草业学报 ›› 2023, Vol. 32 ›› Issue (8): 115-128.DOI: 10.11686/cyxb2022451
• 研究论文 • 上一篇
康燕霞(), 姜渊博, 齐广平(), 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞
收稿日期:
2022-11-14
修回日期:
2023-01-04
出版日期:
2023-08-20
发布日期:
2023-06-16
通讯作者:
齐广平
作者简介:
E-mail: qigp@gsau.edu.cn基金资助:
Yan-xia KANG(), Yuan-bo JIANG, Guang-ping QI(), Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Zhong-xia TANG, Ai-xia WANG
Received:
2022-11-14
Revised:
2023-01-04
Online:
2023-08-20
Published:
2023-06-16
Contact:
Guang-ping QI
摘要:
提升人工草地生产力对缓解天然草原压力、维持牧草供需平衡及推动畜牧业健康发展具有重要作用。本研究对比分析了3种种植模式[无芒雀麦单播(B)、红豆草单播(O)和红豆草与无芒雀麦混播(M)]和4种水分调控[充分灌水(W0):75%~85% θFC、轻度亏水(W1):65%~75% θFC、中度亏水(W2):55%~65% θFC和重度亏水(W3):45%~55% θFC,θFC为田间持水量]对草地蒸散耗水、产量品质和水分利用的影响,并采用熵权灰色关联耦合与熵权-TOPSIS模型对各处理进行综合评价。结果表明:1)草地蒸散量表现为第1茬>第2茬>第3茬,且随亏水程度加剧而降低。M的平均总蒸散量较O减小2.20%,较B增加6.21%。2)随亏水程度加剧,牧草产量逐渐下降,其中W1与W0无显著差异。M较O和B的总产量分别平均提升16.88%和103.32%。4种水分调控下M的土地当量比为1.38~1.65,且M中红豆草的产量占比随亏水程度加剧呈下降趋势。3)轻度亏水可提升牧草品质和水分利用效率。M的平均粗蛋白含量较B增加21.95%,平均酸性和中性洗涤纤维含量较O分别减小1.40%和3.64%,平均水分利用效率、灌溉水利用效率和粗蛋白水分利用效率分别较B和O增加91.17%和19.07%、83.17%和24.47%、137.31%和11.39%。模型评价得出,红豆草与无芒雀麦混播结合轻度亏水(65%~75% θFC)的综合生产效果最优,是甘肃河西走廊及类似生态区人工草地适宜的种植管理模式。
康燕霞, 姜渊博, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞. 红豆草与无芒雀麦混播草地生产力提升的水分调控模式研究[J]. 草业学报, 2023, 32(8): 115-128.
Yan-xia KANG, Yuan-bo JIANG, Guang-ping QI, Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Zhong-xia TANG, Ai-xia WANG. Effects of Onobrychis viciifolia and Bromus inermis grass mixture sowing and deficit irrigation on grassland water use and production performance[J]. Acta Prataculturae Sinica, 2023, 32(8): 115-128.
处理Treatment | 水分调控Water treatment (θFC) | 种植模式Cropping pattern |
---|---|---|
W0B | 充分灌水Adequate irrigation (W0), 75%~85% | 无芒雀麦单播 B. inermis monocropping (B) |
W1B | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2B | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3B | 重度亏水Severe water deficit (W3), 45%~55% | |
W0O | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草单播 Sainfoin monocropping (O) |
W1O | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2O | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3O | 重度亏水Severe water deficit (W3), 45%~55% | |
W0M | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草与无芒雀麦混播 Sainfoin mixed with B. inermis (M) |
W1M | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2M | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3M | 重度亏水Severe water deficit (W3), 45%~55% |
表1 试验设计
Table 1 Experimental design
处理Treatment | 水分调控Water treatment (θFC) | 种植模式Cropping pattern |
---|---|---|
W0B | 充分灌水Adequate irrigation (W0), 75%~85% | 无芒雀麦单播 B. inermis monocropping (B) |
W1B | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2B | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3B | 重度亏水Severe water deficit (W3), 45%~55% | |
W0O | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草单播 Sainfoin monocropping (O) |
W1O | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2O | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3O | 重度亏水Severe water deficit (W3), 45%~55% | |
W0M | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草与无芒雀麦混播 Sainfoin mixed with B. inermis (M) |
W1M | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2M | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3M | 重度亏水Severe water deficit (W3), 45%~55% |
种植模式 PM | 水分调控 WT | 第1茬The first cut | 第2茬The second cut | 第3茬The third cut | 总灌水量 TI | 总蒸散量 TET | |||
---|---|---|---|---|---|---|---|---|---|
灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | ||||
B | W0 | 221.06Ca | 231.12Ca | 178.21Aa | 225.44Ca | 180.22Ba | 213.74Ba | 579.49Ca | 670.30Ca |
