草业学报 ›› 2025, Vol. 34 ›› Issue (3): 154-163.DOI: 10.11686/cyxb2024153
• 研究论文 • 上一篇
王梦琦(
), 王菲, 赵琬璐, 刘彦奇, 崔灿, 严俊鑫(
)
收稿日期:2024-04-30
修回日期:2024-06-20
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
严俊鑫
作者简介:E-mail: yanjunxin@163.com基金资助:
Meng-qi WANG(
), Fei WANG, Wan-lu ZHAO, Yan-qi LIU, Can CUI, Jun-xin YAN(
)
Received:2024-04-30
Revised:2024-06-20
Online:2025-03-20
Published:2025-01-02
Contact:
Jun-xin YAN
摘要:
为探究施用硅和钙对留兰香幼苗生长的影响,设置不同浓度硅(500、1000、2000 mg·kg-1)和钙(400、800、1200 mg·kg-1)处理,测定幼苗生长和生理指标。结果表明:与对照组相比,除2000 mg·kg-1硅外,其他浓度硅、钙处理对留兰香的生长起促进作用,1000 mg·kg-1硅和800 mg·kg-1钙的促进作用较强。硅处理后可溶性糖和可溶性蛋白含量相比对照有所下降,2000 mg·kg-1硅显著提高了脯氨酸含量、过氧化氢酶和过氧化物酶活性,丙二醛含量和细胞膜相对透性相比对照有所增加;多数钙处理后渗透调节物质含量和抗氧化酶活性相比对照均有增加,丙二醛含量和细胞膜相对透性均有降低。主成分和隶属函数分析表明,800和400 mg·kg-1钙、1000 mg·kg-1硅能促进留兰香生长,可为筛选出适宜留兰香生长的硅、钙浓度提供参考。
王梦琦, 王菲, 赵琬璐, 刘彦奇, 崔灿, 严俊鑫. 不同浓度硅、钙对留兰香幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(3): 154-163.
Meng-qi WANG, Fei WANG, Wan-lu ZHAO, Yan-qi LIU, Can CUI, Jun-xin YAN. Effects of different concentrations of silicon and calcium on the growth and physiological characteristics of Mentha spicata seedlings[J]. Acta Prataculturae Sinica, 2025, 34(3): 154-163.
图1 不同浓度硅、钙对留兰香株高、叶长、叶宽、叶面积的影响不同字母表示同一时间不同浓度硅、钙处理间差异显著(P<0.05)。Different letters indicate significant differences among different concentrations of silicon and calcium treatments at the same time (P<0.05).
Fig.1 Effects of different concentrations of silicon and calcium on plant height, leaf length, leaf width and leaf area of M. spicata
处理 Treatment | 根系总长 Total length of root system (cm) | 根系总面积 Total root area (cm2) | 根系总体积 Total volume of root system (cm3) | 根系分叉数 Number of root forks (No.) | 根系平均直径 Roots average diameter (mm) |
|---|---|---|---|---|---|
| CK | 414.33±21.02d | 7.47±0.77e | 0.56±0.15de | 206.00±39.73e | 0.29±0.03d |
| T1 | 446.65±5.10d | 11.45±0.50c | 1.10±0.09c | 379.33±45.54c | 0.45±0.03c |
| T2 | 757.52±28.44b | 24.19±0.47b | 1.95±0.24b | 591.00±38.15b | 1.13±0.10b |
| T3 | 406.64±15.84d | 9.86±0.74d | 0.34±0.02e | 298.00±16.82d | 0.32±0.04d |
| T4 | 1127.40±44.27a | 23.70±0.97b | 0.83±0.07cd | 530.67±38.68b | 1.09±0.05b |
| T5 | 1163.84±20.16a | 26.94±0.85a | 2.68±0.31a | 737.00±60.32a | 1.34±0.03a |
| T6 | 466.09±42.26c | 12.69±0.63c | 0.73±0.07d | 562.33±30.92b | 0.34±0.05d |
表1 不同浓度硅、钙对留兰香根形态的影响
Table 1 Effects of different concentrations of silicon and calcium on the morphology of the roots of M. spicata
处理 Treatment | 根系总长 Total length of root system (cm) | 根系总面积 Total root area (cm2) | 根系总体积 Total volume of root system (cm3) | 根系分叉数 Number of root forks (No.) | 根系平均直径 Roots average diameter (mm) |
|---|---|---|---|---|---|
| CK | 414.33±21.02d | 7.47±0.77e | 0.56±0.15de | 206.00±39.73e | 0.29±0.03d |
