草业学报 ›› 2023, Vol. 32 ›› Issue (10): 28-39.DOI: 10.11686/cyxb2023014
收稿日期:
2023-01-06
修回日期:
2023-02-27
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
魏巍
作者简介:
E-mail: weiweicc01@126.com基金资助:
Juan-juan ZHOU1,2(), Wei WEI1,2()
Received:
2023-01-06
Revised:
2023-02-27
Online:
2023-10-20
Published:
2023-07-26
Contact:
Wei WEI
摘要:
应用乡土物种构建人工草地是修复退化草地的有效措施。本研究以藏北高原驯化的垂穗披碱草、麦宾草和中亚早熟禾3种乡土草种为试验对象,设置单播(S1~S3)和混播(M1~M4)共7个播种组合为主区,嵌套施肥(fertilization,F)、刈割(cutting,C)、施肥+刈割(F+C),无施肥无刈割(Con)为副区。筛选最佳播种组合,明确不同禾草草地的群落消长动态,探究混播草地超产效应和多样性效应以及物种个体对施肥和刈割的响应,以期为藏北高原退化草地的生态恢复提供科学依据。结果表明:不同播种组合禾草草地均表现出明显的生长季种群消长动态,地上生物量均在9月20日(生长季末)达到峰值,垂穗披碱草为混播群落优势种群;8月20日(孕穗期)根系生物量积累达到极大值,混播M4中F处理根系生物量最高,为669.61 g·m-2;垂穗披碱草+麦宾草+中亚早熟禾3物种混播(M4)地上生物量最高,F和F+C处理显著增加群落的地上生物量,F+C处理地上生物量高达3190.83 g·m-2,垂穗披碱草+麦宾草+中亚早熟禾混播配套施肥和刈割措施是藏北高原建植人工草地较理想的方式。结合自然对数响应比值(LNRR)分析,3个物种中垂穗披碱草的竞争力最强,中亚早熟禾次之,麦宾草最弱。混播M1、M2、M3(Con和C处理)和M4相对产量总和(RYT)皆大于1,且都存在超产;其中,混播M1中Con和C处理、M2中C、F和F+C处理、M4中Con和C处理的选择效应和互补效应共同主导超产效应,M1中F和F+C处理、M2中Con处理、M3中Con和C处理的互补作用主导超产效应。
周娟娟, 魏巍. 施肥和刈割协同对藏北高原禾草混播群落动态和超产的影响[J]. 草业学报, 2023, 32(10): 28-39.
Juan-juan ZHOU, Wei WEI. Interactive effect of fertilization and cutting on community dynamics and transgressive overyielding effect of grass pasture in the northern Tibetan Plateau[J]. Acta Prataculturae Sinica, 2023, 32(10): 28-39.
播种 组合 Sowing combinations | 组分 Component | 取样时间Sampling time (月-日Month-day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照Control | 施肥Fertilization | ||||||||||||
7-20 | 8-20 | 9-20 | 7-20 | 8-20 | 9-20 | ||||||||
A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | ||
S1 | 垂穗披碱草E. nutans | 90.00 | 100.00 | 629.80 | 100.00 | 1063.13 | 100.00 | 359.07 | 100.00 | 1008.41 | 100.00 | 1966.92 | 100.00 |
S2 | 麦宾草E.tangutorum | 39.62 | 100.00 | 638.01 | 100.00 | 1020.64 | 100.00 | 337.28 | 100.00 | 1178.30 | 100.00 | 2215.82 | 100.00 |
S3 | 中亚早熟禾P. litwinowiana | 36.12 | 100.00 | 330.61 | 100.00 | 333.78 | 100.00 | 206.05 | 100.00 | 703.34 | 100.00 | 797.44 | 100.00 |
M1 | 垂穗披碱草E. nutans | 87.56 | 77.78 | 457.99 | 75.73 | 805.80 | 74.28 | 358.45 | 76.94 | 849.44 | 70.90 | 1848.58 | 70.74 |
麦宾草E. tangutorum | 25.01 | 22.22 | 146.78 | 24.27 | 278.97 | 25.72 | 107.45 | 23.06 | 348.62 | 29.10 | 764.69 | 29.26 | |
总生物量Total yield | 112.57 | 100.00 | 604.77 | 100.00 | 1084.77 | 100.00 | 465.90 | 100.00 | 1198.06 | 100.00 | 2613.27 | 100.00 | |
M2 | 垂穗披碱草E. nutans | 54.58 | 71.54 | 363.54 | 73.82 | 782.09 | 74.33 | 375.87 | 90.67 | 788.67 | 69.85 | 1746.51 | 82.47 |
