草业学报 ›› 2023, Vol. 32 ›› Issue (10): 40-57.DOI: 10.11686/cyxb2022461
沈秉娜1(), 尚盼盼1, 曾兵(学生)1, 李林祥2, 杨兴云1, 毕磊1, 郑玉倩1, 屈明好1, 李文文1, 周晓丽1, 饶骏1, 曾兵(老师)1,3()
收稿日期:
2022-11-04
修回日期:
2023-01-16
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
曾兵(老师)
作者简介:
E-mail: zbin78@163.com基金资助:
Bing-na SHEN1(), Pan-pan SHANG1, Bing(student) ZENG1, Lin-xiang LI2, Xing-yun YANG1, Lei BI1, Yu-qian ZHENG1, Ming-hao QU1, Wen-wen LI1, Xiao-li ZHOU1, Jun RAO1, Bing(teacher) ZENG1,3()
Received:
2022-11-04
Revised:
2023-01-16
Online:
2023-10-20
Published:
2023-07-26
Contact:
Bing(teacher) ZENG
摘要:
鸭茅是世界著名温带冷季型牧草。近年来,我国部分地区涝害频发,严重影响饲草作物生产。为探究淹水胁迫下鸭茅根系的响应机制,以耐涝型鸭茅“滇北”(DB)和涝敏型鸭茅“安巴”(AB)为材料,设置2个淹水处理(时长8和24 h),以不淹水处理为对照(0 h),观察形态并对0、8和24 h 3个时间点的幼苗根系进行代谢组学分析。结果表明,淹水胁迫处理后,2个品种的鸭茅根系长势均变弱,根系变黑,且DB在处理24 h后产生了不定根。在DB8h vs DB0h组筛选出了120个差异代谢物;DB24h vs DB0h组筛选出155个差异代谢物;AB8h vs AB0h组筛选出93个差异代谢物;AB24h vs AB0h组筛选出118个差异代谢物;DB0h vs AB0h组筛选出了80个差异代谢物;DB8h vs AB8h组筛选出125个差异代谢物;DB24h vs AB24h组筛选出48个显著差异代谢物。在耐涝型鸭茅DB中发现了6个黄酮类化合物,即:橙皮素、甘草素、芹黄素、新橙皮苷、柚皮素和柚皮苷,参与的代谢途径是类黄酮生物合成途径;而在涝敏型鸭茅中发现4个氨基酸及其衍生物,分别是:O-磷酸-L-丝氨酸、L-谷氨酸、L-酪氨酸和色氨酸,参与的代谢途径是氨酰-tRNA生物合成、甘氨酸、丝氨酸和苏氨酸代谢、硫代葡萄糖苷生物合成、苯丙氨酸、酪氨酸和色氨酸生物合成以及色氨酸代谢途径。通过比对相同淹水胁迫时长下DB和AB的差异代谢物发现,DB中存在的差异代谢物主要是蔗糖、异麦芽糖、6-磷酸海藻糖、L-鸟氨酸、L-组氨酸、D-鸟氨酸和芹菜素,参与的代谢途径分别是ABC转运因子、淀粉和蔗糖代谢、β-丙氨酸代谢、类黄酮生物合成以及黄酮和黄酮醇的生物合成代谢途径。这些差异代谢物可能是2个品种耐涝性存在差异的原因。该结果为解析鸭茅响应淹水胁迫过程中的差异代谢物质和代谢途径奠定了基础,为进一步研究鸭茅对淹水胁迫调控的分子机理提供参考。
沈秉娜, 尚盼盼, 曾兵(学生), 李林祥, 杨兴云, 毕磊, 郑玉倩, 屈明好, 李文文, 周晓丽, 饶骏, 曾兵(老师). 两个鸭茅品种根系响应淹水胁迫的比较代谢组学分析[J]. 草业学报, 2023, 32(10): 40-57.
Bing-na SHEN, Pan-pan SHANG, Bing(student) ZENG, Lin-xiang LI, Xing-yun YANG, Lei BI, Yu-qian ZHENG, Ming-hao QU, Wen-wen LI, Xiao-li ZHOU, Jun RAO, Bing(teacher) ZENG. Comparative metabolomics analysis of root systems of two Dactylis glomerata cultivars in response to submergence stress[J]. Acta Prataculturae Sinica, 2023, 32(10): 40-57.