| T1 | 446.65±5.10d | 11.45±0.50c | 1.10±0.09c | 379.33±45.54c | 0.45±0.03c |
| T2 | 757.52±28.44b | 24.19±0.47b | 1.95±0.24b | 591.00±38.15b | 1.13±0.10b |
| T3 | 406.64±15.84d | 9.86±0.74d | 0.34±0.02e | 298.00±16.82d | 0.32±0.04d |
| T4 | 1127.40±44.27a | 23.70±0.97b | 0.83±0.07cd | 530.67±38.68b | 1.09±0.05b |
| T5 | 1163.84±20.16a | 26.94±0.85a | 2.68±0.31a | 737.00±60.32a | 1.34±0.03a |
| T6 | 466.09±42.26c | 12.69±0.63c | 0.73±0.07d | 562.33±30.92b | 0.34±0.05d |
处理 Treatment | 可溶性糖 Soluble sugar (mg·g-1) | 可溶性蛋白 Soluble protein (mg·g-1) | 脯氨酸 Proline (μg·g-1) |
|---|---|---|---|
| CK | 0.80±0.07b | 117.69±8.17bc | 459.40±54.13b |
| T1 | 0.58±0.07c | 102.87±8.81cd | 364.13±77.54c |
| T2 | 0.74±0.17b | 105.47±4.57cd | 323.31±36.54c |
| T3 | 0.35±0.10c | 88.61±8.27d | 618.99±16.17a |
| T4 | 1.42±0.17a | 177.29±3.58a | 355.28±26.02c |
| T5 | 0.82±0.27b | 121.98±12.07bc | 289.02±66.41c |
| T6 | 1.48±0.32a | 133.21±21.40b | 368.80±49.54c |
表2 不同浓度硅、钙对留兰香渗透调节物质含量的影响
Table 2 Effect of different concentrations of silicon and calcium on the content of osmoregulatory substances in M. spicata
处理 Treatment | 可溶性糖 Soluble sugar (mg·g-1) | 可溶性蛋白 Soluble protein (mg·g-1) | 脯氨酸 Proline (μg·g-1) |
|---|---|---|---|
| CK | 0.80±0.07b | 117.69±8.17bc | 459.40±54.13b |
| T1 | 0.58±0.07c | 102.87±8.81cd | 364.13±77.54c |
| T2 | 0.74±0.17b | 105.47±4.57cd | 323.31±36.54c |
| T3 | 0.35±0.10c | 88.61±8.27d | 618.99±16.17a |
| T4 | 1.42±0.17a | 177.29±3.58a | 355.28±26.02c |
| T5 | 0.82±0.27b | 121.98±12.07bc | 289.02±66.41c |
| T6 | 1.48±0.32a | 133.21±21.40b | 368.80±49.54c |
处理 Treatment | 过氧化氢酶 Catalase ( CAT) | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶Superoxide dismutase (SOD) |
|---|---|---|---|
| CK | 36.99±3.18d | 139.87±5.79d | 33.02±2.99c |
| T1 | 33.09±1.77de | 70.90±5.95f | 22.03±4.69d |
| T2 | 34.12±3.45de | 67.51±10.21f | 23.55±5.58d |
| T3 | 68.73±2.69a | 174.47±16.90c | 41.67±5.77bc |
| T4 | 45.39±3.90c | 101.43±1.98e | 50.65±5.54ab |
| T5 | 59.14±1.14b | 247.99±18.62b | 53.47±7.63a |
| T6 | 30.93±0.30e | 380.99±23.11a | 40.34±1.05c |
表3 不同浓度硅、钙对留兰香抗氧化酶活性的影响
Table 3 Effects of different concentrations of silicon and calcium on the antioxidant enzyme activities of M. spicata (U·g-1·min-1)
处理 Treatment | 过氧化氢酶 Catalase ( CAT) | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶Superoxide dismutase (SOD) |
|---|---|---|---|
| CK | 36.99±3.18d | 139.87±5.79d | 33.02±2.99c |
| T1 | 33.09±1.77de | 70.90±5.95f | 22.03±4.69d |
| T2 | 34.12±3.45de | 67.51±10.21f | 23.55±5.58d |
| T3 | 68.73±2.69a | 174.47±16.90c | 41.67±5.77bc |
| T4 | 45.39±3.90c | 101.43±1.98e | 50.65±5.54ab |
| T5 | 59.14±1.14b | 247.99±18.62b | 53.47±7.63a |
| T6 | 30.93±0.30e | 380.99±23.11a | 40.34±1.05c |