中亚早熟禾P. litwinowiana | 21.71 | 28.46 | 128.90 | 26.18 | 270.13 | 25.67 | 38.67 | 9.33 | 340.49 | 30.15 | 371.28 | 17.53 | |
总生物量Total yield | 76.29 | 100.00 | 492.44 | 100.00 | 1052.22 | 100.00 | 414.54 | 100.00 | 1129.16 | 100.00 | 2117.79 | 100.00 | |
M3 | 麦宾草E. tangutorum | 53.23 | 61.47 | 312.45 | 68.70 | 368.89 | 52.43 | 167.37 | 70.30 | 597.31 | 62.56 | 1088.68 | 76.97 |
中亚早熟禾P. litwinowiana | 33.36 | 38.53 | 140.40 | 31.30 | 334.69 | 47.57 | 70.72 | 29.70 | 357.53 | 37.44 | 325.78 | 23.03 | |
总生物量Total yield | 86.59 | 100.00 | 452.85 | 100.00 | 703.58 | 100.00 | 238.09 | 100.00 | 954.84 | 100.00 | 1414.46 | 100.00 | |
M4 | 垂穗披碱草E. nutans | 126.91 | 75.47 | 485.90 | 45.68 | 1015.07 | 74.78 | 435.16 | 84.24 | 968.70 | 48.39 | 2268.09 | 81.51 |
麦宾草E. tangutorum | 22.41 | 13.33 | 309.92 | 29.14 | 173.58 | 12.79 | 44.50 | 8.62 | 553.81 | 27.66 | 269.03 | 9.67 | |
中亚早熟禾P. litwinowiana | 18.85 | 11.20 | 267.79 | 25.18 | 168.83 | 12.43 | 36.89 | 7.14 | 479.52 | 23.95 | 245.48 | 8.82 | |
总生物量Total yield | 168.17 | 100.00 | 1063.61 | 100.00 | 1357.48 | 100.00 | 516.55 | 100.00 | 2002.03 | 100.00 | 2782.60 | 100.00 |
表1 不同播种组合地上生物量各组分的动态变化
Table 1 Dynamic change of aboveground biomass under different sowing combinations
播种 组合 Sowing combinations | 组分 Component | 取样时间Sampling time (月-日Month-day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照Control | 施肥Fertilization | ||||||||||||
7-20 | 8-20 | 9-20 | 7-20 | 8-20 | 9-20 | ||||||||
A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | ||
S1 | 垂穗披碱草E. nutans | 90.00 | 100.00 | 629.80 | 100.00 | 1063.13 | 100.00 | 359.07 | 100.00 | 1008.41 | 100.00 | 1966.92 | 100.00 |
S2 | 麦宾草E.tangutorum | 39.62 | 100.00 | 638.01 | 100.00 | 1020.64 | 100.00 | 337.28 | 100.00 | 1178.30 | 100.00 | 2215.82 | 100.00 |
S3 | 中亚早熟禾P. litwinowiana | 36.12 | 100.00 | 330.61 | 100.00 | 333.78 | 100.00 | 206.05 | 100.00 | 703.34 | 100.00 | 797.44 | 100.00 |
M1 | 垂穗披碱草E. nutans | 87.56 | 77.78 | 457.99 | 75.73 | 805.80 | 74.28 | 358.45 | 76.94 | 849.44 | 70.90 | 1848.58 | 70.74 |
麦宾草E. tangutorum | 25.01 | 22.22 | 146.78 | 24.27 | 278.97 | 25.72 | 107.45 | 23.06 | 348.62 | 29.10 | 764.69 | 29.26 | |
总生物量Total yield | 112.57 | 100.00 | 604.77 | 100.00 | 1084.77 | 100.00 | 465.90 | 100.00 | 1198.06 | 100.00 | 2613.27 | 100.00 | |
M2 | 垂穗披碱草E. nutans | 54.58 | 71.54 | 363.54 | 73.82 | 782.09 | 74.33 | 375.87 | 90.67 | 788.67 | 69.85 | 1746.51 | 82.47 |
中亚早熟禾P. litwinowiana | 21.71 | 28.46 | 128.90 | 26.18 | 270.13 | 25.67 | 38.67 | 9.33 | 340.49 | 30.15 | 371.28 | 17.53 | |
