草业学报 ›› 2023, Vol. 32 ›› Issue (2): 15-25.DOI: 10.11686/cyxb2022248
收稿日期:
2022-06-07
修回日期:
2022-07-02
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
李志刚
作者简介:
E-mail: lizg001@sina.com基金资助:
Bo WANG1,2(), Ru ZHANG3, Jing LIU1,2, Zhi-gang LI1,2()
Received:
2022-06-07
Revised:
2022-07-02
Online:
2023-02-20
Published:
2022-12-01
Contact:
Zhi-gang LI
摘要:
沙化是全球干旱半干旱地区土壤退化的主要类型之一,而该地区的生态防护林、农田防护林及城市森林的林木修剪物为沙化土壤的改良提供了丰富的资源。本研究以宁夏易得的杨树枝条为材料,设置了覆盖(M)、翻埋(W)、翻埋+覆盖(WB)及无任何枝条添加的对照(CK)4种处理,测定了土壤理化性质、土壤酶活性、紫花苜蓿地上生物量及菌根侵染率等指标,并利用 Illumina Miseq高通量测序技术研究了土壤与根系丛枝菌根(AM)真菌群落结构,分析了影响AM真菌侵染率及群落结构的主要驱动因子。研究结果表明,翻埋与覆盖处理均不同程度改善了土壤性质,提高了紫花苜蓿地上生物量,但总体以WB处理效果较佳;相比CK,处理WB还显著提高了紫花苜蓿根系总侵染率、丛枝侵染率、菌丝侵染率、泡囊侵染率及土壤孢子数(P<0.05),同时亦显著提高了根系AM真菌Chao1和ACE指数,但所有林木枝条施用方式对土壤α多样性影响均不显著(P>0.05)。此外,NMDS和PERMANOVA分析结果显示,处理WB对土壤与根系AM真菌群落结构存在显著响应(P<0.05)。相关分析和dbRDA分析结果进一步表明,AM真菌的侵染状况及群落结构的改变与土壤性质及紫花苜蓿地上生物量密切相关,且紫花苜蓿地上生物量与土壤无机氮含量是影响土壤及根系AM真菌群落结构的共有主要因子。综上所述,WB由于在改善土壤理化性质和促进AM真菌侵染定殖及活性方面效果较好,所以该处理可为推广利用林木废弃物进行干旱半干旱区沙化土壤的改良恢复提供科学依据。
王博, 张茹, 刘静, 李志刚. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响[J]. 草业学报, 2023, 32(2): 15-25.
Bo WANG, Ru ZHANG, Jing LIU, Zhi-gang LI. Effects of incorporated and mulched tree branches on arbuscular mycorrhizal fungi in the desertified soil and root of alfalfa in arid areas[J]. Acta Prataculturae Sinica, 2023, 32(2): 15-25.
苜蓿生物量与土壤性质Alfalfa biomass and soil property | CK | M | W | WB |
---|---|---|---|---|
紫花苜蓿地上生物量Alfalfa biomass (g·m-2) | 227.48±28.70c | 519.88±17.94a | 363.25±11.51b | 403.42±23.54b |
土壤水分Soil water content (%) | 5.74±0.26b | 7.83±1.01ab | 5.63±0.07b | 8.57±0.98a |
酸碱度pH | 8.84±0.05a | 8.74±0.04ab | 8.68±0.07ab | 8.60±0.04b |
有机碳Soil organic carbon (g·kg-1) | 5.69±0.28b | 5.76±0.26b | 7.98±0.99a | 9.01±0.42a |
全氮Total nitrogen (g·kg-1) | 0.39±0.01b | 0.45±0.02a | 0.47±0.01a | 0.48±0.01a |
无机氮Inorganic nitrogen (mg·kg-1) | 9.66±0.36d | 15.59±0.86c | 23.25±0.86b | 26.70±1.41a |
全磷Total phosphorus (g·kg-1) | 0.021±0.005b | 0.039±0.005ab | 0.055±0.007a | 0.043±0.007a |
速效磷Available phosphorus (mg·kg-1) | 1.61±0.38b | 3.04±0.38a | 4.27±0.52a | 3.38±0.56a |
脲酶Urease (mg·g-1· h-1) | 10.75±3.19b | 14.35±1.92ab | 16.14±2.34ab | 18.60±1.56a |
碱性磷酸酶Alkaline phosphatase (μmol·g-1· h-1) | 1.57±0.23c | 2.93±0.26c | 4.41±0.46b | 7.43±0.76a |
蔗糖酶Sucrase (mg·g-1· h-1) | 0.37±0.11b | 0.55±0.08b | 1.53±0.53ab | 2.89±0.84a |
过氧化氢酶Catalase (μmol·g-1·20 min-1) | 60.85±0.32a | 60.36±0.27a | 60.26±0.61a | 59.86±0.36a |
表1 翻埋与覆盖对土壤性质及紫花苜蓿地上生物量的影响
Table 1 Effects of incorporated and mulched tree branches on soil properties and aboveground biomass of alfalfa
苜蓿生物量与土壤性质Alfalfa biomass and soil property | CK | M | W | WB |
---|---|---|---|---|
紫花苜蓿地上生物量Alfalfa biomass (g·m-2) | 227.48±28.70c | 519.88±17.94a | 363.25±11.51b | 403.42±23.54b |
土壤水分Soil water content (%) | 5.74±0.26b | 7.83±1.01ab | 5.63±0.07b | 8.57±0.98a |
酸碱度pH | 8.84±0.05a | 8.74±0.04ab | 8.68±0.07ab | 8.60±0.04b |