处理 Treatment | 丙二醛含量 Malondialdehyde content (μmol·g-1) | 细胞膜相对透性 Relative permeability of cell membrane (%) |
|---|---|---|
| CK | 3.57±0.44bc | 16.13±1.60b |
| T1 | 2.72±0.50cd | 9.48±0.73cd |
| T2 | 2.53±0.45d | 8.07±0.18d |
| T3 | 4.01±0.30b | 21.74±3.60a |
| T4 | 5.40±0.90a | 8.46±1.08d |
| T5 | 1.47±0.51e | 12.24±2.73c |
| T6 | 2.84±0.09cd | 18.30±1.25b |
表4 不同浓度硅、钙对留兰香膜脂过氧化的影响
Table 4 Effects of different concentrations of silicon and calcium on membrane lipid peroxidation of M. spicata
处理 Treatment | 丙二醛含量 Malondialdehyde content (μmol·g-1) | 细胞膜相对透性 Relative permeability of cell membrane (%) |
|---|---|---|
| CK | 3.57±0.44bc | 16.13±1.60b |
| T1 | 2.72±0.50cd | 9.48±0.73cd |
| T2 | 2.53±0.45d | 8.07±0.18d |
| T3 | 4.01±0.30b | 21.74±3.60a |
| T4 | 5.40±0.90a | 8.46±1.08d |
| T5 | 1.47±0.51e | 12.24±2.73c |
| T6 | 2.84±0.09cd | 18.30±1.25b |
| 指标 Index | 成分1 Component 1 | 成分2 Component 2 | 成分3 Component 3 | 成分4 Component 4 |
|---|---|---|---|---|
| 株高Plant height | 0.956 | -0.230 | 0.163 | -0.044 |
| 叶长Leaf length | 0.968 | 0.184 | 0.049 | 0.095 |
| 叶宽Leaf width | 0.872 | -0.475 | 0.028 | 0.094 |
| 叶面积Leaf area | 0.887 | -0.402 | -0.095 | 0.131 |
| 可溶性糖Soluble sugar | 0.277 | 0.726 | -0.425 | 0.458 |
| 可溶性蛋白Soluble protein | 0.333 | 0.838 | -0.414 | 0.002 |
| 脯氨酸Proline | -0.891 | 0.025 | 0.367 | -0.239 |
| 超氧化物歧化酶活性Superoxide dismutase activity | 0.238 | 0.796 | 0.526 | 0.000 |
| 过氧化物酶活性Peroxidase activity | -0.014 | 0.347 | 0.420 | 0.838 |
| 过氧化氢酶活性Catalase activity | -0.080 | 0.222 | 0.863 | -0.435 |
| 丙二醛含量Malondialdehyde content | -0.480 | 0.647 | -0.336 | -0.467 |
| 细胞膜相对透性Relative permeability of cell membrane | -0.716 | 0.128 | 0.575 | 0.363 |
| 根系总长Total length of root system | 0.828 | 0.448 | 0.109 | -0.306 |
| 根系总面积Total root area | 0.921 | 0.211 | 0.084 | -0.237 |
| 根系总体积Total volume of root system | 0.913 | -0.291 | 0.246 | -0.006 |
| 根系分叉数Number of root forks | 0.910 | 0.171 | 0.175 | 0.227 |
| 根系平均直径Roots average diameter | 0.914 | 0.148 | 0.095 | -0.333 |
| 特征值Eigenvalue | 9.214 | 3.323 | 2.287 | 1.858 |
| 贡献率Contribution rate (%) | 54.201 | 19.547 | 13.451 | 10.930 |
| 累积贡献率Accumulative contribution rate (%) | 54.201 | 73.748 | 87.199 | 98.129 |
表5 留兰香幼苗生长、生理指标主成分分析
Table 5 Principle component analysis of growth and physiological indicators of M. spicata seedlings
| 指标 Index | 成分1 Component 1 | 成分2 Component 2 | 成分3 Component 3 | 成分4 Component 4 |
|---|---|---|---|---|
| 株高Plant height | 0.956 | -0.230 | 0.163 | -0.044 |
| 叶长Leaf length | 0.968 | 0.184 | 0.049 | 0.095 |
| 叶宽Leaf width | 0.872 | -0.475 | 0.028 | 0.094 |
| 叶面积Leaf area | 0.887 | -0.402 | -0.095 | 0.131 |
| 可溶性糖Soluble sugar | 0.277 | 0.726 | -0.425 | 0.458 |