组名 Group name | 差异显著的代谢物总数 Number of total significant | 显著上调的代谢物总数 Number of significant up | 显著下调的代谢物总数 Number of significant down |
---|---|---|---|
DB8h vs DB0h | 120 | 64 | 56 |
DB24h vs DB0h | 155 | 60 | 95 |
AB8h vs AB0h | 93 | 49 | 44 |
AB24h vs AB0h | 118 | 60 | 58 |
DB0h vs AB0h | 80 | 23 | 57 |
DB8h vs AB8h | 125 | 77 | 48 |
DB24h vs AB24h | 48 | 19 | 29 |
表1 代谢物数目统计
Table 1 Statistical result of metabolites
组名 Group name | 差异显著的代谢物总数 Number of total significant | 显著上调的代谢物总数 Number of significant up | 显著下调的代谢物总数 Number of significant down |
---|---|---|---|
DB8h vs DB0h | 120 | 64 | 56 |
DB24h vs DB0h | 155 | 60 | 95 |
AB8h vs AB0h | 93 | 49 | 44 |
AB24h vs AB0h | 118 | 60 | 58 |
DB0h vs AB0h | 80 | 23 | 57 |
DB8h vs AB8h | 125 | 77 | 48 |
DB24h vs AB24h | 48 | 19 | 29 |
类Class | 亚类Subclass | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|---|
羧酸及其衍生物Carboxylic acids and derivatives | 氨基酸、多肽和类似物Amino acids, peptides, and analogues | 5 | 5 | 5 | 5 | 2 | 4 | 3 |
二羧酸及其衍生物Dicarboxylic acids and derivatives | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |
类黄酮Isoflavonoids | 呋喃异黄酮Furanoisoflavonoids | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
羰基化合物Carbonyl compounds | 酮Ketones | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
黄酮类化合物Flavonoids | 1 | 3 | 2 | 1 | 4 | 1 | 1 | |
异黄酮类化合物Isoflavonoids | 异黄酮Isoflavones | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
吲哚及其衍生物Indoles and derivatives | 吲哚羧酸及其衍生物Indolyl carboxylic acids and derivatives | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
有机氧化物Organooxygen compounds | 糖及其衍生物Carbohydrates and carbohydrate conjugates | 2 | 4 | 1 | 2 | 2 | 2 | 4 |
醇和多元醇Alcohols and polyols | 多元醇Polyols | 3 | 1 | 0 | 0 | 2 | 0 | 0 |
线性1,3-二芳基丙烷Linear 1,3-diarylpropanoids | 查尔酮和二氢查尔酮Chalcones and dihydrochalcones | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
脂肪酰基Fatty acyls | 亚油酸及其衍生物Lineolic acids and derivatives | 2 | 1 | 2 | 1 | 0 | 1 | 0 |
脂肪酸和缀合物Fatty acids and conjugates | 2 | 1 | 3 | 2 | 2 | 4 | 1 | |
苯及取代衍生物Benzene and substituted derivatives | 0 | 1 | 0 | 0 | 0 | 1 | 1 | |
蝶呤及其衍生物Pteridines and derivatives | 萜类化合物和衍生物Pterins and derivatives | 0 | 0 | 1 | 0 | 2 | 3 | 4 |
有机磺酸及其衍生物Organic sulfonic acids and derivatives | 有机磺酸及其衍生物Organic sulfonic acids and derivatives | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
甘油磷脂类Glycerophospholipids | 甘油磷胆碱Glycerophocholines | 1 | 0 | 2 | 0 | 0 | 2 | 0 |
有机酸及其衍生物Organic acids and derivatives | 0 | 1 | 1 | 3 | 1 | 0 | 0 | |
其他Others | 0 | 1 | 0 | 1 | 0 | 2 | 2 |
表2 各组差异代谢物数目分类统计
Table 2 Statistical result of difference of metabolite number in each group
类Class | 亚类Subclass | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|---|
羧酸及其衍生物Carboxylic acids and derivatives | 氨基酸、多肽和类似物Amino acids, peptides, and analogues | 5 | 5 | 5 | 5 | 2 | 4 | 3 |
二羧酸及其衍生物Dicarboxylic acids and derivatives | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |
类黄酮Isoflavonoids | 呋喃异黄酮Furanoisoflavonoids | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
羰基化合物Carbonyl compounds | 酮Ketones | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
黄酮类化合物Flavonoids | 1 | 3 | 2 | 1 | 4 | 1 | 1 | |
异黄酮类化合物Isoflavonoids | 异黄酮Isoflavones | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
吲哚及其衍生物Indoles and derivatives | 吲哚羧酸及其衍生物Indolyl carboxylic acids and derivatives | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
有机氧化物Organooxygen compounds | 糖及其衍生物Carbohydrates and carbohydrate conjugates | 2 | 4 | 1 | 2 | 2 | 2 | 4 |
醇和多元醇Alcohols and polyols | 多元醇Polyols | 3 | 1 | 0 | 0 | 2 | 0 | 0 |