总生物量Total yield | 76.29 | 100.00 | 492.44 | 100.00 | 1052.22 | 100.00 | 414.54 | 100.00 | 1129.16 | 100.00 | 2117.79 | 100.00 | |
M3 | 麦宾草E. tangutorum | 53.23 | 61.47 | 312.45 | 68.70 | 368.89 | 52.43 | 167.37 | 70.30 | 597.31 | 62.56 | 1088.68 | 76.97 |
中亚早熟禾P. litwinowiana | 33.36 | 38.53 | 140.40 | 31.30 | 334.69 | 47.57 | 70.72 | 29.70 | 357.53 | 37.44 | 325.78 | 23.03 | |
总生物量Total yield | 86.59 | 100.00 | 452.85 | 100.00 | 703.58 | 100.00 | 238.09 | 100.00 | 954.84 | 100.00 | 1414.46 | 100.00 | |
M4 | 垂穗披碱草E. nutans | 126.91 | 75.47 | 485.90 | 45.68 | 1015.07 | 74.78 | 435.16 | 84.24 | 968.70 | 48.39 | 2268.09 | 81.51 |
麦宾草E. tangutorum | 22.41 | 13.33 | 309.92 | 29.14 | 173.58 | 12.79 | 44.50 | 8.62 | 553.81 | 27.66 | 269.03 | 9.67 | |
中亚早熟禾P. litwinowiana | 18.85 | 11.20 | 267.79 | 25.18 | 168.83 | 12.43 | 36.89 | 7.14 | 479.52 | 23.95 | 245.48 | 8.82 | |
总生物量Total yield | 168.17 | 100.00 | 1063.61 | 100.00 | 1357.48 | 100.00 | 516.55 | 100.00 | 2002.03 | 100.00 | 2782.60 | 100.00 |
播种 组合 Sowing combinations | 组分 Component | 取样时间Sampling time (月-日Month-day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照Control | 施肥Fertilization | ||||||||||||
7-20 | 8-20 | 9-20 | 7-20 | 8-20 | 9-20 | ||||||||
A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | ||
S1 | 垂穗披碱草E. nutans | 19.21 | 100.00 | 210.68 | 100.00 | 192.10 | 100.00 | 63.70 | 100.00 | 237.62 | 100.00 | 264.89 | 100.00 |
S2 | 麦宾草E.tangutorum | 9.22 | 100.00 | 238.58 | 100.00 | 193.70 | 100.00 | 68.65 | 100.00 | 287.92 | 100.00 | 350.01 | 100.00 |
S3 | 中亚早熟禾P. litwinowiana | 20.24 | 100.00 | 292.57 | 100.00 | 304.40 | 100.00 | 57.62 | 100.00 | 352.28 | 100.00 | 356.43 | 100.00 |
M1 | 垂穗披碱草E. nutans | 14.21 | 77.10 | 272.13 | 63.88 | 213.75 | 60.25 | 53.67 | 50.06 | 319.21 | 59.11 | 291.39 | 58.74 |
麦宾草E. tangutorum | 4.22 | 22.90 | 153.95 | 36.12 | 141.02 | 39.75 | 53.53 | 49.94 | 220.80 | 40.89 | 204.68 | 41.26 | |
总生物量Total yield | 18.43 | 100.00 | 426.08 | 100.00 | 354.77 | 100.00 | 107.20 | 100.00 | 540.01 | 100.00 | 496.07 | 100.00 | |
M2 | 垂穗披碱草E. nutans | 8.67 | 55.94 | 282.91 | 54.93 | 246.70 | 52.91 | 53.95 | 84.96 | 339.11 | 56.55 | 301.38 | 56.56 |
中亚早熟禾P. litwinowiana | 6.83 | 44.06 | 232.12 | 45.07 | 219.55 | 47.09 | 9.55 | 15.04 | 260.60 | 43.45 | 231.50 | 43.44 | |
总生物量Total yield | 15.50 | 100.00 | 515.03 | 100.00 | 466.25 | 100.00 | 63.50 | 100.00 | 599.71 | 100.00 | 532.88 | 100.00 | |
M3 | 麦宾草E. tangutorum | 12.67 | 54.70 | 246.12 | 46.52 | 193.85 | 42.38 | 27.40 | 62.95 | 305.30 | 48.20 | 270.90 | 46.03 |