有机碳Soil organic carbon (g·kg-1) | 5.69±0.28b | 5.76±0.26b | 7.98±0.99a | 9.01±0.42a |
全氮Total nitrogen (g·kg-1) | 0.39±0.01b | 0.45±0.02a | 0.47±0.01a | 0.48±0.01a |
无机氮Inorganic nitrogen (mg·kg-1) | 9.66±0.36d | 15.59±0.86c | 23.25±0.86b | 26.70±1.41a |
全磷Total phosphorus (g·kg-1) | 0.021±0.005b | 0.039±0.005ab | 0.055±0.007a | 0.043±0.007a |
速效磷Available phosphorus (mg·kg-1) | 1.61±0.38b | 3.04±0.38a | 4.27±0.52a | 3.38±0.56a |
脲酶Urease (mg·g-1· h-1) | 10.75±3.19b | 14.35±1.92ab | 16.14±2.34ab | 18.60±1.56a |
碱性磷酸酶Alkaline phosphatase (μmol·g-1· h-1) | 1.57±0.23c | 2.93±0.26c | 4.41±0.46b | 7.43±0.76a |
蔗糖酶Sucrase (mg·g-1· h-1) | 0.37±0.11b | 0.55±0.08b | 1.53±0.53ab | 2.89±0.84a |
过氧化氢酶Catalase (μmol·g-1·20 min-1) | 60.85±0.32a | 60.36±0.27a | 60.26±0.61a | 59.86±0.36a |
图1 翻埋与覆盖对苜蓿根系丛枝菌根真菌侵染率和土壤孢子数的影响*、**、***表示不同处理间在0.05、0.01或0.001水平下差异显著。下同。*, ** and *** indicate that each variable was significant difference among treatments at 0.05, 0.01 or 0.001 level. The same below.
Fig.1 Effects of incorporated and mulched tree branches on arbuscular mycorrhizal fungi infection rate of alfalfa and soil spore number
材料Materials | 处理Treatment | Chao1指数Chao1 index | ACE指数ACE index | 辛普森指数Simpson | 香农指数Shannon |
---|---|---|---|---|---|
土壤Soil | CK | 519.72±119.23a | 519.94±118.80a | 0.88±0.09a | 5.52±0.93a |
M | 694.30±145.83a | 694.76±145.06a | 0.97±0.08a | 6.53±0.50a | |
W | 704.32±115.57a | 704.51±114.30a | 0.95±0.03a | 6.33±0.38a | |
WB | 534.05±102.44a | 536.20±101.53a | 0.98±0.00a | 6.55±0.31a | |
根系Root | CK | 334.33±54.89b | 335.85±54.84b | 0.85±0.07a | 4.89±0.80a |
M | 301.03±26.20b | 303.75±26.69b | 0.58±0.15a | 2.83±0.68a | |
W | 384.08±18.83ab | 387.99±20.26ab | 0.83±0.08a | 4.69±0.61a | |
WB | 528.13±85.14a | 532.65±88.48a | 0.87±0.04a | 5.04±0.72a |
表2 翻埋与覆盖对沙化土壤与根系AM真菌α多样性的影响
Table 2 Effects of incorporated and mulched tree branches on α-diversity of arbuscular mycorrhizal fungi in soils and alfalfa roots
材料Materials | 处理Treatment | Chao1指数Chao1 index | ACE指数ACE index | 辛普森指数Simpson | 香农指数Shannon |
---|---|---|---|---|---|
土壤Soil | CK | 519.72±119.23a | 519.94±118.80a | 0.88±0.09a | 5.52±0.93a |
M | 694.30±145.83a | 694.76±145.06a | 0.97±0.08a | 6.53±0.50a | |
W | 704.32±115.57a | 704.51±114.30a | 0.95±0.03a | 6.33±0.38a | |
WB | 534.05±102.44a | 536.20±101.53a | 0.98±0.00a | 6.55±0.31a | |
根系Root | CK | 334.33±54.89b | 335.85±54.84b | 0.85±0.07a | 4.89±0.80a |
M | 301.03±26.20b | 303.75±26.69b | 0.58±0.15a | 2.83±0.68a | |
W | 384.08±18.83ab | 387.99±20.26ab | 0.83±0.08a | 4.69±0.61a | |
WB | 528.13±85.14a | 532.65±88.48a | 0.87±0.04a | 5.04±0.72a |
苜蓿生物量与土壤性质 Alfalfa biomass and soil property | 土壤Soil | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|
Chao1 | ACE | Simpson | Shannon | Chao1 | ACE | Simpson | Shannon | |
苜蓿地上生物量Alfalfa biomass | 0.290 | 0.292 | 0.405 | 0.307 | 0.022 | 0.027 | -0.203 | -0.194 |
土壤水分Soil water content | -0.443 | -0.441 | 0.075 | -0.119 | 0.098 | 0.092 | -0.442 | -0.369 |