线性1,3-二芳基丙烷Linear 1,3-diarylpropanoids | 查尔酮和二氢查尔酮Chalcones and dihydrochalcones | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
脂肪酰基Fatty acyls | 亚油酸及其衍生物Lineolic acids and derivatives | 2 | 1 | 2 | 1 | 0 | 1 | 0 |
脂肪酸和缀合物Fatty acids and conjugates | 2 | 1 | 3 | 2 | 2 | 4 | 1 | |
苯及取代衍生物Benzene and substituted derivatives | 0 | 1 | 0 | 0 | 0 | 1 | 1 | |
蝶呤及其衍生物Pteridines and derivatives | 萜类化合物和衍生物Pterins and derivatives | 0 | 0 | 1 | 0 | 2 | 3 | 4 |
有机磺酸及其衍生物Organic sulfonic acids and derivatives | 有机磺酸及其衍生物Organic sulfonic acids and derivatives | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
甘油磷脂类Glycerophospholipids | 甘油磷胆碱Glycerophocholines | 1 | 0 | 2 | 0 | 0 | 2 | 0 |
有机酸及其衍生物Organic acids and derivatives | 0 | 1 | 1 | 3 | 1 | 0 | 0 | |
其他Others | 0 | 1 | 0 | 1 | 0 | 2 | 2 |
类别Category | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
氨基酸代谢Amino acid metabolism | 4 | 4 | 3 | 6 | 1 | 1 | 1 |
碳水化合物代谢Carbohydrate metabolism | 1 | 2 | 1 | 1 | 3 | 4 | 1 |
辅助因子和维生素的代谢Metabolism of cofactors and vitamins | 1 | 1 | 2 | 0 | 0 | 1 | 3 |
其他次生代谢产物生物合成Biosynthesis of other secondary metabolites | 2 | 0 | 1 | 1 | 2 | 1 | 0 |
脂质代谢Lipid metabolism | 0 | 3 | 1 | 0 | 0 | 1 | 3 |
全局和总览图Global and overview maps | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
其他氨基酸的代谢Metabolism of other amino acids | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
核苷酸代谢Nucleotide metabolism | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
翻译Translation | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
膜运输Membrane transport | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
萜类和聚酮化合物的代谢Metabolism of terpenoids and polyketones | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
表3 各组KEGG通路统计
Table 3 Statistical result of KEGG pathway for each group
类别Category | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
氨基酸代谢Amino acid metabolism | 4 | 4 | 3 | 6 | 1 | 1 | 1 |
碳水化合物代谢Carbohydrate metabolism | 1 | 2 | 1 | 1 | 3 | 4 | 1 |
辅助因子和维生素的代谢Metabolism of cofactors and vitamins | 1 | 1 | 2 | 0 | 0 | 1 | 3 |
其他次生代谢产物生物合成Biosynthesis of other secondary metabolites | 2 | 0 | 1 | 1 | 2 | 1 | 0 |
脂质代谢Lipid metabolism | 0 | 3 | 1 | 0 | 0 | 1 | 3 |
全局和总览图Global and overview maps | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
其他氨基酸的代谢Metabolism of other amino acids | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
核苷酸代谢Nucleotide metabolism | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
翻译Translation | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
膜运输Membrane transport | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
萜类和聚酮化合物的代谢Metabolism of terpenoids and polyketones | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
图10 KEGG富集气泡图A、B、C、D、E、F和G分别代表DB8h vs DB0h、DB24h vs DB0h、AB8h vs AB0h、AB24h vs AB0h、DB0h vs AB0h、DB8h vs AB8h和DB24h vs AB24h组。A, B, C, D, E, F and G represent the DB8h vs DB0h, DB24h vs DB0h, AB8h vs AB0h, AB24h vs AB0h, DB0h vs AB0h, DB8h vs AB8h, and DB24h vs AB24h groups, respectively.
Fig.10 KEGG enrichment bubble diagram
组别 Group | KEGG通路名称 KEGG pathway | 参与通路的差异代谢物 Differential metabolites |
---|---|---|
DB8h vs DB0h | 泛酸盐和CoA生物合成Pantothenate and CoA biosynthesis | 泛酸Pantothenic acid;泛醇Panthenol;尿嘧啶Uracil |
色氨酸代谢Tryptophan metabolism | 吲哚Indole;色氨酸Tryptophan | |
β-丙氨酸代谢Beta-alanine metabolism | 泛酸Pantothenic acid;尿嘧啶Uracil | |
类黄酮生物合成Flavonoid biosynthesis | 橙皮素Hesperetin;柚皮素查尔酮Naringenin chalcone;甘草素Liquiritigenin | |
DB24h vs DB0h | α-亚油酸代谢Alpha-linolenic acid metabolism | 茉莉酸Jasmonic acid |
丙酸酯代谢Propanoate metabolism | 琥珀酸Succinic acid;甲基丙二酸Methylmalonic acid | |