中亚早熟禾P. litwinowiana | 10.49 | 45.30 | 282.90 | 53.48 | 263.56 | 57.62 | 16.13 | 37.05 | 328.08 | 51.80 | 317.65 | 53.97 | |
总生物量Total yield | 23.16 | 100.00 | 529.02 | 100.00 | 457.41 | 100.00 | 43.53 | 100.00 | 633.38 | 100.00 | 588.55 | 100.00 | |
M4 | 垂穗披碱草E. nutans | 24.13 | 46.43 | 219.50 | 42.75 | 197.91 | 45.00 | 37.85 | 52.99 | 309.08 | 46.16 | 272.82 | 46.34 |
麦宾草E. tangutorum | 18.42 | 35.44 | 151.58 | 29.52 | 99.49 | 22.62 | 22.50 | 31.50 | 185.50 | 27.70 | 133.04 | 22.60 | |
中亚早熟禾P. litwinowiana | 9.42 | 18.13 | 142.41 | 27.73 | 142.40 | 32.38 | 11.08 | 15.51 | 175.03 | 26.14 | 182.86 | 31.06 | |
总生物量Total yield | 51.97 | 100.00 | 513.49 | 100.00 | 439.80 | 100.00 | 71.43 | 100.00 | 669.61 | 100.00 | 588.72 | 100.00 |
表2 不同播种组合地下生物量各组分的动态变化
Table 2 Dynamic change of underground biomass under different sowing combinations
播种 组合 Sowing combinations | 组分 Component | 取样时间Sampling time (月-日Month-day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照Control | 施肥Fertilization | ||||||||||||
7-20 | 8-20 | 9-20 | 7-20 | 8-20 | 9-20 | ||||||||
A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | A (g·m-2) | B (%) | ||
S1 | 垂穗披碱草E. nutans | 19.21 | 100.00 | 210.68 | 100.00 | 192.10 | 100.00 | 63.70 | 100.00 | 237.62 | 100.00 | 264.89 | 100.00 |
S2 | 麦宾草E.tangutorum | 9.22 | 100.00 | 238.58 | 100.00 | 193.70 | 100.00 | 68.65 | 100.00 | 287.92 | 100.00 | 350.01 | 100.00 |
S3 | 中亚早熟禾P. litwinowiana | 20.24 | 100.00 | 292.57 | 100.00 | 304.40 | 100.00 | 57.62 | 100.00 | 352.28 | 100.00 | 356.43 | 100.00 |
M1 | 垂穗披碱草E. nutans | 14.21 | 77.10 | 272.13 | 63.88 | 213.75 | 60.25 | 53.67 | 50.06 | 319.21 | 59.11 | 291.39 | 58.74 |
麦宾草E. tangutorum | 4.22 | 22.90 | 153.95 | 36.12 | 141.02 | 39.75 | 53.53 | 49.94 | 220.80 | 40.89 | 204.68 | 41.26 | |
总生物量Total yield | 18.43 | 100.00 | 426.08 | 100.00 | 354.77 | 100.00 | 107.20 | 100.00 | 540.01 | 100.00 | 496.07 | 100.00 | |
M2 | 垂穗披碱草E. nutans | 8.67 | 55.94 | 282.91 | 54.93 | 246.70 | 52.91 | 53.95 | 84.96 | 339.11 | 56.55 | 301.38 | 56.56 |
中亚早熟禾P. litwinowiana | 6.83 | 44.06 | 232.12 | 45.07 | 219.55 | 47.09 | 9.55 | 15.04 | 260.60 | 43.45 | 231.50 | 43.44 | |
总生物量Total yield | 15.50 | 100.00 | 515.03 | 100.00 | 466.25 | 100.00 | 63.50 | 100.00 | 599.71 | 100.00 | 532.88 | 100.00 | |
M3 | 麦宾草E. tangutorum | 12.67 | 54.70 | 246.12 | 46.52 | 193.85 | 42.38 | 27.40 | 62.95 | 305.30 | 48.20 | 270.90 | 46.03 |
中亚早熟禾P. litwinowiana | 10.49 | 45.30 | 282.90 | 53.48 | 263.56 | 57.62 | 16.13 | 37.05 | 328.08 | 51.80 | 317.65 | 53.97 | |