W1 | 172.35Bb | 198.47Bb | 114.58Cb | 185.26Bb | 165.91Bb | 188.06Ab | 452.84Cb | 571.79Cb | |
W2 | 147.82Ac | 182.35Ac | 98.27Bc | 158.02Bc | 135.02Cc | 170.32Bc | 381.11Cc | 510.69Bc | |
W3 | 112.36Bd | 159.24Ad | 86.34Bc | 147.61Ad | 102.99Bd | 144.36Bd | 301.69Bd | 451.21Bd | |
O | W0 | 252.17Aa | 267.23Aa | 187.25Aa | 255.60Aa | 202.37Aa | 223.05Aa | 641.79Aa | 745.88Aa |
W1 | 185.20Ab | 240.02Ab | 168.33Ab | 208.14Ab | 186.12Ab | 190.80Ab | 539.65Ab | 638.96Ab | |
W2 | 151.26Ac | 182.72Ac | 137.41Ac | 178.37Ac | 178.40Ab | 185.37Ab | 467.07Ac | 546.46Ac | |
W3 | 112.03Bd | 162.49Ad | 118.02Ad | 149.01Ad | 125.60Ac | 150.66Bc | 355.65Ad | 462.16ABd | |
M | W0 | 235.67Ba | 249.08Ba | 179.55Aa | 237.62Ba | 196.44Aa | 218.05ABa | 611.66Ba | 704.75Ba |
W1 | 181.20ABb | 237.11Ab | 145.37Bb | 202.25Ab | 175.19ABb | 184.43Ab | 501.76Bb | 623.79Bb | |
W2 | 156.80Ac | 188.09Ac | 112.50Cc | 178.22Ac | 160.24Bc | 172.04Bc | 429.54Bc | 538.35Ac | |
W3 | 126.01Ad | 160.33Ad | 93.57Bd | 152.37Ad | 121.38Ad | 161.33Ac | 340.96Ad | 474.03Ad | |
水分调控WT | 706.19** | 1145.89** | 268.61** | 715.62** | 306.03** | 288.06** | 686.67** | 1846.94** | |
种植模式PM | 16.72** | 110.16** | 78.43** | 59.35** | 71.55** | 8.92** | 87.41** | 132.92** | |
WT×PM | 5.82** | 33.89** | 6.69** | 7.50** | 3.19* | 4.36** | 1.27ns | 14.13** |
表2 水分调控与种植模式对草地灌水量与蒸散量的影响
Table 2 Effect of deficit irrigation and cropping pattern on irrigation water and evapotranspiration in grassland (mm)
种植模式 PM | 水分调控 WT | 第1茬The first cut | 第2茬The second cut | 第3茬The third cut | 总灌水量 TI | 总蒸散量 TET | |||
---|---|---|---|---|---|---|---|---|---|
灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | ||||
B | W0 | 221.06Ca | 231.12Ca | 178.21Aa | 225.44Ca | 180.22Ba | 213.74Ba | 579.49Ca | 670.30Ca |
W1 | 172.35Bb | 198.47Bb | 114.58Cb | 185.26Bb | 165.91Bb | 188.06Ab | 452.84Cb | 571.79Cb | |
W2 | 147.82Ac | 182.35Ac | 98.27Bc | 158.02Bc | 135.02Cc | 170.32Bc | 381.11Cc | 510.69Bc | |
W3 | 112.36Bd | 159.24Ad | 86.34Bc | 147.61Ad | 102.99Bd | 144.36Bd | 301.69Bd | 451.21Bd | |
O | W0 | 252.17Aa | 267.23Aa | 187.25Aa | 255.60Aa | 202.37Aa | 223.05Aa | 641.79Aa | 745.88Aa |
W1 | 185.20Ab | 240.02Ab | 168.33Ab | 208.14Ab | 186.12Ab | 190.80Ab | 539.65Ab | 638.96Ab | |
W2 | 151.26Ac | 182.72Ac | 137.41Ac | 178.37Ac | 178.40Ab | 185.37Ab | 467.07Ac | 546.46Ac | |
W3 | 112.03Bd | 162.49Ad | 118.02Ad | 149.01Ad | 125.60Ac | 150.66Bc | 355.65Ad | 462.16ABd | |
M | W0 | 235.67Ba | 249.08Ba | 179.55Aa | 237.62Ba | 196.44Aa | 218.05ABa | 611.66Ba | 704.75Ba |
W1 | 181.20ABb | 237.11Ab | 145.37Bb | 202.25Ab | 175.19ABb | 184.43Ab | 501.76Bb | 623.79Bb | |
W2 | 156.80Ac | 188.09Ac | 112.50Cc | 178.22Ac | 160.24Bc | 172.04Bc | 429.54Bc | 538.35Ac | |
W3 | 126.01Ad | 160.33Ad | 93.57Bd | 152.37Ad | 121.38Ad | 161.33Ac | 340.96Ad | 474.03Ad | |
水分调控WT | 706.19** | 1145.89** | 268.61** | 715.62** | 306.03** | 288.06** | 686.67** | 1846.94** | |
种植模式PM | 16.72** | 110.16** | 78.43** | 59.35** | 71.55** | 8.92** | 87.41** | 132.92** | |
WT×PM | 5.82** | 33.89** | 6.69** | 7.50** | 3.19* | 4.36** | 1.27ns | 14.13** |
图2 水分调控与种植模式对牧草产量的影响不同小写字母表示差异显著(P<0.05)。下同。*表示差异显著(P<0.05),**表示差异极显著(P<0.01),ns表示差异不显著。PM为种植模式,WT为水分调控,WT×PM为两者交互效应。 Different lowercase letters indicate significant differences (P<0.05). The same below. * indicates significant differences (P<0.05), ** indicates highly significant differences (P<0.01), ns indicates non-significant differences. PM is the planting pattern; WT is the water treatment; WT×PM is the interaction effect of water treatment and planting pattern.
