1 |
Pan J, Zhang Y, Li X S. Willingness to pay for forest cultural value conservation and its evaluation-Case of Diebu County in Gansu Province. Journal of Arid Land Resources and Environment, 2017, 31(9): 32-37.
|
|
潘静, 张颖, 李秀山. 森林文化价值保护支付意愿及其评估研究——以甘肃省迭部县为例. 干旱区资源与环境, 2017, 31(9): 32-37.
|
2 |
Ferreira P M A, Ely C V, Beal-Neves M. Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora, 2021, 285. https://doi.org/10.1016/j.flora.2021.
|
3 |
Zhao A, Zhou X L, Tian Q, et al. Analysis of shrub community and species diversity in burned area of Picea asperata-Abies fabri forest in the northern slope of Dieshan mountains. Journal of West China Forestry Science, 2021, 50(5): 90-100.
|
|
赵安, 周晓雷, 田青, 等. 迭山北坡云冷杉林火烧迹地灌木群落特征和物种多样性分析. 西部林业科学, 2021, 50(5): 90-100.
|
4 |
Zhao A, Tian Q, Zhou X L, et al. Interspecific association of shrub species in burned site of Picea asperata-Abies fabri forest on the northern slope of Dieshan Mountains. Forest Research, 2022, 35(2): 163-170.
|
|
赵安, 田青, 周晓雷, 等. 迭山北坡云冷杉林火烧迹地灌木群落种间关联性. 林业科学研究, 2022, 35(2): 163-170.
|
5 |
Zhou X L, Yan Y E, Zhang J, et al. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2022, 31(5): 144-155.
|
|
周晓雷, 闫月娥, 张婧, 等. 青藏高原东北边缘云杉-冷杉林火烧迹地不同坡向植物群落结构与多样性研究. 草业学报, 2022, 31(5): 144-155.
|
6 |
Lu G, Huang H X, Zhou X L, et al. Characteristics of soil organic carbon and changes of enzyme activities in burned area of spruce-fir forests in Diebu forest region. Acta Agrestia Sinica, 2022, 30(4): 943-949.
|
|
陆刚, 黄海霞, 周晓雷, 等. 迭部林区云冷杉林火烧迹地土壤有机碳及酶活性变化特征. 草地学报, 2022, 30(4): 943-949.
|
7 |
Zhao A, Zhou X L, Shi R J, et al. Niche characteristics of population in shrub communities in spruce-fir forest burned areas on the northeastern margin of Qinghai-Tibetan Plateau. Forest Research, 2022, 35(5): 1-10.
|
|
赵安, 周晓雷, 史瑞锦, 等. 青藏高原东北边缘云-冷杉林火烧迹地灌木群落种群生态位特征. 林业科学研究, 2022, 35(5): 1-10.
|
8 |
Meng F F, Vilmi A, Gibert C, et al. Dispersal-niche continuum index: A quantitative metric of community assembly processes//Microbiome Protocols eBook. Bio-101, 2021. DOI: 10.21769/BioProtoc.2103988.
|
9 |
Lhotsky B, Kovacs B, Onodi G, et al. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. Journal of Ecology, 2016, 104(2): 507-517.
|
10 |
Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology. Annual Reviews Ecological Evolutionary Systematics, 2002, 33(1): 475-505.
|
11 |
Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 2008, 322(5901): 580-582.
|
12 |
Gotelli N J, Mcgill B J. Null versus neutral models: what’s the difference? Ecography, 2006, 29(5): 793-800.
|
13 |
Vilmi A, Gibert C, Escarguel G, et al. Dispersal-niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography, 2020, 44(3): 370-379.
|
14 |
Ning D L, Yuan M T, Wu L W, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 2020, 11(1): 4717-4728.
|
15 |
Chen Q L, Hu H W, Yan Z Z, et al. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2020, 152: 108073. https://doi.org/10.1016/j.soilbio.2020.
|
16 |
Chesson P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 2000, 31(1): 343-366.
|
17 |
Adler P B, HilleRisLambers J, Levine J M. A niche for neutrality. Ecology Letters, 2006, 10(2): 95-104.
|
18 |
Emerson B C, Gillespie R G. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution, 2008, 23(11): 619-630.
|
19 |
Luo Y H, Cadotte M W, Burgess K S, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecology Letters, 2019, 22(9): 1449-1461.
|
20 |
Murphy S J, Salpeter K, Comita L S. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 2016, 97(8): 2074-2084.
|
21 |
Gibert C, Escarguel G. PER-SIMPER—A new tool for inferring community assembly processes from taxon occurrences. Global Ecology and Biogeography, 2019, 28(3): 374-385.
|
22 |
Stegen J C, Lin X J, Fredrickson J K, et al. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 2015, 6. https://doi:10.3389/fmicb.2015.00370.
|
23 |
Stegen J C, Lin X J, Fredrickson J K, et al. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 2013, 7(11): 2069-2079.
|
24 |
Letcher S G, Chazdon R L, Andrade A, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(2): 79-87.
|
25 |
Chust G, Chave J, Condit R, et al. Determinants and spatial modeling of tree β-diversity in a tropical forest landscape in Panama. Journal of Vegetation Science, 2006, 17(1): 83-92.
|
26 |
Citenberer L, de Bello F, Brathen K A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 2012, 87(1): 111-127.
|