总生物量Total yield | 23.16 | 100.00 | 529.02 | 100.00 | 457.41 | 100.00 | 43.53 | 100.00 | 633.38 | 100.00 | 588.55 | 100.00 | |
M4 | 垂穗披碱草E. nutans | 24.13 | 46.43 | 219.50 | 42.75 | 197.91 | 45.00 | 37.85 | 52.99 | 309.08 | 46.16 | 272.82 | 46.34 |
麦宾草E. tangutorum | 18.42 | 35.44 | 151.58 | 29.52 | 99.49 | 22.62 | 22.50 | 31.50 | 185.50 | 27.70 | 133.04 | 22.60 | |
中亚早熟禾P. litwinowiana | 9.42 | 18.13 | 142.41 | 27.73 | 142.40 | 32.38 | 11.08 | 15.51 | 175.03 | 26.14 | 182.86 | 31.06 | |
总生物量Total yield | 51.97 | 100.00 | 513.49 | 100.00 | 439.80 | 100.00 | 71.43 | 100.00 | 669.61 | 100.00 | 588.72 | 100.00 |
来源Source | df | F | P |
---|---|---|---|
小区间Between plots | |||
播种组合Species composition (SC) | 6 | 2900.41 | <0.001 |
区组Block | 3 | 9141.17 | <0.001 |
亚小区Between subplots | |||
施肥Fertilization (F) | 1 | 26170.44 | <0.001 |
刈割Cutting (C) | 1 | 1136.05 | <0.001 |
播种组合×施肥SC×F | 6 | 450.97 | <0.001 |
播种组合×刈割SC×C | 6 | 3.42 | 0.006 |
施肥×刈割F×C | 1 | 117.03 | <0.001 |
播种组合×施肥×刈割SC×F×C | 6 | 0.22 | 0.973 |
表3 播种组合、施肥和刈割对群落地上生物量影响的方差分析
Table 3 ANOVA analysis for the effects of sowing combination (SC), fertilization (F), cutting (C) and their interaction on the aboveground biomass
来源Source | df | F | P |
---|---|---|---|
小区间Between plots | |||
播种组合Species composition (SC) | 6 | 2900.41 | <0.001 |
区组Block | 3 | 9141.17 | <0.001 |
亚小区Between subplots | |||
施肥Fertilization (F) | 1 | 26170.44 | <0.001 |
刈割Cutting (C) | 1 | 1136.05 | <0.001 |
播种组合×施肥SC×F | 6 | 450.97 | <0.001 |
播种组合×刈割SC×C | 6 | 3.42 | 0.006 |
施肥×刈割F×C | 1 | 117.03 | <0.001 |
播种组合×施肥×刈割SC×F×C | 6 | 0.22 | 0.973 |
播种组合 Sowing combinations | 组分 Component | 处理Treatments | |||
---|---|---|---|---|---|
对照Control (Con) | 刈割Cutting (C) | 施肥Fertilization (F) | 刈割+施肥C+F | ||
S1 | 垂穗披碱草E. nutans | 1063.13±28.60d | 1224.38±20.00c | 1966.92±34.63b | 2273.16±31.82a |
S2 | 麦宾草E.tangutorum | 1020.64±20.85d | 1163.44±13.15c | 2215.82±19.56b | 2510.42±20.07a |
S3 | 中亚早熟禾P. litwinowiana | 333.78±19.43d | 456.58±13.05c | 797.44±31.82b | 1069.46±21.57a |
M1 | 垂穗披碱草E. nutans | 805.80±24.66d | 956.00±26.77c | 1848.58±34.60b | 2088.34±38.59a |
麦宾草E. tangutorum | 278.97±2.40c | 306.36±11.86c | 764.69±41.52b | 861.80±39.86a | |
M2 | 垂穗披碱草E. nutans | 782.09±21.86d | 929.61±19.12c | 1746.51±41.92b | 2015.31±37.77a |
中亚早熟禾P. litwinowiana | 270.13±8.25c | 294.41±13.51c | 371.28±8.92b | 423.71±10.84a | |
M3 | 麦宾草E. tangutorum | 368.89±11.11d | 456.39±13.27c | 1088.68±27.71b | 1331.19±20.43a |