酸碱度pH | 0.006 | 0.003 | -0.150 | -0.071 | -0.215 | -0.211 | -0.193 | -0.104 |
有机碳Soil organic carbon | -0.315 | -0.315 | 0.189 | -0.016 | 0.357 | 0.351 | 0.311 | 0.216 |
全氮Total nitrogen | 0.035 | 0.041 | 0.206 | 0.191 | 0.330 | 0.331 | 0.110 | 0.035 |
无机氮Inorganic nitrogen | 0.042 | 0.044 | 0.260 | 0.228 | 0.592** | 0.592** | 0.155 | 0.202 |
全磷Total phosphorus | 0.014 | 0.015 | 0.366 | 0.217 | 0.232 | 0.232 | -0.101 | -0.069 |
速效磷Available phosphorus | 0.144 | 0.147 | 0.356 | 0.341 | 0.392 | 0.396 | -0.048 | 0.083 |
脲酶Urease | -0.241 | -0.245 | -0.138 | -0.235 | 0.199 | 0.200 | -0.087 | -0.097 |
碱性磷酸酶Alkaline phosphatase | -0.112 | -0.107 | 0.220 | 0.110 | 0.524* | 0.516* | 0.024 | 0.040 |
蔗糖酶Sucrase | 0.206 | 0.201 | 0.274 | 0.371 | 0.494* | 0.492* | 0.243 | 0.284 |
过氧化氢酶Catalase | 0.404 | 0.391 | 0.230 | 0.320 | -0.073 | -0.066 | 0.265 | 0.283 |
表3 AM真菌α多样性与苜蓿生物量及土壤因子间的相关性
Table 3 Correlation between α-diversity of AM fungi with alfalfa biomass and soil property
苜蓿生物量与土壤性质 Alfalfa biomass and soil property | 土壤Soil | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|
Chao1 | ACE | Simpson | Shannon | Chao1 | ACE | Simpson | Shannon | |
苜蓿地上生物量Alfalfa biomass | 0.290 | 0.292 | 0.405 | 0.307 | 0.022 | 0.027 | -0.203 | -0.194 |
土壤水分Soil water content | -0.443 | -0.441 | 0.075 | -0.119 | 0.098 | 0.092 | -0.442 | -0.369 |
酸碱度pH | 0.006 | 0.003 | -0.150 | -0.071 | -0.215 | -0.211 | -0.193 | -0.104 |
有机碳Soil organic carbon | -0.315 | -0.315 | 0.189 | -0.016 | 0.357 | 0.351 | 0.311 | 0.216 |
全氮Total nitrogen | 0.035 | 0.041 | 0.206 | 0.191 | 0.330 | 0.331 | 0.110 | 0.035 |
无机氮Inorganic nitrogen | 0.042 | 0.044 | 0.260 | 0.228 | 0.592** | 0.592** | 0.155 | 0.202 |
全磷Total phosphorus | 0.014 | 0.015 | 0.366 | 0.217 | 0.232 | 0.232 | -0.101 | -0.069 |
速效磷Available phosphorus | 0.144 | 0.147 | 0.356 | 0.341 | 0.392 | 0.396 | -0.048 | 0.083 |
脲酶Urease | -0.241 | -0.245 | -0.138 | -0.235 | 0.199 | 0.200 | -0.087 | -0.097 |
碱性磷酸酶Alkaline phosphatase | -0.112 | -0.107 | 0.220 | 0.110 | 0.524* | 0.516* | 0.024 | 0.040 |
蔗糖酶Sucrase | 0.206 | 0.201 | 0.274 | 0.371 | 0.494* | 0.492* | 0.243 | 0.284 |
过氧化氢酶Catalase | 0.404 | 0.391 | 0.230 | 0.320 | -0.073 | -0.066 | 0.265 | 0.283 |
图3 AM真菌群落结构在土壤(a)和根系(b)中NMDS与PERMANOVA 分析
Fig.3 NMDS and PERMANOVA analysis of arbuscular mycorrhizal fungi community structure in soil (a) and root (b)
图4 土壤(a)与紫花苜蓿根系(b)中AM真菌群落结构与因子间的冗余分析*、**表示该因子与AM真菌群落结构存在显著(P<0.05)或极显著(P<0.01)的相关关系。* and ** indicate that the factor was significantly (P<0.05) or extremely significantly (P<0.01) correlated with AM fungi community.
Fig.4 Redundancy analysis between community structure of arbuscular mycorrhizal fungi and its factors in soil (a) and root (b) respectively
1 | Wang Y, Yan X D. Climate change induced by Southern Hemisphere desertification. Physics and Chemistry of the Earth, 2017, 102: 40-47. |