Fig.2 Effects of deficit irrigation and cropping patterns on forage yield
图3 水分调控对红豆草与无芒雀麦混播牧草中豆禾产量占比及土地当量比的影响
Fig.3 Effect of deficit irrigation on the yield shares and land equivalent ratio of legume-grass forage in the mixed sainfoin and B. inermis grasses
茬次 Cut | 水分调控 WT | 粗蛋白含量CP content | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 9.60Bd | 13.72Ab | 13.02Ac | 37.75Ba | 40.85Aa | 38.20Ba | 53.65Ba | 57.73Aa | 54.26Ba |
W1 | 10.27Bc | 14.96Aa | 14.46Aa | 37.28Aa | 37.59Ab | 36.94Aa | 51.82Bb | 55.30Abc | 51.38Bb | |
W2 | 10.86Cb | 14.57Aa | 13.91Bab | 36.02Bb | 38.24Ab | 37.85Aa | 50.42Cc | 56.61Aab | 52.41Bb | |
W3 | 11.66Ca | 15.33Aa | 13.31Bbc | 33.10Bc | 37.66Ab | 38.01Aa | 48.33Bd | 53.97Ac | 52.89Aab | |
WT | 29.67** | 29.15** | 34.02** | |||||||
PM | 511.88** | 53.80** | 129.79** | |||||||
WT×PM | 8.85** | 13.47** | 7.44** | |||||||
第2茬 The second cut | W0 | 10.30Bc | 14.19Ac | 13.85Ab | 36.79Ba | 38.29Aa | 37.76ABa | 52.78Ba | 55.25Aa | 53.06Ba |
W1 | 12.21Bb | 14.98Ab | 15.02Aa | 35.55Aab | 36.15Ab | 36.03Ab | 50.44Ab | 48.81Ab | 49.60Ab | |
W2 | 12.96Ca | 15.46Aab | 14.77Ba | 34.31Bbc | 37.44Aab | 36.68Ab | 50.79Ab | 49.62Ab | 50.24Ab | |
W3 | 13.21Ca | 16.21Aa | 14.20Bab | 33.38Bc | 36.46Ab | 36.81Ab | 49.01Ac | 49.50Ab | 50.66Ab | |
WT | 43.00** | 16.29** | 64.76** | |||||||
PM | 223.37** | 33.80** | ns | |||||||
WT×PM | 8.96** | 3.95** | 6.77** | |||||||
第3茬 The third cut | W0 | 11.44Bc | 14.39Ab | 14.27Aa | 33.73Ba | 37.41Aa | 36.92Aa | 51.29Ba | 54.01Aa | 51.57Ba |
W1 | 11.39Bc | 15.55Aa | 15.11Aa | 31.84Cb | 35.62Ac | 34.46Bc | 48.19Cb | 52.91Ab | 48.90Bc | |
W2 | 12.67Cb | 15.79Aa | 14.76Ba | 27.86Bc | 36.33Ab | 35.81Ab | 48.72Cb | 52.99Ab | 49.69Bbc | |
W3 | 13.42Ba | 16.01Aa | 14.05Ba | 27.16Bc | 35.97Abc | 36.27Aab | 47.30Cc | 51.09Ac | 49.93Bb | |
WT | 13.98** | 38.71** | 87.57** | |||||||
PM | 193.46** | 351.06** | 303.81** | |||||||
WT×PM | 8.29** | 23.76** | 10.55** |
表3 水分调控与种植模式对牧草品质的影响
Table 3 Effect of deficit irrigation and cropping pattern on forage quality (%)
茬次 Cut | 水分调控 WT | 粗蛋白含量CP content | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 9.60Bd | 13.72Ab | 13.02Ac | 37.75Ba | 40.85Aa | 38.20Ba | 53.65Ba | 57.73Aa | 54.26Ba |
W1 | 10.27Bc | 14.96Aa | 14.46Aa | 37.28Aa | 37.59Ab | 36.94Aa | 51.82Bb | 55.30Abc | 51.38Bb | |
W2 | 10.86Cb | 14.57Aa | 13.91Bab | 36.02Bb | 38.24Ab | 37.85Aa | 50.42Cc | 56.61Aab | 52.41Bb | |
W3 | 11.66Ca | 15.33Aa | 13.31Bbc | 33.10Bc | 37.66Ab | 38.01Aa | 48.33Bd | 53.97Ac | 52.89Aab | |
WT | 29.67** | 29.15** | 34.02** | |||||||
PM | 511.88** | 53.80** | 129.79** | |||||||
WT×PM | 8.85** | 13.47** | 7.44** | |||||||
第2茬 The second cut | W0 | 10.30Bc | 14.19Ac | 13.85Ab | 36.79Ba | 38.29Aa | 37.76ABa | 52.78Ba | 55.25Aa | 53.06Ba |
W1 | 12.21Bb | 14.98Ab | 15.02Aa | 35.55Aab | 36.15Ab | 36.03Ab | 50.44Ab | 48.81Ab | 49.60Ab | |
W2 | 12.96Ca | 15.46Aab | 14.77Ba | 34.31Bbc | 37.44Aab | 36.68Ab | 50.79Ab | 49.62Ab | 50.24Ab | |
W3 | 13.21Ca | 16.21Aa | 14.20Bab | 33.38Bc | 36.46Ab | 36.81Ab | 49.01Ac | 49.50Ab | 50.66Ab | |
WT | 43.00** | 16.29** | 64.76** | |||||||
PM | 223.37** | 33.80** | ns | |||||||
WT×PM | 8.96** | 3.95** | 6.77** | |||||||
第3茬 The third cut | W0 | 11.44Bc | 14.39Ab | 14.27Aa | 33.73Ba | 37.41Aa | 36.92Aa | 51.29Ba | 54.01Aa | 51.57Ba |
W1 | 11.39Bc | 15.55Aa | 15.11Aa | 31.84Cb | 35.62Ac | 34.46Bc | 48.19Cb | 52.91Ab | 48.90Bc | |
W2 | 12.67Cb | 15.79Aa | 14.76Ba | 27.86Bc | 36.33Ab | 35.81Ab | 48.72Cb | 52.99Ab | 49.69Bbc | |
W3 | 13.42Ba | 16.01Aa | 14.05Ba | 27.16Bc | 35.97Abc | 36.27Aab | 47.30Cc | 51.09Ac | 49.93Bb | |
WT | 13.98** | 38.71** | 87.57** | |||||||