中亚早熟禾P. litwinowiana | 334.69±7.26b | 414.07±5.57a | 325.78±8.14b | 398.37±10.51a | |
M4 | 垂穗披碱草E. nutans | 1015.07±8.87d | 1174.48±17.70c | 2268.09±18.75b | 2600.84±20.86a |
麦宾草E. tangutorum | 173.58±5.44d | 200.86±14.22c | 269.03±5.67b | 308.47±16.39a | |
中亚早熟禾P. litwinowiana | 168.83±4.23c | 195.30±18.28c | 245.48±4.24b | 281.52±9.12a |
表4 不同播种组合在不同处理下的地上生物量
Table 4 Aboveground biomass of different treatments under different sowing combinations (g·m-2)
播种组合 Sowing combinations | 组分 Component | 处理Treatments | |||
---|---|---|---|---|---|
对照Control (Con) | 刈割Cutting (C) | 施肥Fertilization (F) | 刈割+施肥C+F | ||
S1 | 垂穗披碱草E. nutans | 1063.13±28.60d | 1224.38±20.00c | 1966.92±34.63b | 2273.16±31.82a |
S2 | 麦宾草E.tangutorum | 1020.64±20.85d | 1163.44±13.15c | 2215.82±19.56b | 2510.42±20.07a |
S3 | 中亚早熟禾P. litwinowiana | 333.78±19.43d | 456.58±13.05c | 797.44±31.82b | 1069.46±21.57a |
M1 | 垂穗披碱草E. nutans | 805.80±24.66d | 956.00±26.77c | 1848.58±34.60b | 2088.34±38.59a |
麦宾草E. tangutorum | 278.97±2.40c | 306.36±11.86c | 764.69±41.52b | 861.80±39.86a | |
M2 | 垂穗披碱草E. nutans | 782.09±21.86d | 929.61±19.12c | 1746.51±41.92b | 2015.31±37.77a |
中亚早熟禾P. litwinowiana | 270.13±8.25c | 294.41±13.51c | 371.28±8.92b | 423.71±10.84a | |
M3 | 麦宾草E. tangutorum | 368.89±11.11d | 456.39±13.27c | 1088.68±27.71b | 1331.19±20.43a |
中亚早熟禾P. litwinowiana | 334.69±7.26b | 414.07±5.57a | 325.78±8.14b | 398.37±10.51a | |
M4 | 垂穗披碱草E. nutans | 1015.07±8.87d | 1174.48±17.70c | 2268.09±18.75b | 2600.84±20.86a |
麦宾草E. tangutorum | 173.58±5.44d | 200.86±14.22c | 269.03±5.67b | 308.47±16.39a | |
中亚早熟禾P. litwinowiana | 168.83±4.23c | 195.30±18.28c | 245.48±4.24b | 281.52±9.12a |
图1 不同播种组合多年生禾草草地的RYT不同小写字母表示同一播种组合不同处理间差异显著(P<0.05)。下同。Different small letters mean different treatments of the same sowing combination had significant difference (P<0.05). The same below.
Fig.1 Relative yield total of perennial grass pasture under different sowing combinations
图2 不同播种组合多年生禾草草地超产和超产效应
Fig.2 Change in over yielding and transgressive overyielding effect of perennial grass pasture under different sowing combinations
图3 不同播种组合多年生禾草草地的多样性净效应、选择效应和互补效应
Fig.3 Change in net effect of biodiversity, selection effect and complementarity effect of perennial grass pasture under different sowing combinations
图4 超产效应1与多样性净效应、选择效应和互补效应的关系
Fig.4 The relationship between transgressive overyielding effect 1 and net effect of biodiversity, selection effect and complementarity effect
图5 不同播种组合多年生禾草草地的LNRR值a为区组水平;b~e为亚区组水平。a means in the plot-levers; b-e mean in subplot-levers.