2 | Zhang T T, Wang L F, Zhang D J, et al. Effect of different wheat straw return coverage on the diversity of soil microbial communities in dry farmland. Journal of Northern Agriculture, 2021, 49(1): 77-87. |
张婷婷, 王丽芳, 张德健, 等. 不同小麦秸秆还田覆盖度对旱作农田土壤微生物群落多样性的影响. 北方农业学报, 2021, 49(1): 77-87. | |
3 | Zhao D, Li Y, Feng H. Dynamics of soil water evaporation from soil mulched with sand-gravels in stripe.Acta Pedologica Sinica, 2015, 52(5): 1058-1068. |
赵丹, 李毅, 冯浩. 砂石条形覆盖下土壤水分蒸发动态研究. 土壤学报, 2015, 52(5): 1058-1068. | |
4 | Zhang W, Zhan A, Li S Q. Effects of planting density and film mulching on the integrated productivity of soybean in young apple orchard of the Loess Plateau. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1138-1150. |
章伟, 占爱, 李世清. 密度与地膜覆盖对旱塬幼龄果园中大豆综合生产力的影响. 中国生态农业学报, 2021, 29(7): 1138-1150. | |
5 | Liu Z H, Bai J F, Qin H, et al. Application of rice straw and horse manure coameliorated soil arbuscular mycorrhizal fungal community: Impacts on structure and diversity in a degraded field in Eastern China. Land Degradation & Development, 2021, 32(8): 2595-2605. |
6 | Dai G Q, Chu W D. Analysis on the status of farmland shelterbelt resources in the Three-North regions and corresponding strategies. Forest Resources Management, 2010(1): 27-32. |
戴国琴, 褚卫东. 三北地区农田防护林资源现状分析与对策. 林业资源管理, 2010(1): 27-32. | |
7 | Li Z G, Li J, Xie Y Z. Effects of surface artificial cover on water holding capacity of desertified soils in Ningxia. Scientia Silvae Sinicae, 2015, 51(5): 1-11. |
李志刚, 李健, 谢应忠. 地表人工覆盖对宁夏沙化土壤保水能力的影响. 林业科学, 2015, 51(5): 1-11. | |
8 | Li Z G, Xie Y Z. Improving desertified soil properties by incorporating and mulching tree branch in Ningxia Province. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 174-181. |
李志刚, 谢应忠. 翻埋与覆盖林木枝条改善宁夏沙化土壤性质. 农业工程学报, 2015, 31(10): 174-181. | |
9 | Li Z G, Schneide R L, Morreale S J, et al. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma, 2018, 310: 143-152. |
10 | Li Z G, Schneider R L, Morreale S J, et al. Using woody organic matter amendments to increase water availability and jump‐start soil restoration of desertified grassland soils of Ningxia, China. Land Degradation & Development, 2019, 30(11): 1313-1324. |
11 | Li Z G, Qiu K Y, Schneider R L, et al. Comparison of microbial community structures in soils with woody organic amendments and soils with traditional local organic amendments in Ningxia of Northern China. PeerJ, 2019, 7(1): e6854. |
12 | Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1(4): 48. |
13 | Bi Y L, Guo Y, Christie P. Mining subsidence area reconstruction with N2-fixing plants promotes arbuscular mycorrhizal fungal biodiversity and microbial biomass C∶N∶P stoichiometry of cyanobacterial biocrusts. Forest Ecology and Management, 2022, 503: 119763. |
14 | Requena N, Perez-Solis E, Azcón-Aguilar C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, 2001, 67(2): 495-498. |
15 | Al-Karaki G, Mcmichael B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 2004, 14(4): 263-269. |