PM | 193.46** | 351.06** | 303.81** | |||||||
WT×PM | 8.29** | 23.76** | 10.55** |
茬次 Cut | 水分调控 WT | 水分利用效率WUE | 灌溉水分利用效率IWUE | 粗蛋白水分利用效率CPWUE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 1.70Ca | 2.22Bb | 3.01Aab | 1.78Cc | 2.36Bc | 3.18Aa | 0.16Cb | 0.31Bb | 0.39Ab |
W1 | 1.92Ca | 2.36Bab | 3.07Aab | 2.21Cb | 3.06Bab | 4.02Aa | 0.20Ca | 0.35Ba | 0.44Aa | |
W2 | 1.90Ca | 2.45Ba | 3.17Aa | 2.35Cb | 2.96Bb | 3.80Ab | 0.21Ca | 0.36Ba | 0.44Aa | |
W3 | 1.89Ca | 2.25Bab | 2.90Ab | 2.68Ca | 3.26Ba | 3.69Ab | 0.22Ca | 0.34Ba | 0.39Ab | |
第2茬 The second cut | W0 | 1.10Ca | 1.92Bb | 2.19Ab | 1.40Cb | 2.63Bb | 2.90Ac | 0.11Cb | 0.27Bc | 0.30Ab |
W1 | 1.27Ca | 2.23Ba | 2.50Aa | 2.05Ca | 2.76Bab | 3.48Ab | 0.15Ca | 0.33Bb | 0.38Aa | |
W2 | 1.23Ca | 2.19Ba | 2.62Aa | 1.97Ca | 2.84Bab | 4.15Aa | 0.16Ca | 0.34Bb | 0.39Aa | |
W3 | 1.07Ba | 2.33Aa | 2.52Aa | 1.82Ca | 2.94Ba | 4.10Aa | 0.14Bb | 0.38Aa | 0.36Aa | |
第3茬 The third cut | W0 | 0.99Ca | 1.92Bb | 2.15Aa | 1.17Ca | 2.12Bb | 2.39Ab | 0.11Ca | 0.28Bb | 0.31Ab |
W1 | 1.04Ba | 2.16Aa | 2.37Aa | 1.18Ca | 2.22Bb | 2.50Ab | 0.12Ba | 0.34Aa | 0.36Aa | |
W2 | 0.96Ca | 1.84Bb | 2.19Aa | 1.21Ca | 1.91Bc | 2.35Ab | 0.12Ca | 0.29Bb | 0.32Ab | |
W3 | 1.00Ba | 2.14Aa | 2.13Aa | 1.40Ba | 2.56Aa | 2.84Aa | 0.13Ca | 0.34Aa | 0.30Bb | |
平均值 Average | W0 | 1.27Cb | 2.03Bb | 2.47Ab | 1.45Cb | 2.37Bc | 2.82Ac | 0.13Cb | 0.28Bc | 0.33Ab |
W1 | 1.42Ca | 2.26Ba | 2.68Aa | 1.81Ca | 2.68Bb | 3.33Ab | 0.16Ca | 0.34Bab | 0.39Aa | |
W2 | 1.38Cab | 2.16Bab | 2.67Aa | 1.84Ca | 2.57Bb | 3.43Aab | 0.16Ca | 0.33Bb | 0.38Aa | |
W3 | 1.33Cab | 2.24Ba | 2.52Ab | 1.97Ca | 2.92Ba | 3.54Aa | 0.17Ba | 0.35Aa | 0.35Ab | |
WT | 14.20** | 73.01** | 42.66** | |||||||
PM | 1077.37** | 894.41** | 1526.24** | |||||||
WT×PM | 1.94ns | 3.13* | 8.38** |
表4 水分调控与种植模式对牧草水分利用的影响
Table 4 Effect of deficit irrigation and cropping pattern on water use of forage (kg·m-3)
茬次 Cut | 水分调控 WT | 水分利用效率WUE | 灌溉水分利用效率IWUE | 粗蛋白水分利用效率CPWUE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 1.70Ca | 2.22Bb | 3.01Aab | 1.78Cc | 2.36Bc | 3.18Aa | 0.16Cb | 0.31Bb | 0.39Ab |
W1 | 1.92Ca | 2.36Bab | 3.07Aab | 2.21Cb | 3.06Bab | 4.02Aa | 0.20Ca | 0.35Ba | 0.44Aa | |
W2 | 1.90Ca | 2.45Ba | 3.17Aa | 2.35Cb | 2.96Bb | 3.80Ab | 0.21Ca | 0.36Ba | 0.44Aa | |
W3 | 1.89Ca | 2.25Bab | 2.90Ab | 2.68Ca | 3.26Ba | 3.69Ab | 0.22Ca | 0.34Ba | 0.39Ab | |
第2茬 The second cut | W0 | 1.10Ca | 1.92Bb | 2.19Ab | 1.40Cb | 2.63Bb | 2.90Ac | 0.11Cb | 0.27Bc | 0.30Ab |
W1 | 1.27Ca | 2.23Ba | 2.50Aa | 2.05Ca | 2.76Bab | 3.48Ab | 0.15Ca | 0.33Bb | 0.38Aa | |
W2 | 1.23Ca | 2.19Ba | 2.62Aa | 1.97Ca | 2.84Bab | 4.15Aa | 0.16Ca | 0.34Bb | 0.39Aa | |
W3 | 1.07Ba | 2.33Aa | 2.52Aa | 1.82Ca | 2.94Ba | 4.10Aa | 0.14Bb | 0.38Aa | 0.36Aa | |
第3茬 The third cut | W0 | 0.99Ca | 1.92Bb | 2.15Aa | 1.17Ca | 2.12Bb | 2.39Ab | 0.11Ca | 0.28Bb | 0.31Ab |
W1 | 1.04Ba | 2.16Aa | 2.37Aa | 1.18Ca | 2.22Bb | 2.50Ab | 0.12Ba | 0.34Aa | 0.36Aa | |
W2 | 0.96Ca | 1.84Bb | 2.19Aa | 1.21Ca | 1.91Bc | 2.35Ab | 0.12Ca | 0.29Bb | 0.32Ab | |
W3 | 1.00Ba | 2.14Aa | 2.13Aa | 1.40Ba | 2.56Aa | 2.84Aa | 0.13Ca | 0.34Aa | 0.30Bb | |
平均值 Average | W0 | 1.27Cb | 2.03Bb | 2.47Ab | 1.45Cb | 2.37Bc | 2.82Ac | 0.13Cb | 0.28Bc | 0.33Ab |
W1 | 1.42Ca | 2.26Ba | 2.68Aa | 1.81Ca | 2.68Bb | 3.33Ab | 0.16Ca | 0.34Bab | 0.39Aa | |
W2 | 1.38Cab | 2.16Bab | 2.67Aa | 1.84Ca | 2.57Bb | 3.43Aab | 0.16Ca | 0.33Bb | 0.38Aa | |
W3 | 1.33Cab | 2.24Ba | 2.52Ab | 1.97Ca | 2.92Ba | 3.54Aa | 0.17Ba | 0.35Aa | 0.35Ab | |
WT | 14.20** | 73.01** | 42.66** | |||||||
PM | 1077.37** | 894.41** | 1526.24** | |||||||
WT×PM | 1.94ns | 3.13* | 8.38** |