类黄酮生物合成Flavonoid biosynthesis | 芹黄素Apigenin;新橙皮苷Neohesperidin;柚皮素Naringenin;柚皮苷Naringin | |
AB8h vs AB0h | 氨基糖和核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | D-半乳糖醛酸D-galacturonic acid;UDP-N-乙酰氨基葡萄糖UDP-N-acetylglucosamine;D-甘露糖6-磷酸D-mannose6-phosphate |
氨酰-tRNA生物合成Aminoacyl-tRNA biosynthesis | O-磷酸-L-丝氨酸O-phospho-L-serine;L-谷氨酸L-glutamic acid;L-酪氨酸 L-tyrosine;色氨酸Tryptophan | |
甘氨酸、丝氨酸和苏氨酸代谢Glycine, serine and threonine metabolism | O-磷酸-L-丝氨酸O-phospho-L-serine;色氨酸Tryptophan | |
硫代葡萄糖苷生物合成Glucosinolate biosynthesis | L-酪氨酸L-tyrosine;色氨酸Tryptophan | |
AB24h vs AB0h | 苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | L-酪氨酸L-tyrosine;吲哚Indole;D-赤藓糖-4-磷酸D-erythrose-4-phosphate;色氨酸Tryptophan |
色氨酸代谢Tryptophan metabolism | 吲哚Indole;色氨酸Tryptophan | |
丙酸酯代谢Propanoate metabolism | 琥珀酸Succinic acid;甲基丙二酸Methylmalonic acid | |
硫代葡萄糖苷生物合成Glucosinolate biosynthesis | L-酪氨酸L-tyrosine;色氨酸Tryptophan | |
DB0h vs AB0h | ABC转运因子ABC transporters | D-半乳糖醛酸D-galacturonic acid;L-鸟氨酸L-ornithine;蔗糖Sucrose;L-组氨酸L-histidine |
β-丙氨酸代谢Beta-alanine metabolism | 泛酸Pantothenic acid;L-组氨酸L-histidine | |
淀粉和蔗糖代谢Starch and sucrose metabolism | 蔗糖Sucrose;6-磷酸海藻糖Trehalose 6-phosphate | |
二萜生物合成Diterpenoid biosynthesis | 铁锈醇Ferruginol;赤霉素A7 Gibberellin A7 | |
DB8h vs AB8h | ABC转运因子ABC transporters | D-半乳糖醛酸D-galacturonic acid;D-鸟氨酸D-ornithine;蔗糖Sucrose |
抗坏血酸与醛酸代谢Ascorbate and aldarate metabolism | D-半乳糖醛酸D-galacturonic acid;D-糖酸D-saccharic acid | |
淀粉和蔗糖代谢Starch and sucrose metabolism | 异麦芽糖Isomaltose;蔗糖Sucrose | |
DB24h vs AB24h | 淀粉和蔗糖代谢Starch and sucrose metabolism | 异麦芽糖Isomaltose;6-磷酸海藻糖Trehalose 6-phosphate |
核黄素代谢Riboflavin metabolism | 核黄素Riboflavin | |
类黄酮生物合成Flavonoid biosynthesis | 芹菜素Apigenin;普鲁宁Prunin;柚皮素查尔酮Naringenin chalcone | |
黄酮和黄酮醇的生物合成Flavone and flavonol biosynthesis | 芹菜素Apigenin;芸香甙Rutin |
表4 各组主要KEGG通路注释
Table 4 Annotation of the main KEGG pathways for each group
组别 Group | KEGG通路名称 KEGG pathway | 参与通路的差异代谢物 Differential metabolites |
---|---|---|
DB8h vs DB0h | 泛酸盐和CoA生物合成Pantothenate and CoA biosynthesis | 泛酸Pantothenic acid;泛醇Panthenol;尿嘧啶Uracil |
色氨酸代谢Tryptophan metabolism | 吲哚Indole;色氨酸Tryptophan | |
β-丙氨酸代谢Beta-alanine metabolism | 泛酸Pantothenic acid;尿嘧啶Uracil | |
类黄酮生物合成Flavonoid biosynthesis | 橙皮素Hesperetin;柚皮素查尔酮Naringenin chalcone;甘草素Liquiritigenin | |
DB24h vs DB0h | α-亚油酸代谢Alpha-linolenic acid metabolism | 茉莉酸Jasmonic acid |
丙酸酯代谢Propanoate metabolism | 琥珀酸Succinic acid;甲基丙二酸Methylmalonic acid | |
类黄酮生物合成Flavonoid biosynthesis | 芹黄素Apigenin;新橙皮苷Neohesperidin;柚皮素Naringenin;柚皮苷Naringin | |
AB8h vs AB0h | 氨基糖和核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | D-半乳糖醛酸D-galacturonic acid;UDP-N-乙酰氨基葡萄糖UDP-N-acetylglucosamine;D-甘露糖6-磷酸D-mannose6-phosphate |
氨酰-tRNA生物合成Aminoacyl-tRNA biosynthesis | O-磷酸-L-丝氨酸O-phospho-L-serine;L-谷氨酸L-glutamic acid;L-酪氨酸 L-tyrosine;色氨酸Tryptophan | |
甘氨酸、丝氨酸和苏氨酸代谢Glycine, serine and threonine metabolism | O-磷酸-L-丝氨酸O-phospho-L-serine;色氨酸Tryptophan | |
硫代葡萄糖苷生物合成Glucosinolate biosynthesis | L-酪氨酸L-tyrosine;色氨酸Tryptophan | |
AB24h vs AB0h | 苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | L-酪氨酸L-tyrosine;吲哚Indole;D-赤藓糖-4-磷酸D-erythrose-4-phosphate;色氨酸Tryptophan |
色氨酸代谢Tryptophan metabolism | 吲哚Indole;色氨酸Tryptophan | |
丙酸酯代谢Propanoate metabolism | 琥珀酸Succinic acid;甲基丙二酸Methylmalonic acid | |
硫代葡萄糖苷生物合成Glucosinolate biosynthesis | L-酪氨酸L-tyrosine;色氨酸Tryptophan | |
DB0h vs AB0h | ABC转运因子ABC transporters | D-半乳糖醛酸D-galacturonic acid;L-鸟氨酸L-ornithine;蔗糖Sucrose;L-组氨酸L-histidine |
β-丙氨酸代谢Beta-alanine metabolism | 泛酸Pantothenic acid;L-组氨酸L-histidine | |