16 | Taheri W I, Bever J D. Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Applied Soil Ecology, 2010, 45(3): 138-143. |
17 | Aguilar R, Carreon-Abud Y, Lopez-Carmona D, et al. Organic fertilizers alter the composition of pathogens and arbuscular mycorrhizal fungi in maize roots. Journal of Phytopathology, 2017, 165(7/8): 448-454. |
18 | Verbruggen E, Kiers E T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evolutionary Applications, 2010, 3(5/6): 547-560. |
19 | Alguacil M M, Torrecillas E, Garcia-Orenes F, et al. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biology and Biochemistry, 2014, 76: 34-44. |
20 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
21 | Guan S Y. Soil enzyme and its research methods. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
22 | Sheng P P, Liu R J, Li M. Methodological comparison of observation and colonization measurement of arbuscular mycorrhizal fungi. Mycosystema, 2011, 30(4): 519-525. |
盛萍萍, 刘润进, 李敏. 丛枝菌根观察与侵染率测定方法的比较. 菌物学报, 2011, 30(4): 519-525. | |
23 | Jing P C, Lv Y P, Wang S L, et al. Drip irrigation of arbuscular mycorrhizal fungal spores and their growth-promoting effects on alfalfa. Acta Prataculturae Sinica, 2017, 26(9): 121-131. |
景鹏成, 吕艳萍, 王树林, 等. 滴灌AM真菌孢子水溶液对苜蓿的促生长效应研究. 草业学报, 2017, 26(9): 121-131. | |
24 | Wang H Q, Cheng W, Hao J, et al. Seasonal dynamic changes of community of arbuscular mycorrhizal fungi (AMF) in root system and rhizosphere soil of Vetiveria zizanioides in coal gangue in Guizhou of Southwest China. Mycosystema, 2021, 40(3): 514-530. |
王化秋, 程巍, 郝俊, 等. 贵州煤矸石山香根草根系及根际土丛枝菌根真菌(AMF)群落的季节动态研究. 菌物学报, 2021, 40(3): 514-530. | |
25 | Lee J, Lee S, Young J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2008, 65(2): 339-349. |
26 | Sato K, Suyama Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 2005, 51(2): 179-181. |
27 | Zhang Z W, Tian Y W, Yang J F, et al. Arbuscular mycorrhizal fungi population diversity of rhizosphere soil and root system in potato field in central Inner Mongolia. Microbiology China, 2020, 47(3): 738-748. |
张之为, 田永伟, 杨剑峰, 等. 内蒙古中部地区马铃薯根际和根系丛枝菌根真菌类群的多样性. 微生物学通报, 2020, 47(3): 738-748. | |
28 | Feng G, Yang M Q, Bai D S, et al. Effect of inoculating with vescular-arbuscular mycorrgizal fungi on the P nutrient and growth of cotton. Acta Agriculturae Boreali-Occidentalis Sinica, 1994, 3(2): 75-80. |
冯固, 杨茂秋, 白灯莎, 等. VA菌根真菌对棉花磷素吸收及生长的效应. 西北农业学报, 1994, 3(2): 75-80. | |
29 | Li S B, Shi J J, He Y M, et al. Influence of AMF on decomposition of faba bean straw, and uptake of nutrients, cadmium and lead by maize in a cadmium-lead polluted soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 684-694. |
李胜宝, 师俊杰, 何永美, 等. 丛枝菌根真菌对蚕豆秸秆降解及玉米养分和镉铅吸收的影响. 植物营养与肥料学报, 2021, 27(4): 684-694. | |
30 | Jia Y Y, Yang W F, Du X F, et al. Effects of AM fungi inoculation and nitrogen application on rice-straw nitrogen release and wheat yield. Acta Agriculturae Jiangxi, 2020, 32(3): 8-13. |