图5 3种种植模式下牧草各指标间相关性分析椭圆形状代表相关性绝对值大小,越扁则相关性绝对值越大。The oval shape represents the absolute value of the correlation, the flatter the shape means the absolute value of the correlation is larger. * P≤0.05,** P≤0.01.
Fig.5 Correlation analysis of forage indexes under three cropping patterns
种植模式PM | 水分调控 WT | 蒸散量 ET | 产量 Yield | 粗蛋白含量 CP content | 水分利用 效率 WUE | 灌溉水分 利用效率 IWUE | 粗蛋白水分 利用效率 CPWUE | 酸性洗涤 纤维含量 ADF content | 中性洗涤 纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|---|
B | W0 | 0.2565 | 0.2214 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3613 | 0.4148 |
W1 | 0.5908 | 0.1844 | 0.1556 | 0.1038 | 0.1577 | 0.1019 | 0.5183 | 0.7396 | |
W2 | 0.7982 | 0.0898 | 0.3167 | 0.0749 | 0.1850 | 0.1229 | 0.8011 | 0.7624 | |
W3 | 1.0000 | 0.0000 | 0.4278 | 0.0435 | 0.2583 | 0.1330 | 1.0000 | 1.0000 | |
O | W0 | 0.0000 | 0.8033 | 0.6759 | 0.5380 | 0.4379 | 0.5890 | 0.0000 | 0.0000 |
W1 | 0.3629 | 0.7405 | 0.8722 | 0.7002 | 0.5932 | 0.8032 | 0.3141 | 0.4456 | |
W2 | 0.6768 | 0.5070 | 0.8926 | 0.6270 | 0.5180 | 0.7543 | 0.1977 | 0.3477 | |
W3 | 0.9628 | 0.3800 | 1.0000 | 0.6842 | 0.7079 | 0.8543 | 0.2814 | 0.5557 | |
M | W0 | 0.1396 | 1.0000 | 0.6037 | 0.8475 | 0.6757 | 0.7754 | 0.1597 | 0.3624 |
W1 | 0.4143 | 0.9421 | 0.8167 | 1.0000 | 0.9182 | 1.0000 | 0.3979 | 0.7651 | |
W2 | 0.7043 | 0.7370 | 0.7463 | 0.9949 | 0.9272 | 0.9646 | 0.2710 | 0.6550 | |
W3 | 0.9226 | 0.5200 | 0.6296 | 0.8831 | 1.0000 | 0.8283 | 0.2382 | 0.6040 |
表5 不同水分调控与种植模式下牧草各指标归一化后的值
Table 5 Normalized values of each index of forage grass under different deficit irrigation treatment and cropping patterns
种植模式PM | 水分调控 WT | 蒸散量 ET | 产量 Yield | 粗蛋白含量 CP content | 水分利用 效率 WUE | 灌溉水分 利用效率 IWUE | 粗蛋白水分 利用效率 CPWUE | 酸性洗涤 纤维含量 ADF content | 中性洗涤 纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|---|
B | W0 | 0.2565 | 0.2214 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3613 | 0.4148 |
W1 | 0.5908 | 0.1844 | 0.1556 | 0.1038 | 0.1577 | 0.1019 | 0.5183 | 0.7396 | |
W2 | 0.7982 | 0.0898 | 0.3167 | 0.0749 | 0.1850 | 0.1229 | 0.8011 | 0.7624 | |
W3 | 1.0000 | 0.0000 | 0.4278 | 0.0435 | 0.2583 | 0.1330 | 1.0000 | 1.0000 | |
O | W0 | 0.0000 | 0.8033 | 0.6759 | 0.5380 | 0.4379 | 0.5890 | 0.0000 | 0.0000 |
W1 | 0.3629 | 0.7405 | 0.8722 | 0.7002 | 0.5932 | 0.8032 | 0.3141 | 0.4456 | |
W2 | 0.6768 | 0.5070 | 0.8926 | 0.6270 | 0.5180 | 0.7543 | 0.1977 | 0.3477 | |
W3 | 0.9628 | 0.3800 | 1.0000 | 0.6842 | 0.7079 | 0.8543 | 0.2814 | 0.5557 | |
M | W0 | 0.1396 | 1.0000 | 0.6037 | 0.8475 | 0.6757 | 0.7754 | 0.1597 | 0.3624 |
W1 | 0.4143 | 0.9421 | 0.8167 | 1.0000 | 0.9182 | 1.0000 | 0.3979 | 0.7651 | |
W2 | 0.7043 | 0.7370 | 0.7463 | 0.9949 | 0.9272 | 0.9646 | 0.2710 | 0.6550 | |
W3 | 0.9226 | 0.5200 | 0.6296 | 0.8831 | 1.0000 | 0.8283 | 0.2382 | 0.6040 |
项目 Parameter | 蒸散量 ET | 产量 Yield | 粗蛋白 含量 CP content | 水分利用效率 WUE | 灌溉水分 利用效率IWUE | 粗蛋白水分 利用效率CPWUE | 酸性洗涤纤维含量 ADF content | 中性洗涤纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|
信息熵值Information entropy value (Ej ) | 0.9187 | 0.8998 | 0.9309 | 0.8742 | 0.9112 | 0.8940 | 0.8998 | 0.9443 |
信息效用值Information utility value (Dj ) | 0.0813 | 0.1002 | 0.0691 | 0.1258 | 0.0888 | 0.1060 | 0.1002 | 0.0557 |
权重Weight coefficient (Wj, %) | 11.185 | 13.782 | 9.510 | 17.294 | 12.213 | 14.575 | 13.778 | 7.663 |
表6 基于熵权法的牧草各指标权重
Table 6 Weights of each index of forage grass based on entropy-weighted method
项目 Parameter | 蒸散量 ET | 产量 Yield | 粗蛋白 含量 CP content | 水分利用效率 WUE | 灌溉水分 利用效率IWUE | 粗蛋白水分 利用效率CPWUE | 酸性洗涤纤维含量 ADF content | 中性洗涤纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|
信息熵值Information entropy value (Ej ) | 0.9187 | 0.8998 | 0.9309 | 0.8742 | 0.9112 | 0.8940 | 0.8998 | 0.9443 |