淀粉和蔗糖代谢Starch and sucrose metabolism | 蔗糖Sucrose;6-磷酸海藻糖Trehalose 6-phosphate | |
二萜生物合成Diterpenoid biosynthesis | 铁锈醇Ferruginol;赤霉素A7 Gibberellin A7 | |
DB8h vs AB8h | ABC转运因子ABC transporters | D-半乳糖醛酸D-galacturonic acid;D-鸟氨酸D-ornithine;蔗糖Sucrose |
抗坏血酸与醛酸代谢Ascorbate and aldarate metabolism | D-半乳糖醛酸D-galacturonic acid;D-糖酸D-saccharic acid | |
淀粉和蔗糖代谢Starch and sucrose metabolism | 异麦芽糖Isomaltose;蔗糖Sucrose | |
DB24h vs AB24h | 淀粉和蔗糖代谢Starch and sucrose metabolism | 异麦芽糖Isomaltose;6-磷酸海藻糖Trehalose 6-phosphate |
核黄素代谢Riboflavin metabolism | 核黄素Riboflavin | |
类黄酮生物合成Flavonoid biosynthesis | 芹菜素Apigenin;普鲁宁Prunin;柚皮素查尔酮Naringenin chalcone | |
黄酮和黄酮醇的生物合成Flavone and flavonol biosynthesis | 芹菜素Apigenin;芸香甙Rutin |
1 | Ren S, Sun M, Yan H, et al. Identification and distribution of NBS-encoding resistance genes of Dactylis glomerata L. and its expression under abiotic and biotic stress. Biochemical Genetics, 2020, 58(6): 824-847. |
2 | Zhao X, Bushman B S, Zhang X, et al. Association of candidate genes with heading date in a diverse Dactylis glomerata population. Plant Science, 2017, 265(8): 146-153. |
3 | Knežević M, Berić T, Buntić A, et al. Potential of root nodule nonrhizobial endophytic bacteria for growth promotion of Lotus corniculatus L. and Dactylis glomerata L. Journal of Applied Microbiololgy, 2021, 131(6): 2929-2940. |
4 | Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. |
5 | Ji Y, Zhang X Q, Peng Y, et al. Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass. Acta Prataculturae Sinica, 2014, 23(3): 144-151. |
季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、 渗透物质含量及膜质过氧化作用的影响. 草业学报, 2014, 23(3): 144-151. | |
6 | Peng Y, Zhang X Q. Progress in studies on genetic diversity of Dactylis glomerata L. Journal of Plant Genetic Resources, 2003, 4(2): 179-183. |
彭燕, 张新全. 鸭茅种质资源多样性研究进展. 植物遗传资源学报, 2003, 4(2): 179-183. | |
7 | Mir M A, Sirhindi G, Alyemeni M N, et al. Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. Plant Growth Regulation, 2018, 37(4): 1195-1209. |
8 | Fukao T, Barrera-Figueroa B E, Juntawong P, et al. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Frontiers in Plant Science, 2019, 4(10): 340. |
9 | He S L, Guo X J, Li F Y, et al. Spatiotemporal variation of rainfall and rainfall erosivity in southern China in recent 60 years. Resources and Environment in the Yangtze Basin, 2017, 26(9): 1406-1416. |
何绍浪, 郭小君, 李凤英, 等. 中国南方地区近60年来降雨量与降雨侵蚀力时空变化研究. 长江流域资源与环境, 2017, 26(9): 1406-1416. | |
10 | Grzesiak M T, Ostrowska A, Hura K, et al. Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction. Acta Physiological Plantarum, 2014, 36(12): 3249-3261. |
11 | Ren B Z, Zhang J W, Li X, et al. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science, 2014, 94(1): 23-31. |
12 | Peng Y, Zhou Z, Zhang Z, et al. Molecular and physiological responses in roots of two full-sib poplars uncover mechanisms that contribute to differences in partial submergence tolerance. Scientific Reports, 2018, 8(1): 12829. |
13 | Yetisir H, Aliskan M E, Soylu S, et al. Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to waterlogging. Environmental and Experimental Botany, 2006, 58(1/3): 1-8. |
14 | Barickman T C, Simpson C R, Sams C E. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants (Basel), 2019, 8(6): E160. |
15 | Li Y. Study on comprehensive evaluation and mechanism of drought resistance of Dactylis glomerata. Lanzhou: Gansu Agricultural University, 2007. |
李源. 鸭茅抗旱性综合评价及抗旱机理的研究. 兰州: 甘肃农业大学, 2007. | |