| 可溶性蛋白Soluble protein | 0.333 | 0.838 | -0.414 | 0.002 |
| 脯氨酸Proline | -0.891 | 0.025 | 0.367 | -0.239 |
| 超氧化物歧化酶活性Superoxide dismutase activity | 0.238 | 0.796 | 0.526 | 0.000 |
| 过氧化物酶活性Peroxidase activity | -0.014 | 0.347 | 0.420 | 0.838 |
| 过氧化氢酶活性Catalase activity | -0.080 | 0.222 | 0.863 | -0.435 |
| 丙二醛含量Malondialdehyde content | -0.480 | 0.647 | -0.336 | -0.467 |
| 细胞膜相对透性Relative permeability of cell membrane | -0.716 | 0.128 | 0.575 | 0.363 |
| 根系总长Total length of root system | 0.828 | 0.448 | 0.109 | -0.306 |
| 根系总面积Total root area | 0.921 | 0.211 | 0.084 | -0.237 |
| 根系总体积Total volume of root system | 0.913 | -0.291 | 0.246 | -0.006 |
| 根系分叉数Number of root forks | 0.910 | 0.171 | 0.175 | 0.227 |
| 根系平均直径Roots average diameter | 0.914 | 0.148 | 0.095 | -0.333 |
| 特征值Eigenvalue | 9.214 | 3.323 | 2.287 | 1.858 |
| 贡献率Contribution rate (%) | 54.201 | 19.547 | 13.451 | 10.930 |
| 累积贡献率Accumulative contribution rate (%) | 54.201 | 73.748 | 87.199 | 98.129 |
| 处理Treatment | 隶属函数值 Subordinate function value | 隶属平 均值 Subordinate average value | 排序Sort | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 株高Plant height | 叶长Leaf length | 根系总面积Total root area | 根系平均直径Roots average diameter | 可溶性蛋白Soluble protein | 可溶性糖Soluble sugar | 超氧化物歧化酶活性Superoxide dismutase activity | 过氧化物酶活性Peroxidase activity | 过氧化氢酶活性Catalase activity | 丙二醛含量Malondialdehyde content | 细胞膜相对透性Relative permeability of cell membrane | |||
| CK | 0.000 | 0.004 | 0.000 | 0.000 | 0.328 | 0.398 | 0.350 | 0.231 | 0.160 | 0.466 | 0.410 | 0.213 | 6 |
| T1 | 0.451 | 0.397 | 0.204 | 0.152 | 0.161 | 0.204 | 0.000 | 0.011 | 0.057 | 0.682 | 0.897 | 0.292 | 5 |
| T2 | 0.684 | 0.598 | 0.859 | 0.800 | 0.190 | 0.345 | 0.048 | 0.000 | 0.084 | 0.730 | 1.000 | 0.489 | 3 |
| T3 | 0.003 | 0.000 | 0.123 | 0.029 | 0.000 | 0.000 | 0.625 | 0.341 | 1.000 | 0.000 | 0.000 | 0.193 | 7 |
| T4 | 0.347 | 0.675 | 0.834 | 0.762 | 1.000 | 0.947 | 0.910 | 0.108 | 0.383 | 0.354 | 0.971 | 0.720 | 2 |
| T5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.376 | 0.416 | 1.000 | 0.576 | 0.746 | 1.000 | 0.695 | 0.801 | 1 |
| T6 | 0.201 | 0.487 | 0.268 | 0.048 | 0.503 | 1.000 | 0.582 | 1.000 | 0.000 | 0.651 | 0.252 | 0.454 | 4 |
表6 留兰香幼苗生长及生理指标综合评价
Table 6 Comprehensive evaluation of growth and physiological indexes of M. spicata seedlings
| 处理Treatment | 隶属函数值 Subordinate function value | 隶属平 均值 Subordinate average value | 排序Sort | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 株高Plant height | 叶长Leaf length | 根系总面积Total root area | 根系平均直径Roots average diameter | 可溶性蛋白Soluble protein | 可溶性糖Soluble sugar | 超氧化物歧化酶活性Superoxide dismutase activity | 过氧化物酶活性Peroxidase activity | 过氧化氢酶活性Catalase activity | 丙二醛含量Malondialdehyde content | 细胞膜相对透性Relative permeability of cell membrane | |||