信息效用值Information utility value (Dj ) | 0.0813 | 0.1002 | 0.0691 | 0.1258 | 0.0888 | 0.1060 | 0.1002 | 0.0557 |
权重Weight coefficient (Wj, %) | 11.185 | 13.782 | 9.510 | 17.294 | 12.213 | 14.575 | 13.778 | 7.663 |
图6 不同水分调控与种植模式下各处理牧草综合评价得分1,2分别代表得分排名为第一和第二的处理。1, 2 represent the treatment with the first and second ranking score respectively.
Fig.6 Overall evaluation score of forage grass for each treatment under different deficit irrigation treatments and cropping patterns
1 | He M, Pan Y H, Zhou G Y, et al. Grazing and global change factors differentially affect biodiversity-ecosystem functioning relationships in grassland ecosystems. Global Change Biology, 2022, 28(18): 5492-5504. |
2 | Zhou W, Gang C C, Zhou L, et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica, 2014, 55(2): 86-96. |
3 | Yang C, Zhang Y X, Zhang H, et al. Recent advances in understanding the ecosystem functioning of diverse forage mixtures. Acta Prataculturae Sinica, 2022, 31(9): 206-219. |
杨策, 张玉雪, 张鹤, 等. 牧草混播生态系统功能研究进展. 草业学报, 2022, 31(9): 206-219. | |
4 | Luscher A, Mueller-Harvey I, Soussana J F, et al. Potential of legume-based grassland-livestock systems in Europe: a review. Grass and Forage Science, 2014, 69(2): 206-228. |
5 | Sturludottir E, Brophy C, Belanger G, et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass and Forage Science, 2014, 69(2): 229-240. |
6 | Lorentzen S, Roscher C, Schumacher J, et al. Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10(2): 73-87. |
7 | Feng T X, De K J, Xiang X M, et al. Effects of different mixtures and proportions of Avena sativa and pea on forage yield and quality in alpine cold region. Acta Agrestia Sinica, 2022, 30(2): 487-494. |
冯廷旭, 德科加, 向雪梅, 等. 高寒地区燕麦与豌豆不同混播组合和比例对饲草产量及品质的影响. 草地学报, 2022, 30(2): 487-494. | |
8 | Papadopoulos Y A, McElroy M S, Fillmore S A E, et al. Sward complexity and grass species composition affect the performance of grass-white clover pasture mixtures. Canadian Journal of Plant Science, 2012, 92: 1199-1205. |
9 | Liu Q Y, Yun L, Chen Y F, et al. The dynamic analysis of forage yield and interspecific competition in alfalfa-grass mixed pasture. Acta Prataculturae Sinica, 2022, 31(3): 181-191. |
刘启宇, 云岚, 陈逸凡, 等. 苜蓿——禾草混播草地牧草产量及种间竞争关系的动态研究. 草业学报, 2022, 31(3): 181-191. | |
10 | Wang X Y, Cao W X, Wang X J, et al. Herbage production and forage quality responses to cutting height and fertilization of legume-grass mixtures in the Hexi region. Acta Prataculturae Sinica, 2021, 30(4): 99-110. |
王辛有, 曹文侠, 王小军, 等. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应. 草业学报, 2021, 30(4): 99-110. | |
11 | Li A, Wu Y Z, Tai X S, et al. Effects of planting legume-grass mixtures on soil salinity and nutrients in irrigated areas along the Yellow River in Gansu Province. Acta Agrestia Sinica, 2021, 29(4): 664-670. |
李昂, 吴应珍, 台喜生, 等. 甘肃沿黄灌区种植豆禾混播牧草对土壤盐分和养分的影响. 草地学报, 2021, 29(4): 664-670. | |
12 | Schneider J R, Caverzan A, Chavarria G. Water deficit stress, ROS involvement, and plant performance. Archives of Agronomy and Soil Science, 2019, 65(8): 1160-1181. |
13 | Yang H, Du T S, Qiu R J, et al. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 2018, 179: 193-204. |
14 | Costa J M, Ortuo M F, Chaves M M. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology, 2007, 49(10): 1421-1434. |
15 | Lu J Y, Xiong J B, Zhang H S, et al. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
陆姣云, 熊军波, 张鹤山, 等. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133. | |
16 | Zhang J G, Tian F P, Miao H T, et al. Expressions of morphological and physiological features of 4 forage species under water stress and re-watering process. Arid Zone Research, 2020, 37(1): 193-201. |
