A. mongolicum-Ningxia, A. mongolicum-Inner Mongolia, A. desertorum, A. cristatum, A. trach, B. gracilis, E. sibiricus during the test period. The lowercase letters indicate significant differences between treatment group and control group at the level of 0.05, the same below.
Fig.2 The green leaves number of Gramineous forage
图4 绿叶数-土壤含水率权衡沿土壤含水率梯度的分布**: P<0.05.下同The same below.
Fig.4 The distribution of the number of green leaves-soil water content trade-off along the soil water content gradient
图6 模型检验a为牧草A株高与土壤含水量权衡分位数模型,b为牧草B株高与土壤含水量权衡分位数模型,c为牧草E株高与土壤含水量权衡分位数模型,d为牧草F株高与土壤含水量权衡分位数模型,e为牧草E绿叶数与土壤含水量权衡分位数模型,f为牧草F绿叶数与土壤含水量权衡分位数模型。a is the weighing quantile model of forage A plant height and soil water content, b is the weighing quantile model of forage B plant height and soil water content, and c is the weighing quantile model of forage E plant height and soil water content, d is forage F plant height and soil water content weighing quantile model, e is forage E green leaf number and soil water content weighing quantile model, f is forage F green leaf number and soil water content weighing quantile model.
Fig.6 Model checking
编号 Number | 干旱胁迫指数的隶属函数值Membership function value of DRI | D值 D value | 排序Sort | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶POD | 脯氨酸Pro | 丙二醛MDA | 可溶性糖SS | 叶绿素Chl | 超氧化物歧化酶SOD | 过氧化氢酶CAT | |||
A | 1.00 | 1.00 | 0.82 | 0.40 | 0.00 | 0.73 | 1.00 | 0.924 | 1 |
B | 0.16 | 0.28 | 0.00 | 0.67 | 0.05 | 0.64 | 0.00 | 0.261 | 4 |
C | 0.08 | 0.23 | 0.28 | 1.00 | 0.78 | 0.34 | 0.18 | 0.256 | 5 |
D | 0.05 | 0.20 | 0.19 | 0.25 | 1.00 | 0.16 | 0.14 | 0.171 | 6 |
E | 0.26 | 0.51 | 0.97 | 0.34 | 0.42 | 0.14 | 0.10 | 0.390 | 3 |
F | 0.37 | 0.35 | 0.85 | 0.26 | 0.52 | 1.00 | 0.79 | 0.391 | 2 |
G | 0.00 | 0.00 | 1.00 | 0.00 | 0.31 | 0.00 | 0.09 | 0.020 | 7 |
权重 Weight | 0.30 | 0.51 | 0.01 | 0.08 | 0.02 | 0.02 | 0.05 |
表4 抗旱性评价D值
Table 4 Physiological drought resistance evaluation D value
编号 Number | 干旱胁迫指数的隶属函数值Membership function value of DRI | D值 D value | 排序Sort | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶POD | 脯氨酸Pro | 丙二醛MDA | 可溶性糖SS | 叶绿素Chl | 超氧化物歧化酶SOD | 过氧化氢酶CAT | |||
A | 1.00 | 1.00 | 0.82 | 0.40 | 0.00 | 0.73 | 1.00 | 0.924 | 1 |
B | 0.16 | 0.28 | 0.00 | 0.67 | 0.05 | 0.64 | 0.00 | 0.261 | 4 |
C | 0.08 | 0.23 | 0.28 | 1.00 | 0.78 | 0.34 | 0.18 | 0.256 | 5 |
D | 0.05 | 0.20 | 0.19 | 0.25 | 1.00 | 0.16 | 0.14 | 0.171 | 6 |
E | 0.26 | 0.51 | 0.97 | 0.34 | 0.42 | 0.14 | 0.10 | 0.390 | 3 |
F | 0.37 | 0.35 | 0.85 | 0.26 | 0.52 | 1.00 | 0.79 | 0.391 | 2 |
G | 0.00 | 0.00 | 1.00 | 0.00 | 0.31 | 0.00 | 0.09 | 0.020 | 7 |
权重 Weight | 0.30 | 0.51 | 0.01 | 0.08 | 0.02 | 0.02 | 0.05 |