| CK | 0.000 | 0.004 | 0.000 | 0.000 | 0.328 | 0.398 | 0.350 | 0.231 | 0.160 | 0.466 | 0.410 | 0.213 | 6 |
| T1 | 0.451 | 0.397 | 0.204 | 0.152 | 0.161 | 0.204 | 0.000 | 0.011 | 0.057 | 0.682 | 0.897 | 0.292 | 5 |
| T2 | 0.684 | 0.598 | 0.859 | 0.800 | 0.190 | 0.345 | 0.048 | 0.000 | 0.084 | 0.730 | 1.000 | 0.489 | 3 |
| T3 | 0.003 | 0.000 | 0.123 | 0.029 | 0.000 | 0.000 | 0.625 | 0.341 | 1.000 | 0.000 | 0.000 | 0.193 | 7 |
| T4 | 0.347 | 0.675 | 0.834 | 0.762 | 1.000 | 0.947 | 0.910 | 0.108 | 0.383 | 0.354 | 0.971 | 0.720 | 2 |
| T5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.376 | 0.416 | 1.000 | 0.576 | 0.746 | 1.000 | 0.695 | 0.801 | 1 |
| T6 | 0.201 | 0.487 | 0.268 | 0.048 | 0.503 | 1.000 | 0.582 | 1.000 | 0.000 | 0.651 | 0.252 | 0.454 | 4 |
| 1 | Alok R, Ragini S, Meenu B, et al. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiology and Biochemistry, 2021, 163: 15-25. |
| 2 | Ma C H, Yang L, Hu S Y. Silicon supplying ability of soil and advances of silicon fertilizer research. Hubei Agricultural Sciences, 2009, 48(4): 987-989. |
| 马朝红, 杨利, 胡时友. 土壤供硅能力与硅肥应用研究进展. 湖北农业科学, 2009, 48(4): 987-989. | |
| 3 | Soil and Fertilizer Institute of Chinese Academy of Agricultural Sciences. Chinese fertilizers. Shanghai: Shanghai Scientific and Technical Publishers, 1994. |
| 中国农业科学院土壤肥料研究所. 中国肥料. 上海: 上海科学技术出版社, 1994. | |
| 4 | Chen D W, Tang Y H, Shi W B, et al. Progress in the regulation of calcium growth and development. Molecular Plant Breeding, 2019, 17(11): 3593-3601. |
| 陈德伟, 汤寓涵, 石文波, 等. 钙调控植物生长发育的进展分析. 分子植物育种, 2019, 17(11): 3593-3601. | |
| 5 | Tang X F, Long M H, Yu W J, et al. The yield and quality of melon as influenced by different levels of potasium, calcium, and magnesium. Northern Horticulture, 2008(4): 17-20. |
| 唐小付, 龙明华, 于文进, 等. 不同钾、钙、镁水平对厚皮甜瓜产量和品质的影响. 北方园艺, 2008(4): 17-20. | |
| 6 | Gruber B D, Giehl R F H, Friedel S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 2013, 163(1): 161-179. |
| 7 | Hao R F. Quality evaluation of spearmint at different harvesting periods and study on the bioactivity and application of its extracts. Nanjing: Nanjing Normal University, 2017. |
| 郝瑞芬. 不同采收期留兰香品质评价及其提取物生物活性与应用研究. 南京: 南京师范大学, 2017. | |
| 8 | Jiang R, Wu W. Characteristics and cultivation techniques of Mentha spicata. Rural Science & Technology, 2012(6): 58-59. |
| 江蓉, 吴伟. 留兰香特性及栽培技术. 农村科技, 2012(6): 58-59. | |
| 9 | Ding X M. Cultivation and initial processing techniques of Mentha spicata. Xinjiang Agricultural Science and Technology, 2015(6): 31-32. |
| 丁雪梅. 留兰香的栽培与初加工技术. 新疆农业科技, 2015(6): 31-32. | |
| 10 | Guo F R, Nie J Y, Sun W, et al. Key points of cultivation techniques for Mentha spicata in Northeast China. Special Economic Animals and Plants, 2010, 13(10): 36. |