Fig.5 The value of LNRR of perennial grass pasture under different sowing combinations
1 | Sun J, Zhang Z C, Dong S K. Adaptive management of alpine grassland ecosystems over Tibetan Plateau. Pratacultural Science, 2019, 36(4): 933-938. |
孙建, 张振超, 董世魁. 青藏高原高寒草地生态系统的适应性管理. 草业科学, 2019, 36(4): 933-938. | |
2 | Wang W Y, Li W Q, Zhou H K, et al. Dynamics of soil dissolved organic nitrogen and inorganic nitrogen pool in alpine artificial grasslands. Ecology and Environmental Sciences, 2016, 25(1): 30-35. |
王文颖, 李文全, 周华坤, 等. 高寒人工草地土壤可溶性有机氮库和无机氮库动态变化. 生态环境学报, 2016, 25(1): 30-35. | |
3 | Shang Z H, Dong Q M, Shi J J, et al. Research progress in recent ten years of ecological restoration for “black soil land” degraded grassland on Tibetan Plateau concurrently discuss of ecological restoration in Sanjiangyuan region. Acta Agrestia Sinica, 2018, 26(1): 1-21. |
尚占环, 董全民, 施建军, 等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展-兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. | |
4 | Lamb E G, Kennedy N, Siciliano S D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 2011, 338(1): 483-495. |
5 | Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. |
6 | Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 2001, 294(5543): 804-808. |
7 | Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands. Science, 1999, 286(5442): 1123-1127. |
8 | Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448(5947): 188-190. |
9 | Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412(6842): 72-76. |
10 | Li A, Niu K C, Du G Z. Resource availability, species composition and sown density effects on productivity of experimental plant communities. Plant and Soil, 2011, 344(1/2): 177-186. |
11 | Kelemen A, Török P, Valkó O, et al. Both facilitation and limiting similarity shape the species coexistence in dry alkali grasslands. Ecological Complexity, 2015, 21(11): 34-38. |
12 | Soliveres S, Smit C, Maestre F T. Mowing forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biological Review, 2015, 90(1): 297-313. |
13 | Farrer E C, Suding K N. Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes. Ecology Letters, 2016, 19(10): 1287-1296. |
14 | He J S, Wolfe-Bellin K S, Schmid B, et al. Density may alter diversity-productivity relationships in experimental plant communities. Basic and Applied Ecology, 2005, 6(6): 505-517. |
15 | Niu K C, Luo Y J, Choler P, et al. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 2008, 9(5): 485-493. |
16 | Zhao W, Chen S P, Lin G H. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology, 2008, 196(1): 85-99. |
17 | Zhang Y J, Zhu J T, Shen R N, et al. Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 2020, 44(5): 553-564. |
张扬建, 朱军涛, 沈若楠, 等. 放牧对草地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 553-564. | |
18 | Wang X Y, Cao W X, Wang X J, et al. Herbage production and forage quality responses to cutting height and fertilization of legume-grass mixtures in the Hexi region. Acta Prataculturae Sinica, 2021, 30(4): 99-110. |
王辛有, 曹文侠, 王小军, 等. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应. 草业学报, 2021, 30(4): 99-110. | |
19 | Saiz H, Bittebiere A K, Benot M L, et al. Understanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. Journal of Vegetation Science, 2016, 27(4): 759-770. |
20 | Jiang W T, Yuan G Y, Shen Y Y, et al. Effects of temperature and mixed sowing ratios on growth and interspecific competition of Onobrychis viciaefolia and Elymus nutans community. Chinese Journal of Grassland, 2021, 43(4): 22-29. |
蒋汶桃, 苑光源, 沈禹颖, 等. 温度和混播对红豆草-垂穗披碱草群体生长及种间竞争的影响. 中国草地学报, 2021, 43(4): 22-29. | |
21 | Siebenkäs A, Schumacher J, Roscher C. Resource availability alters biodiversity effects in experimental grass-forb mixtures. PLoS One, 2016, 11(6): 1-21. |