贾艳艳, 杨文飞, 杜小凤, 等. 接种AM真菌和施氮对还田稻秆氮素释放和小麦产量的影响. 江西农业学报, 2020, 32(3): 8-13. | |
31 | Gao P, Yan F Y, Meng C, et al. Diversity of arbuscular mycorrhizal fungi under different agricultural practices in Loess Plateau in China. Pratacultural Science, 2016, 33(10): 1917-1923. |
高萍, 闫飞扬, 蒙程, 等. 黄土高原不同耕作措施下AM真菌的多样性. 草业科学, 2016, 33(10): 1917-1923. | |
32 | Yan F Y, Duan T Y, Zhang F. Effects of agricultural managements on the function of arbuscular mycorrhizal fungi. Pratacultural Science, 2014, 31(12): 2230-2241. |
闫飞扬, 段廷玉, 张峰. 农业管理措施对AM真菌功能影响的研究进展. 草业科学, 2014, 31(12): 2230-2241. | |
33 | Xiao J, Wu Y X, Yang S D, et al. Effects of straw mulching on soil fungal community structure in mulberry plantation. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2707-2713. |
肖健, 吴银秀, 杨尚东, 等. 秸秆覆盖还田对桑园土壤真菌群落结构组成的影响. 西南农业学报, 2021, 34(12): 2707-2713. | |
34 | Wang W H, Sun D D, Zheng J L, et al. Effects of arbuscular mycorrhizal fungi and plant straw on soil nutrients and plant growth. Journal of Qingdao Agricultural University (Natural Science), 2018, 35(2): 83-89. |
王维华, 孙丹丹, 郑锦龙, 等. AM真菌与作物秸秆对土壤养分和植物生长的影响. 青岛农业大学学报(自然科学版), 2018, 35(2): 83-89. | |
35 | Hu K J, Luan L, Zheng J, et al. Effects of different treatments with straw returning on arbuscular mycorrhizal fungal community and corn phosphorus utilization efficiency. Acta Pedologica Sinica, 1-12[2022-07-13].http://kns.net/kcms/detail/32.1119.P.202110910.1105.004.html. |
胡凯婕, 栾璐, 郑洁, 等. 秸秆还田方式对丛枝菌根真菌群落和玉米磷素利用的影响. 土壤学报, 1-12[2022-07-13].http://kns.net/kcms/detail/32.1119.P.202110910.1105.004.html. | |
36 | Ma K, Song L L, Wang M G, et al. Effects of maize straw returning on arbuscular mycorrhizal fungal community structure in soil. Chinese Journal of Applied Ecology, 2019, 30(8): 2746-2756. |
马琨, 宋丽丽, 王明国, 等. 玉米秸秆还田对土壤丛枝菌根真菌群落的影响. 应用生态学报, 2019, 30(8): 2746-2756. | |
37 | Li X J, Xu T L, Chen B D, et al. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystems. Chinese Journal of Ecology, 2017, 36(10): 2734-2743. |
李雪静, 徐天乐, 陈保冬, 等. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36(10): 2734-2743. | |
38 | Bi Y, Qiu L, Zhakypbek Y, et al. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China. Agricultural Water Management, 2018, 201: 278-286. |
39 | Recorbet G, Calabrese S, Balliau T, et al. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genetics and Biology, 2021, 147: 103517. |
40 | Shu X Y, He J, Zhou Z H, et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Science of the Total Environment, 2022, 829: 154627. |
[1] | 朱湾湾, 王攀, 樊瑾, 牛玉斌, 余海龙, 黄菊莹. 降水量及N添加对宁夏荒漠草原土壤C∶N∶P生态化学计量特征和植被群落组成的影响[J]. 草业学报, 2019, 28(9): 33-44. |
[2] | 宋丹丹,何丙辉,罗松平,吴耀鹏. 黑麦草和生物炭对喀斯特地区黄壤养分影响研究[J]. 草业学报, 2018, 27(4): 195-201. |
[3] | 袁耀, 郭建斌, 尹诗萌, 牟夏. 自制环保型土壤改良剂对一年生黑麦草生长的作用[J]. 草业学报, 2015, 24(10): 206-213. |
[4] | 赵冬青,吴建平,段淇斌. 生物发酵床养猪效能和猪肉营养成分影响研究[J]. 草业学报, 2012, 21(2): 212-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||