张静鸽, 田福平, 苗海涛, 等. 水分胁迫及复水过程4种牧草形态及其生理特征表达. 干旱区研究, 2020, 37(1): 193-201. | |
17 | Liu M G, Wang Z K, Mu L, et al. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agricultural Water Management, 2021, 248: 106764. |
18 | Ma L. Situation and countermeasures of grass industry development in oasis area of Hexi corridor area-Jinchuan District of Jinchang City as an example. Lanzhou: Lanzhou University, 2017. |
马黎. 河西走廊绿洲区草产业发展现状及对策-以金昌市金昌区为例. 兰州: 兰州大学, 2017. | |
19 | Li C H, Zhu T B, Zhou M, et al. Temporal and spatial change of net primary productivity of vegetation and its determinants in Hexi Corridor. Acta Ecologica Sinica, 2021, 41(5): 1931-1943. |
李传华, 朱同斌, 周敏, 等. 河西走廊植被净初级生产力时空变化及其影响因子研究. 生态学报, 2021, 41(5): 1931-1943. | |
20 | Sheppard S C, Cattani D J, Ominski K H, et al. Sainfoin production in western Canada: A review of agronomic potential and environmental benefits. Grass and Forage Science, 2019, 74(1): 1-13. |
21 | Carbonero C H, Mueller-Harvey I, Brown T A, et al. Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genetic Resources, 2011, 9(1): 70-85. |
22 | Abtahi M, Majidi M M, Saeidnia F, et al. Genetic and physiological aspects of drought tolerance in smooth bromegrass. Crop Science, 2019, 59(6): 2601-2607. |
23 | Jiang Y B, Qi G P, Yin M H, et al. Effects of water regulation and planting patterns on soil moisture, yield and quality in artificial grassland. Journal of Soil and Water Conservation, 2022, 36(6): 260-270. |
姜渊博, 齐广平, 银敏华, 等. 水分调控与种植模式对人工草地土壤水分及产量品质的影响. 水土保持学报, 2022, 36(6): 260-270. | |
24 | Zhang Y L, Zhang L J, Yu T F, et al. Effects of grass-legume combinations and intercropping patterns on the forage yield and yield stability. Acta Agrestia Sinica, 2019, 27(5): 1410-1418. |
张永亮, 张丽娟, 于铁峰, 等. 禾豆组合与间作方式对牧草产量及产量稳定性的影响. 草地学报, 2019, 27(5): 1410-1418. | |
25 | Xiao R C, Kuang Y H, Zhang C P, et al. Comprehensive quality evaluation of Panax ginseng by entropy weight and grey incidence degree method. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(7): 4243-4248. |
肖日传, 匡艳辉, 张传平, 等. 基于熵权法和灰色关联度法的人参质量综合评价. 中华中医药杂志, 2021, 36(7): 4243-4248. | |
26 | Sun X, Zhang F C, Yang L, et al. Optimal combination of potassium fertilizer and drip irrigation for potato production based on entropy weight method and TOPSIS analysis. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 279-290. |
孙鑫, 张富仓, 杨玲, 等. 基于熵权法和TOPSIS法优化马铃薯钾肥种类和滴灌量组合. 植物营养与肥料学报, 2022, 28(2): 279-290. | |
27 | Magliano P N, Gimenez R, Houspanossian J, et al. Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. Ecohydrology, 2017, 10(7): e1879. |
28 | Liu H, Wei Y F, Jia L N E, et al. Stereoscopic planting mode and water consumption of grass pattern in north Xinjiang. Chinese Agricultural Science Bulletin, 2014, 30(23): 19-25. |
刘虎, 魏永富, 贾林努尔, 等. 北疆地区牧草高效立体种植模式与耗水规律研究. 中国农学通报, 2014, 30(23): 19-25. | |
29 | Chai Q, Yu A Z, Chen G P, et al. Soil evaporation under sole cropping and intercropping systems and the main driving factors. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1307-1312. |
柴强, 于爱忠, 陈桂平, 等. 单作与间作的棵间蒸发量差异及其主要影响因子. 中国生态农业学报, 2011, 19(6): 1307-1312. | |
30 | Tello-Garcia E, Huber L, Leitinger G, et al. Drought- and heat-induced shifts in vegetation composition impact biomass production and water use of Alpine grasslands. Environmental and Experimental Botany, 2019, 169: 103921. |
31 | Mariola S, Anna K. Forage grasses under drought stress in conditions of Poland. Acta Physiologiae Plantarum, 2015, 36: 116. |
32 | Yang H T, An F H, Yang F, et al. The impact of irrigation on yield of alfalfa and soil chemical properties of saline-sodic soils. PeerJ, 2019, 7: e7148. |