16 | Ji Y, Chen P, Chen J, et al. Combinations of small RNA, RNA, and degradome sequencing uncovers the expression pattern of microRNA-mRNA pairs adapting to drought stress in leaf and root of Dactylis glomerata L. International Journal of Molecular Sciences, 2018, 19(10): E3114. |
17 | Sanada Y, Takai T, Yamada T. Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in cocksfoot (Dactylis glomerata L.). Euphytica, 2007, 153(1): 267-280. |
18 | Pollock C J, Ruggles P A. Cold-induced fructosan synthesis in leaves of Dactylis glomerata. Phytochemistry, 1976, 15(11): 1643-1646. |
19 | Uemura M. Protein and lipid compositions of isolated plasma membranes from orchardgrass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiology, 1984, 75(1): 31-37. |
20 | Luo D, Zuo F Y, Qiu J D, et al. Heat tolerance evaluation of different orchardgrass cultivars. Pratacultural Science, 2015, 32(6): 952-960. |
罗登, 左福元, 邱健东, 等. 不同鸭茅品种的耐热性评价. 草业科学, 2015, 32(6): 952-960. | |
21 | Cai H, Zhang H S, Tian H, et al. Assessment on high temperature tolerance of two Dactylis glomerata L. materials. Hubei Agricultural Sciences, 2011, 50(23): 4890-4892. |
蔡化, 张鹤山, 田宏, 等. 两份鸭茅材料耐高温性能评价. 湖北农业科学, 2011, 50(23): 4890-4892. | |
22 | Cai H, Zhang H S, Tian H, et al. High temperature LT50 and heat resistance of five wild Dactylis glomerata. Hubei Agricultural Sciences, 2014, 53(24): 6068-6070. |
蔡化, 张鹤山, 田宏, 等. 5份野生鸭茅材料高温半致死温度与耐热性研究. 湖北农业科学, 2014, 53(24): 6068-6070. | |
23 | Huang L K, Yan H D, Zhao X X, et al. Identifying differentially expressed genes under heat stress and developing molecular markers in orchardgrass (Dactylis glomerata L.) through transcriptome analysis. Molecular Ecology Resources, 2015, 15(6): 1497-1509. |
24 | Klaas M, Haiminen N, Grant J, et al. Transcriptome characterization and differentially expressed genes under waterlogging and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata. Annals of Botany, 2019, 124(4): 717-730. |
25 | Zeng B, Zhang Y J, Zhang A L, et al. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress. Phytochemistry, 2020, 175: 112378. |
26 | Qiao D D, Zhang Y J, Xiong X M, et al. Transcriptome analysis on responses of orchardgrass (Dactylis glomerata L.) leaves to a short term waterlogging. Hereditas, 2020, 157(1): 1-16. |
27 | Wang Y C, Mao J X, Wang S Q, et al. Study on the evaluation of waterlogging tolerance about different Dactylis glomerata L. germplasm resources and the difference on microstructure of root under waterlogging stress. Pakistan Journal of Botany, 2021, 53(5): 1583-1592. |
28 | Yang X Y, Qiao D D, Zhang Y J, et al. A different gene expression analysis of miRNA in Dactylis glomerata in response to flooding stress. Acta Prataculturae Sinica, 2022, 31(6): 150-162. |
杨兴云, 乔丹丹, 张雅洁, 等. 鸭茅响应水淹胁迫的miRNA差异表达分析. 草业学报, 2022, 31(6): 150-162. | |
29 | Rinschen M M, Ivanisevic J, Giera M, et al. Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology, 2019, 20(6): 353-367. |
30 | Wang T, Zou Q, Guo Q, et al. Widely targeted metabolomics analysis reveals the effect of flooding stress on the synthesis of flavonoids in Chrysanthemum morifolium. Molecules, 2019, 24(20): 3695. |
31 | Wu S L. Interaction between root metabolites and microbial community of Rhododendron delavayi under waterlogging stress. Guiyang: Guizhou Normal University, 2022. |
武绍龙. 水淹胁迫下马缨杜鹃根系代谢物与微生物群落间互作关系. 贵阳: 贵州师范大学, 2022. | |
32 | Wu D, Yu T H, Li X, et al. Direct analysis of Nicotiana tabacum metabolites under waterlogging stress by neutral desorption- extractive electrospray ionization mass spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48(1): 121-128. |
吴栋, 于腾辉, 李享, 等. 中性解吸-电喷雾萃取电离质谱直接分析水涝胁迫下烟草的代谢产物. 分析化学, 2020, 48(1): 121-128. | |