22 | Gross N, Suding K N, Lavorel S, et al. Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology, 2007, 95(6): 1296-1305. |
23 | Fargione J, Tilman D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 2005, 143(4): 598-606. |
24 | Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543): 843-845. |
25 | Li L, Tilman D, Lambers H, et al. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63-69. |
26 | Li W, Wei T H, Yongcuo-Bazan, et al. Effects of different mixed planting ratios on vegetation and soil characteristics of sown pasture in the Sanjiangyuan region. Acta Prataculturae Sinica, 2021, 30(12): 39-48. |
李文, 魏廷虎, 永措巴占, 等. 混播比例对三江源人工草地植被和土壤养分特征的影响. 草业学报, 2021, 30(12): 39-48. | |
27 | Cardinale B J, Wrigh J P, Cadotte M W, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46):18123-18128. |
28 | Li S S, Wang N X, Zheng W, et al. Comparison of transgressive overyielding effect and plant diversity of annual and perennial legume-grass mixtures. Chinese Journal of Plant Ecology, 2021, 45(1): 23-37. |
黎松松, 王宁欣, 郑伟, 等. 一年生和多年生禾豆混播草地超产与多样性效应的比较. 植物生态学报, 2021, 45(1): 23-37. | |
29 | Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861. |
30 | Chu C J, Weiner J, Maestre F T, et al. Positive interactions can increase size inequality in plant populations. Journal Ecology, 2009, 97(6): 1401-1407. |
31 | Schaub S, Finger R, Leiber F, et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nature Communications, 2020, 11(1): 768-779. |
32 | Yang C, Zhang Y X, Zhang H, et al. Recent advances in understanding the ecosystem functioning of diverse forage mixtures. Acta Prataculturae Sinica, 2022, 31(9): 206-219. |
杨策, 张玉雪, 张鹤, 等. 牧草混播生态系统功能研究进展. 草业学报, 2022, 31(9): 206-219. | |
33 | Wu X J, Yang M, Lu Y X, et al. Effects of mixing ratio and nitrogen fertilization on root characteristics in the common vetch/oat mixture. Acta Prataculturae Sinica, 2020, 29(9): 106-116. |
吴晓娟, 杨梅, 芦奕晓, 等. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响. 草业学报, 2020, 29(9): 106-116. | |
34 | Loreau M, De M C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. The American Naturalis, 2008, 172(2): 48-66. |
35 | Petersen U, Isselstein J. Nitrogen addition and harvest frequency rather than initial plant species composition determine vertical structure and light interception in grasslands. AoB Plants, 2015, 7(7): 89-102. |
[1] | 杨策, 张玉雪, 张鹤, 郑春燕, 朱峰. 牧草混播生态系统功能研究进展[J]. 草业学报, 2022, 31(9): 206-219. |
[2] | 汪精海, 李广, 银敏华, 齐广平, 康燕霞, 马彦麟. 调亏灌溉对高寒荒漠区人工混播草地土壤环境与牧草生长的影响[J]. 草业学报, 2022, 31(1): 95-106. |
[3] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[4] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[5] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[6] | 李文, 魏廷虎, 永措巴占, 才仁塔次, 周玉海, 张雁平, 李文浩, 郭卫兴. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报, 2021, 30(12): 39-48. |
[7] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[8] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[9] | 水宏伟, 干珠扎布, 吴红宝, 王子欣, 吕成文, 高清竹, 胡国铮, 严俊, 谢文栋, 王有侠. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响[J]. 草业学报, 2020, 29(10): 14-21. |
[10] | 官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响[J]. 草业学报, 2019, 28(9): 192-201. |
[11] | 伍文宪, 张蕾, 黄小琴, 杨潇湘, 薛龙海, 刘勇. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报, 2019, 28(3): 29-41. |
[12] | 周楠, 付刚, 孙维, 李少伟, 沈振西, 何永涛, 张宪洲, 王江伟. 藏北高原高寒草甸光能利用效率对短期模拟增温的响应[J]. 草业学报, 2016, 25(2): 251-257. |
[13] | 曹文侠,刘皓栋,李文,徐长林,李小龙,师尚礼. 连续两年施氮对15龄混作禾草草地的改良效果研究[J]. 草业学报, 2015, 24(9): 130-137. |
[14] | 杨政,王冬,刘玉,朱元骏,武高林. 矿区排土场人工草地土壤水分及入渗特征效应[J]. 草业学报, 2015, 24(12): 29-37. |
[15] | 王书转,郝明德,普琼,吴振海. 黄土区苜蓿人工草地群落生态与生产功能演替[J]. 草业学报, 2014, 23(6): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||