1 | Zhang J H, Wu B. Research progress of soil moisture of arid and semi-arid regions. Soil and Water Conservation in China, 2012(2): 40-43, 68. |
张军红, 吴波. 干旱、半干旱地区土壤水分研究进展. 中国水土保持, 2012(2): 40-43, 68. | |
2 | Lu S. Effects of drought stress on plant growth and physiological traits. Journal of Jiangsu Forestry Science & Technology, 2012, 39(4): 51-54. |
鲁松. 干旱胁迫对植物生长及其生理的影响. 江苏林业科技, 2012, 39(4): 51-54. | |
3 | Zhu H, Zu Y G, Wang W J, et al. Effect of proline on plant growth under different stress conditions. Journal of Northeast Forestry University, 2009, 37(4): 86-89. |
朱虹, 祖元刚, 王文杰, 等. 逆境胁迫条件下脯氨酸对植物生长的影响. 东北林业大学学报, 2009, 37(4): 86-89. | |
4 | Xie X Y, Ma Z L, Bai P, et al. The morphological and physiological responses of hot pepper (Capsicum annuum L.) to drought stress with different intensity during blossom and fruit period. Acta Ecologica Sinica, 2014, 34(13): 3797-3805. |
谢小玉, 马仲炼, 白鹏, 等. 辣椒开花结果期对干旱胁迫的形态与生理响应. 生态学报, 2014, 34(13): 3797-3805. | |
5 | Du D, Liu F. Physiological response of two apple rootstocks to moderate drought stress. Gansu Agricultural Science and Technology, 2020(8): 64-67. |
杜典, 刘芬. 两种苹果砧木对中度干旱胁迫的生理响应. 甘肃农业科技, 2020(8): 64-67. | |
6 | Wang F, Peng Y L, Fang Y F, et al. Effect of different stay-green maize on leaves senescence after flowering under drought stress. Bulletin of Soil and Water Conservation, 2018, 38(4): 60-66. |
王芳, 彭云玲, 方永丰, 等. 花后干旱胁迫对不同持绿型玉米叶片衰老的影响. 水土保持通报, 2018, 38(4): 60-66. | |
7 | Ji B, Shi L, Xu J P, et al. Drought resistance evaluation of forage germplasm resources from 10 Gramineae species at germination stage. Seed, 2020, 39(7): 12-18. |
季波, 时龙, 徐金鹏, 等. 10种禾本科牧草种质资源萌发期抗旱性评价. 种子, 2020, 39(7): 12-18. | |
8 | Zhang Q D, Wei W, Chen L D, et al. Spatial variation of soil moisture and species diversity patterns along a precipitation gradient in the grasslands of the Loess Plateau. Journal of Natural Resources, 2018, 33(8): 1351-1362. |
张钦弟, 卫伟, 陈利顶, 等. 黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局. 自然资源学报, 2018, 33(8): 1351-1362. | |
9 | Zhao J D. Effective ways to improve plant drought resistance. Animal Husbandry and Feed Science, 2009, 30(2): 50-51, 117. |
赵景娣. 提高植物抗旱性的有效途径. 畜牧与饲料科学, 2009, 30(2): 50-51, 117. | |
10 | Wang Y D. Effect of water stress simulated by PEG 6000 on physiological indices in Agropyron mongolioum Keng, Agropyron criatatum (L.) and Leymus mollis seedings. Yanbian: Yanbian University, 2008. |
王怡丹. 聚乙二醇6000模拟水分胁迫下蒙古冰草、扁穗冰草和滨麦抗旱性研究. 延边: 延边大学, 2008. | |
11 | Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2015. |
王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. | |
12 | Wang P, Wang P, Sun W B, et al. Comprehensive evaluation of drought resistance of eight Elymus germlasms at seedling stage. Acta Agrestia Sinica, 2020, 28(2): 397-404. |