33 | Komatsu S, Yamamoto A, Nakamura T, et al. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Journal of Proteome Research, 2011, 10(9): 3993-4004. |
34 | Panozzo A, Dal Cortivo C, Ferrari M, et al. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Frontiers in Plant Science, 2019, 10(12): 62. |
35 | Sun L, Ma L, He S, et al. AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signaling and Behavior, 2018, 13(9): e1513300. |
36 | Zhao T, Li Q, Pan X J, et al. Adaptive mechanism of terrestrial plants to waterlogging stress. Plant Physiology Journal, 2021, 57(11): 2091-2103. |
赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制. 植物生理学报, 2021, 57(11): 2091-2103. | |
37 | Yobi A, Wone B W, Xu W, et al. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant Journal, 2012, 72(6): 983-999. |
38 | Kumar R, Bohra A, Pandey A K, et al. Metabolomics for plant improvement: status and prospects. Front Plant Science, 2017, 8(1): 1302. |
39 | Olivares M, Usobiaga A, Etxebarria N, et al. Review: Metabolomics as a prediction tool for plants performance under environmental stress. Plant Science, 2021, 303(1): 110789. |
40 | Zhan J. Proteomic analysis of root system of different tolerant peanut varieties under waterlogging stress. Changsha: Hunan Agricultural University, 2019. |
湛瑊. 渍涝胁迫下不同耐性花生品种根系蛋白质组学分析. 长沙: 湖南农业大学, 2019. | |
41 | Barding G A, Fukao T, Béni S, et al. Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. Journal of Proteome Research, 2012, 11(1): 320-330. |
42 | Pott D M, Osorio S, Vallarino J G. From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 2019, 10(6): 835. |
43 | Shi Y J, Wu X Y, Tang Y, et al. Metabolomics analysis of Chenopodium quinoa under water stress at flowering stage. Journal of Henan Agricultural University, 2020, 54(6): 921-930. |
时羽杰, 邬晓勇, 唐媛, 等. 藜麦花期水分胁迫下的代谢组学分析. 河南农业大学学报, 2020, 54(6): 921-930. | |
44 | Wang C Y, Li J R, Xia Q P, et al. Influence of exogenous γ-aminobutyric acid (GABA) on GABA metabolism and amino acid content in roots of melon seedling under hypoxia stress. Chinese Journal of Applied Ecology, 2014, 25(7): 2011-2018. |
王春燕, 李敬蕊, 夏庆平, 等. 外源γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗根系GABA代谢及氨基酸含量的影响. 应用生态学报, 2014, 25(7): 2011-2018. | |
45 | Li H. Review of effects of waterlogging stress on plant physiological properties. Journal of Anhui Agricultural Sciences, 2014, 42(13): 3802-3804. |
李航. 植物淹水胁迫对各生理特性的影响概述. 安徽农业科学, 2014, 42(13): 3802-3804. | |
46 | Wu X L, Zhang Y, Jia Q Y, et al. Effect of exogenous γ-aminobutyric acid (GABA) on reactive oxygen species metabolism of melon under hypoxia stress. Northern Horticulture, 2019, 436(13): 53-58. |
吴晓蕾, 张颖, 贾邱颖, 等. 低氧胁迫下γ-氨基丁酸(GABA)对甜瓜植株活性氧代谢的影响. 北方园艺, 2019, 436(13): 53-58. | |
47 | Zhang Y Q, Qian W D, Fu L L, et al. Study on the effects of anaerobic treatment on bioactive properties of yellow tea leaves and mechanistic analysis of γ-aminobutyric acid enrichment by metabolomics. Food Science, 2023, 44(6): 65-73. |
章垚琪, 潜卫东, 傅玲琳, 等. 厌氧处理对黄茶生物活性的影响及γ-氨基丁酸富集的代谢组学分析. 食品科学, 2023, 44(6): 65-73. | |
48 | Yuan D, Wu X, Gong B, et al. GABA metabolism, transport and their roles and mechanisms in the regulation of abiotic stress (hypoxia, salt, drought) resistance in plants. Metabolites, 2023, 13(3): 347. |
49 | Koprivova A, Kopriva S. Plant secondary metabolites altering root microbiome composition and function. Current Opinion in Plant Biology, 2022, 67: 102227. |
50 | Kudjordjie E N, Sapkota R, Nicolaisen M. Arabidopsis assemble distinct root-associated microbiomes through the synthesis of an array of defense metabolites. The Public Library of Science One, 2021, 16(10): e0259171. |