| 郭凤仁, 聂俊颖, 孙伟, 等. 东北地区留兰香栽培技术要点. 特种经济动植物, 2010, 13(10): 36. | |
| 11 | Zhang Y. Measure of chemical composition and antimicrobial activity, antioxidant activity, anti-tumor properties of spearmint oil. Shanghai Measurement and Testing, 2019, 46(5): 50-54. |
| 张曜. 留兰香油的化学组成及其抗氧化、抗菌性能的测定. 上海计量测试, 2019, 46(5): 50-54. | |
| 12 | Kanatt R S, Chander R, Sharma A, et al. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chemistry, 2007, 100(2): 451-458. |
| 13 | Zheng J, Zhao D S, Wu B, et al. A study on chemical constituents in the herb of Mentha spicata. China Journal of Chinese Materia Medica,2002(10): 32-34. |
| 郑健, 赵东升, 吴斌, 等. 留兰香中化学成分的分离与鉴定. 中国中药杂志, 2002(10): 32-34. | |
| 14 | Jiang X W. Aromatic plants and their landscape construction methods. Landscape Architecture Academic Journal, 2017(8): 22-25. |
| 蒋细旺. 芳香植物及其景观营造方式. 园林, 2017(8): 22-25. | |
| 15 | Zou Q. Experimental guidance on plant physiology. Beijing: China Agriculture Press, 2000: 112-141. |
| 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 112-141. | |
| 16 | Zhang X M, Liu Z H, Guo M, et al. Effects of biochar on seed germination and seedling growth of two plants. Journal of Northeast Forestry University, 2023, 51(4): 26-31, 49. |
| 章小勉, 刘梓毫, 郭猛, 等. 生物炭对两种植物种子萌发和幼苗生长的影响. 东北林业大学学报, 2023, 51(4): 26-31, 49. | |
| 17 | Gao J F. Experimental guidance on plant physiology. Beijing: Higher Education Press, 2006. |
| 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
| 18 | Liu H C, Jia W Q. Study on some physiological characteristics of Trifolium repens leaves under salt stress. Guangdong Agricultural Sciences, 2008(12): 58-60. |
| 刘会超, 贾文庆. 盐胁迫对白三叶幼苗叶片叶绿素含量和细胞膜透性的影响. 广东农业科学, 2008(12): 58-60. | |
| 19 | Zhang Y J, Shang Y S, Wang P C, et al. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress. Acta Prataculturae Sinica, 2020, 29(7): 90-98. |
| 张宇君, 尚以顺, 王普昶, 等. 干旱胁迫下保水剂对盘江白刺花幼苗生长和生理特性的影响. 草业学报, 2020, 29(7): 90-98. | |
| 20 | Lv Y R, Wang F, Zhang T T, et al. Effect of inoculation with AM fungi on Rosa rugosa ‘Zizhi’ responses to Lymantria dispar stress. Journal of Northeast Forestry University, 2022, 50(12): 99-103. |
| 吕亚茹, 王菲, 张婷婷, 等. 接种AM真菌对紫枝玫瑰应答舞毒蛾胁迫的影响. 东北林业大学学报, 2022, 50(12): 99-103. | |
| 21 | Liu J K, Liu S Q, Lian H F, et al. Effects of silicon in nutrient solution on garlic growth and its physiological characteristics. China Vegetables, 2014(3): 33-37. |
| 刘景凯, 刘世琦, 连海峰, 等. 硅对水培大蒜生长和生理特性的影响. 中国蔬菜, 2014(3): 33-37. | |
| 22 | He S P, Jin Y Z, Wang P. Effects of silicon on biomass and physiological properties of winged bean seedling under drought stress. Journal of Soil and Water Conservation, 2015, 29(2): 263-266, 298. |
| 何淑平, 靳亚忠, 王鹏. 硅对干旱胁迫下四棱豆幼苗生物量和生理特性的影响. 水土保持学报, 2015, 29(2): 263-266, 298. | |