王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价. 草地学报, 2020, 28(2): 397-404. | |
13 | Du M Q, Wu R J, Yang M F, et al. Comparative study on drying weighing method and TDR method for observing soil moisture. Technology of Soil and Water Conservation, 2018(4): 7-9. |
杜敏晴, 伍仁军, 杨民烽, 等. 烘干称重法与TDR法观测土壤湿度的比较研究. 水土保持应用技术, 2018(4): 7-9. | |
14 | Hu L P. Quantile model regression analysis. Sichuan Mental Health, 2018, 31(4): 296-301. |
胡良平. 分位数模型回归分析. 四川精神卫生, 2018, 31(4): 296-301. | |
15 | Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Prataculturae Sinica, 2005, 14(6): 7-13. |
韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. | |
16 | Yin F. Genotypic responses of maize (Zea mays L.) to water stress and its physiological mechanisms. Zhengzhou: Henan Agricultural University, 2004. |
尹飞. 玉米对水分胁迫响应的基因型差异及其生理机制研究. 郑州: 河南农业大学, 2004. | |
17 | Wu J B. Regulation effects of plant growth regulators on the waterlogging stress of peanut. Changsha: Hunan Agricultural University, 2012. |
吴佳宝. 植物生长调节剂对花生渍涝胁迫的调控效应. 长沙: 湖南农业大学, 2012. | |
18 | Ouyang J Y, Wan Y, Xiang D B, et al. Effects of drought stress on agronomic traits and flavonoid compound contents of tartary buckwheat. Journal of Anhui Agricultural Sciences, 2020, 48(16): 35-38. |
欧阳建勇, 万燕, 向达兵, 等. 干旱胁迫对苦荞农艺性状及黄酮类物质含量的影响. 安徽农业科学, 2020, 48(16): 35-38. | |
19 | Pei B H, Zhou B S. A study on the drought resistance of three shrub species. Forest Research, 1993(6): 597-602. |
裴保华, 周宝顺. 三种灌木耐旱性研究. 林业科学研究, 1993(6): 597-602. | |
20 | Zhang A N, Wang F M, Yu X Q, et al. Screening marker varieties with drought resistance in cultivated rice (Oryza sativa L.) using identification method with soil moisture gradient. Acta Agronomica Sinica, 2008, 34(11): 2026-2032. |
张安宁, 王飞名, 余新桥, 等. 基于土壤水分梯度鉴定法的栽培稻抗旱标识品种筛选. 作物学报, 2008, 34(11): 2026-2032. | |
21 | Zhu J N, Peng W D, Li Y H, et al. Study on the effect of the shallow ploughing used to the desert steppe on soil water and the composition of herbage. Heilongjiang Animal Husbandry Science and Veterinary Medicine, 2014(23): 108-111. |
朱建宁, 彭文栋, 李永华, 等. 荒漠草原采用浅翻耕改良对土壤水分及牧草组成的影响研究. 黑龙江畜牧兽医, 2014(23): 108-111. | |
22 | Zhang G C, Liu X, He K N. Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil’s water availability and productivity in semi-arid region of Loess Plateau. Chinese Journal of Applied Ecology, 2003, 14(6): 858-862. |
张光灿, 刘霞, 贺康宁. 黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究. 应用生态学报, 2003, 14(6): 858-862. | |
23 | Shao H F, Chen Z, Xu J Y, et al. Physiological responses of two tobacco cultivar leaves to different drought stresses during seedling stage. Plant Physiology Journal, 2016, 52(12): 1861-1871. |
邵惠芳, 陈征, 许嘉阳, 等. 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报, 2016, 52(12): 1861-1871. | |