51 | Carvalhais L C, Dennis P G, Badri D V, et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant Microbe Interact, 2015, 28(9): 1049-1058. |
52 | Balfagón D, Sengupta S, Gómez-Cadenas A, et al. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiology, 2019, 181(4): 1668-1682. |
53 | Xu X, Wang H, Qi X, et al. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Scientia Horticulturae, 2016, 179: 388-395. |
54 | Arbona V, Gómez-Cadenas A. Hormonal modulation of citrus responses to waterlogging. Journal of Plant Growth Regulation, 2008, 27(3): 241-250. |
55 | Xu H F, Wang Z T, Chen X, et al. The analyses of target metabolomics in flavonoid and its potential MYB regulation factors during coloring period of winter jujube. Acta Horticulturae Sinica, 2022, 49(8): 1761-1771. |
许海峰, 王中堂, 陈新, 等. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析. 园艺学报, 2022, 49(8): 1761-1771. | |
56 | Li W. Study on mechanisms of TaFLS1 and TaANS1 of Triticum aestivum in abiotic stress response. Jinan: Shandong University, 2011. |
李伟. 小麦类黄酮合成途径基因TaFLS1与TaANS1的逆境应答机制研究. 济南: 山东大学, 2011. | |
57 | Ma J W, Rukh G, Ruan Z Q, et al. Effects of hypoxia stress on growth, root respiration, and metabolism of Phyllostachys praecox. Life (Basel), 2022, 12(6): 808. |
58 | Jiang B H. Eco-physiological responses and metabolomics analysis of Dalbergia odorifera seedlings under waterlogging and salt stress. Haikou: Hainan University, 2020. |
姜百惠. 降香黄檀幼苗响应水淹、盐胁迫的生理生态特性及代谢组学分析. 海口: 海南大学, 2020. | |
59 | Nie G P, Chen M M, Yang L Y, et al. Plant response to waterlogging stress: research progress. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64. |
聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展. 中国农学通报, 2021, 37(18): 57-64. | |
60 | Zhang M F, Sun S Y, Sun J N, et al. Molecular mechanism of abiotic stress response in Medicago sativa. Molecular Plant Breeding, 2023, 21(8): 2642-2654. |
张莫凡, 孙思语, 孙佳尼, 等. 紫花苜蓿非生物胁迫应答分子机制. 分子植物育种, 2023, 21(8): 2642-2654. |
[1] | 尚盼盼, 曾兵, 屈明好, 李明阳, 杨兴云, 郑玉倩, 沈秉娜, 毕磊, 杨成, 曾兵. 红三叶响应淹水胁迫的相关通路及差异表达基因分析[J]. 草业学报, 2023, 32(4): 112-128. |
[2] | 杨兴云, 乔丹丹, 张雅洁, 王少青, 任俊才, 李明阳, 屈明好, 尚盼盼, 杨成, 黄琳凯, 曾兵. 鸭茅响应水淹胁迫的miRNA差异表达分析[J]. 草业学报, 2022, 31(6): 150-162. |
[3] | 王诗雅, 郑殿峰, 冯乃杰, 梁喜龙, 项洪涛, 冯胜杰, 王新欣, 左官强. 鼓粒期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J]. 草业学报, 2021, 30(7): 157-166. |
[4] | 亓王盼, 牟英玉, 张涛, 张继友, 毛胜勇. 亚急性瘤胃酸中毒对泌乳奶牛血浆生化指标及代谢组的影响研究[J]. 草业学报, 2021, 30(6): 141-150. |
[5] | 张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响[J]. 草业学报, 2021, 30(3): 158-166. |
[6] | 张旭, 聂刚, 黄琳凯, 唐露, 周洲, 刘福, 周洁, 邹静, 任思彦, 张新全. 植物生长调节剂对鸭茅种子产量的影响[J]. 草业学报, 2019, 28(6): 93-100. |
[7] | 许蕾, 陈佩琳, 冯光燕, 钟旻依, 景婷婷, 黄琳凯, 张新全. 利用流式细胞仪鉴定鸭茅倍性[J]. 草业学报, 2019, 28(3): 74-84. |
[8] | 唐露, 黄琳凯, 赵欣欣, 张旭, 聂刚, 张新全, 马啸. 四倍体鸭茅产量及其构成因素的QTL定位[J]. 草业学报, 2018, 27(11): 67-76. |
[9] | 王新宇, 蒋林峰, 张新全, 黄琳凯, 李宁, 王鹏喜. 鸭茅DUS测试不同品种性状一致性分析[J]. 草业学报, 2016, 25(9): 104-116. |
[10] | 黄梅芬, 薛世明, 高月娥, 李乔仙, 张美艳, 余梅, 钟声. 喜马拉雅鸭茅野生二倍体与同源四倍体农艺性状的对比研究[J]. 草业学报, 2016, 25(1): 207-216. |
[11] | 全瑞兰, 玉永雄. 淹水对紫花苜蓿南北方品种抗氧化酶和无氧呼吸酶的影响[J]. 草业学报, 2015, 24(5): 84-90. |
[12] | 蒋林峰,张新全,付玉凤,蒙芬,黄琳凯. 中国主要鸭茅品种农艺性状变异研究[J]. 草业学报, 2015, 24(3): 142-154. |
[13] | 季杨,张新全,彭燕,梁小玉,黄琳凯,马啸,马迎梅. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响[J]. 草业学报, 2014, 23(3): 144-151. |
[14] | 蒋林峰,张新全,黄琳凯,马啸,严德飞,胡强,付玉凤. 鸭茅品种的SCoT遗传变异分析[J]. 草业学报, 2014, 23(1): 229-238. |
[15] | 王瑞,梁坤伦,周志宇,郭霞,刘雪云 . 不同淹水梯度对紫穗槐的营养生长和生理响应[J]. 草业学报, 2012, 21(1): 149-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||