| 23 | Peng B, Xu M Z, Wang Y, et al. Effects of calcium stress on growth and physiological index of Typha angustifolia L.in karst wetland. Journal of West China Forestry Science, 2020, 49(4): 163-170. |
| 彭博, 徐鸣洲, 王妍, 等. 钙胁迫对狭叶香蒲的生长及逆境生理指标的影响. 西部林业科学, 2020, 49(4): 163-170. | |
| 24 | Wu X N, Wang H X, Wang D, et al. Effect of calcium application on growth and physiological property of blueberry cutting seedlings. Journal of Fruit Science, 2022, 39(6): 1063-1071. |
| 吴小南, 王贺新, 王碟, 等. 钙对蓝莓幼苗生长及生理特性的影响. 果树学报, 2022, 39(6): 1063-1071. | |
| 25 | Huang Y B. Effects of calcium on the growth and physiological characteristics of fig. Nanjing: Nanjing Agricultural University, 2019. |
| 黄远博. 钙对无花果生长与生理特性的影响. 南京: 南京农业大学, 2019. | |
| 26 | Fu R, Meng X X, Chai S F. Research progress on the relationship between plants and calcium environment. Northern Horticulture, 2019(3): 161-166. |
| 付嵘, 孟小暇, 柴胜丰. 植物与钙环境关系的研究进展. 北方园艺, 2019(3): 161-166. | |
| 27 | Wang F. Effects of different concentrations of silicon and calcium on growth and physiological characteristics of Mentha spicata. Harbin: Northeast Forestry University, 2022. |
| 王菲. 不同浓度硅、钙处理对留兰香(Mentha spicata)生长及生理特性的影响. 哈尔滨: 东北林业大学, 2022. | |
| 28 | Li H J. Effects of exogenous melatonin and silicon on the growth and physiological characteristics of celery (Apium graveolens) seedlings under salt stress. Journal of Henan Agricultural Sciences, 2020, 49(1): 96-102. |
| 李红杰. 外源褪黑素和硅对盐胁迫下芹菜幼苗生长及生理特性的影响. 河南农业科学, 2020, 49(1): 96-102. | |
| 29 | Mao J M, Zhai F F, Liu J X, et al. The regulation of silicon to lead stress in Salix viminalis. Scientia Silvae Sinicae, 2018, 54(2): 60-67. |
| 毛金梅, 翟飞飞, 刘俊祥, 等. 硅对蒿柳铅胁迫的调控. 林业科学, 2018, 54(2): 60-67. | |
| 30 | Guo S X, Yang R, Hu X H, et al. Effects of exogenous silicon on the growth and physiological characteristics of tomato seedlings under different low temperature stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(4): 50-57. |
| 郭树勋, 杨然, 胡晓辉, 等. 外源硅对不同低温胁迫下番茄根系生长及生理特性的影响. 山西农业大学学报(自然科学版), 2021, 41(4): 50-57. | |
| 31 | Wu M, Liu X B, Ding L R, et al. Effects of silicon on germination and physiological characteristics of alfalfa under drought stress simulated by PEG. Acta Agrestia Sinica, 2017, 25(6): 1258-1264. |
| 吴淼, 刘信宝, 丁立人, 等. PEG模拟干旱胁迫下硅对紫花苜蓿萌发及生理特性的影响. 草地学报, 2017, 25(6): 1258-1264. | |
| 32 | Xu F F. Effects of Si on the growth and physiological characters of broccoli seedlings under the chromium stress. Journal of Jilin Agricultural Sciences, 2014, 39(6): 55-57. |
| 徐芬芬. 铬胁迫下施硅对西兰花生长和生理特性的影响. 吉林农业科学, 2014, 39(6): 55-57. | |
| 33 | Liu Y, Fan G K, Liu D Y, et al. Effect of sodium silicate on the morphology and physiological and biochemical characteristics of sugar beet. Soil and Fertilizer Sciences in China, 2022(5): 124-133. |