24 | Wang W, Cui S X. Responses in suspension cultures of two ecotypes of reed (Phragmites communis) under osmotic stress Ⅱ. Changes of the reactivity of anti-oxidative enzymes. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(2): 224-228. |
王蔚, 崔素霞. 两种生物型芦苇胚性悬浮培养物对渗透胁迫的生理响应 Ⅱ.抗氧化酶类活性的变化. 西北植物学报, 2003, 23(2): 224-228. | |
25 | Fu J M, Huang B R. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 2001, 45: 105-114. |
26 | Dacosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Journal of the American Society for Horticultural Science, 2007, 132(3): 319-326. |
27 | Qi D H, Li X G, Wang L, et al. Effects of simulated low temperature stress on the activated oxygen metabolism protective enzymes of Podocarpus fleuryi seedlings. Journal of Southwest Agricultural University (Natural Science), 2003, 25(5): 385-388, 399. |
齐代华, 李旭光, 王力, 等. 模拟低温胁迫对活性氧代谢保护酶系统的影响-以长叶竹柏(Podocarpus fleuryi Hickel)幼苗为例. 西南农业大学学报(自然科学版), 2003, 25(5): 385-388, 399. | |
28 | Zhang Y P, Wang Z M, Huang Q, et al. Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agronomica Sinica, 2008, 34(7): 1213-1219. |
张永平, 王志敏, 黄琴, 等. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008, 34(7): 1213-1219. |
[1] | 赵娟娟, 车大璐, 郭玮婷, 张伟涛, 刘连超, 赵俐辰, 高玉红, 孙新胜, 李雪梅, 王媛. 复方中药对热应激条件下杂交小尾寒羊生产性能、生理参数和血液理化指标的影响[J]. 草业学报, 2022, 31(5): 178-189. |
[2] | 吴瑞, 刘文辉, 张永超, 刘敏洁. 老芒麦离区形态特征及生理特性差异研究[J]. 草业学报, 2022, 31(4): 81-92. |
[3] | 尹作天, 王玉辉, 周广胜, 马全会, 刘晓迪, 贾丙瑞, 蒋延玲. 荒漠草原石生针茅光合特性对渐进式土壤干旱过程的响应及敏感性分析[J]. 草业学报, 2022, 31(1): 81-94. |
[4] | 张宇君, 尚以顺, 王普昶, 丁磊磊, 张文, 邹超. 干旱胁迫下保水剂对盘江白刺花幼苗生长和生理特性的影响[J]. 草业学报, 2020, 29(7): 90-98. |
[5] | 杨宁, 马绍英, 马蕾, 张旭辉, 王娜, 李胜, 柴强. 重茬豌豆幼苗对接种复合根瘤菌的生理响应[J]. 草业学报, 2020, 29(6): 144-152. |
[6] | 普雪可, 吴春花, 周永瑾, 勉有明, 苗芳芳, 侯贤清, 李荣. 宁南旱区地膜秸秆沟垄双覆盖对土壤水分时空变化及马铃薯产量的影响[J]. 草业学报, 2020, 29(10): 149-160. |
[7] | 马蕾, 马绍英, 陈贵平, 柴强, 李胜. 豌豆与根瘤共生对水分胁迫的生理响应[J]. 草业学报, 2019, 28(9): 96-109. |
[8] | 张朝铖, 蒋倩, 吴志, 何新杰, 蒋凯, 高静雅, 李翔, 王宁. 4种观赏草的耐阴特性研究及评价[J]. 草业学报, 2019, 28(7): 60-72. |
[9] | 王飞, 尹飞, 龙浩强, 李雪, 武岩岩, 焦念元, 马超, 付国占. 玉米‖花生茬口对冬小麦旗叶光化学活性的影响[J]. 草业学报, 2019, 28(7): 123-131. |
[10] | 吴潇, 何秀娟, 吴超, 董玉锋, 张燕, 徐宇, 秦卫东, 吕俊, 王三根, 宗学凤. 遮荫处理对葛根光合及抗氧化特性的影响[J]. 草业学报, 2019, 28(5): 68-78. |
[11] | 梁坤伦, 贾存智, 孙金豪, 王明艳, 傅华, 毛祝新. 高寒地区垂穗披碱草种质对低温胁迫的生理响应及其耐寒性评价[J]. 草业学报, 2019, 28(3): 111-121. |
[12] | 张建军, 党翼, 赵刚, 樊廷录, 王磊, 程万莉, 李尚中, 王淑英, 雷康宁, 张朝伟. 秸秆还田与氮肥减施对旱地春玉米产量及生理指标的影响[J]. 草业学报, 2019, 28(10): 156-165. |
[13] | 安婵, 乔建霞, 商建英, 李金升, 赵天赐, 唐士明, 邵新庆, 黄顶, 王堃, 刘克思. 人造湖对毗邻退化草地土壤含水量、电导率和pH的影响[J]. 草业学报, 2018, 27(8): 21-29. |
[14] | 刘洪庆, 付丹丹, 武海杰, 苗福泓, 孙娟, 杨国锋. 不同轮作模式对后茬作物小麦产量及生理指标的影响[J]. 草业学报, 2018, 27(8): 59-66. |
[15] | 张建军, 樊廷录, 赵刚, 党翼, 王磊, 王勇, 李尚中, 程万莉. 耕作方式与长期定位施肥对雨养农田冬小麦产量的调控效应[J]. 草业学报, 2018, 27(7): 175-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||