33 | Sun J C, Yang S, Wu Y K, et al. Niche and interspecific competitiveness of dominant herbage cultivar in aipine mixture artificial grassland. Acta Agrestia Sinica, 2022, 30(5): 1273-1279. |
孙建财, 杨沙, 武玉坤, 等. 高寒混播草地优势草种生态位与种间竞争力分析. 草地学报, 2022, 30(5): 1273-1279. | |
34 | Jahanzad E, Sadeghpour A, Hoseini M B, et al. Competition, nitrogen use efficiency, and productivity of millet-soybean intercropping in semiarid conditions. Crop Science, 2015, 55: 2842-2851. |
35 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixed sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
36 | Sun K Z, Zou H X, Li Y F, et al. Effects of cutting times on the yield and quality of Lolium multiflorum in coastal areas of Jiangsu Province. Journal of Anhui Agricultural Sciences, 2020, 48(2): 106-108, 112. |
孙扣忠, 邹海祥, 李亚芳, 等. 刈割次数对江苏沿海地区多花黑麦草产量及品质的影响. 安徽农业科学, 2020, 48(2): 106-108, 112. | |
37 | Yu X X, Qi G P, Kang Y X, et al. Effect of irrigation mode on the yield and water consumption of mixed artificial grassland in alpine desert area. Water Resources Planning and Design, 2020, 33(3): 130-134, 178. |
余晓雄, 齐广平, 康燕霞, 等. 灌水模式对高寒荒漠区混播人工草地产量及耗水特性的影响. 水利规划与设计, 2020, 33(3): 130-134, 178. | |
38 | Diego N D, Saiz-Fernandez I, Rodriguez J L, et al. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. Journal of Plant Physiology, 2015, 188: 64-71. |
39 | Zhang Q B, Yu L, Lu W H, et al. Optimal irrigation regime improving yield and quality of alfalfa in year of sowing. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 116-122. |
张前兵, 于磊, 鲁为华, 等. 优化灌溉制度提高苜蓿种植当年产量及品质. 农业工程学报, 2016, 32(23): 116-122. | |
40 | Qi G P, Yin M H, Su P H, et al. Effects of water regulation on photosynthetic characteristics and water use of Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. Journal of Soil and Water Conservation, 2019, 33(6): 242-248, 256. |
齐广平, 银敏华, 苏鹏海, 等. 枸杞苜蓿间作模式下水分调控对枸杞光合特性与水分利用的影响. 水土保持学报, 2019, 33(6): 242-248, 256. | |
41 | Dhakal M, West C P, Villalobos C, et al. Interseeding alfalfa into native grassland for enhanced yield and water use efficiency. Agronomy Journal, 2020, 112: 1931-1942. |
42 | Sun H R, Ma L F, He S L, et al. Effect of irrigation amount on water use efficiency and water consumption coefficient of alfalfa. Acta Agrestia Sinica, 2008(6): 636-639, 645. |
孙洪仁, 马令法, 何淑玲, 等. 灌溉量对紫花苜蓿水分利用效率和耗水系数的影响. 草地学报, 2008(6): 636-639, 645. |
[1] | 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响[J]. 草业学报, 2023, 32(3): 13-29. |
[2] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[3] | 苏乐乐, 秦燕, 王瞾敏, 张永超, 刘文辉. 氮磷添加对燕麦与箭筈豌豆不同种植方式草地土壤微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2023, 32(3): 56-66. |
[4] | 高玮, 受娜, 蒋丛泽, 马仁诗, 沈禹颖, 杨宪龙. 施氮量对饲用高粱干物质积累、分配及水分利用效率的影响[J]. 草业学报, 2022, 31(9): 26-35. |
[5] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
[6] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[7] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[8] | 刘启宇, 云岚, 陈逸凡, 郭宏宇, 李珍, 高志琦, 王俊, 石凤翎. 苜蓿—禾草混播草地牧草产量及种间竞争关系的动态研究[J]. 草业学报, 2022, 31(3): 181-191. |
[9] | 姜渊博, 康燕霞, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 康瑶, 张宏斌, 唐仲霞, 汪爱霞. 基于产量与品质的无芒雀麦灌溉制度研究[J]. 草业学报, 2022, 31(11): 158-171. |
[10] | 常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价[J]. 草业学报, 2022, 31(11): 61-74. |
[11] | 陈林, 陈高路, 宋乃平, 李学斌, 万红云, 何文强. 宁夏东部荒漠草原猪毛蒿光合特征和水分利用效率对降水变化的响应[J]. 草业学报, 2022, 31(10): 87-98. |
[12] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[13] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[14] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[15] | 张鹤山, 高秋, 张婷婷, 陆姣云, 田宏, 熊军波, 刘洋. 30份红三叶种质资源耐铜性综合评价[J]. 草业学报, 2021, 30(12): 117-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||