| 刘钰, 范国凯, 刘丹阳, 等. 硅酸钠对苗期甜菜形态和生理生化特性影响的研究. 中国土壤与肥料, 2022(5): 124-133. | |
| 34 | Gao X Y, Yang G P, Xu Z Q, et al. The effect of calcium on the protective enzyme system of soybean membrane lipid peroxidation under water stress. Journal of South China Agricultural University, 1999(2): 7-12. |
| 高向阳, 杨根平, 许志强, 等. 水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响. 华南农业大学学报, 1999(2): 7-12. | |
| 35 | Du Q. Effects of calcium on plant growth and tuber quality of potato. Lanzhou: Gansu Agricultural University, 2013. |
| 杜强. 钙对马铃薯植株生长及块茎品质的影响. 兰州: 甘肃农业大学, 2013. | |
| 36 | Jia R. Morphological and physiological effects of different calcium treatments on leaf scorch of potted oriental lily. Nanning: Guangxi University, 2017. |
| 贾蕊. 不同钙处理对盆栽东方百合叶烧病发生的形态和生理影响. 南宁: 广西大学, 2017. | |
| 37 | Li X J, Zhang G Q, Li H, et al. Effects of exogenous calcium on the growth and physiological characteristics of Pinus sylvestris var. mongolica seedlings in sandy land. Chinese Journal of Soil Science, 2021, 52(5): 1095-1103. |
| 李香君, 张广岐, 李慧, 等. 外源钙对沙地樟子松幼苗生长及生理特性的影响. 土壤通报, 2021, 52(5): 1095-1103. | |
| 38 | Yang Z, Sun H, Li T Y, et al. Effects of calcium on some biological and physiological characters of Panax ginseng. Journal of Jilin Agricultural University, 2014, 36(6): 674-679. |
| 杨振, 孙海, 李腾懿, 等. 钙对人参某些生物学性状和生理指标的影响. 吉林农业大学学报, 2014, 36(6): 674-679. |
| [1] | 张婷婷, 刘宇乐, 陈红, 许凌欣, 陈祥伟, 王恩姮, 严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响[J]. 草业学报, 2024, 33(8): 122-132. |
| [2] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
| [3] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
| [4] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
| [5] | 单贵莲, 马祖艳, 李嘉懿, 刘洋, 谢勇, 刘佳, 初晓辉. 大狼毒对紫花苜蓿幼苗生理及内源激素含量的影响[J]. 草业学报, 2023, 32(10): 153-161. |
| [6] | 刘牧野, 郭丽珠, 岳跃森, 武菊英, 范希峰, 肖国增, 滕珂. 干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异[J]. 草业学报, 2023, 32(10): 93-103. |
| [7] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
| [8] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
| [9] | 柳福智, 张迎芳, 陈垣. 外源海藻糖对NaHCO3胁迫下甘草幼苗生长调节及总黄酮含量的影响[J]. 草业学报, 2021, 30(7): 148-156. |
| [10] | 张利霞, 常青山, 薛娴, 刘伟, 张巧明, 陈苏丹, 郑轶琦, 李景林, 陈婉东, 李大钊. 酸胁迫对夏枯草叶绿素荧光特性和根系抗氧化酶活性的影响[J]. 草业学报, 2020, 29(8): 134-142. |
| [11] | 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. |
| [12] | 许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报, 2020, 29(10): 22-34. |
| [13] | 张翔, 杨勇, 刘学勇, 向佐湘. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响[J]. 草业学报, 2020, 29(1): 117-124. |
| [14] | 伍国强, 李辉, 雷彩荣, 蔺丽媛, 金娟, 李善家. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响[J]. 草业学报, 2019, 28(6): 45-55. |
| [15] | 赵颖, 魏小红, 赫亚龙, 赵枭飞, 韩厅, 岳凯, 辛夏青, 宿梅飞, 马文静, 骆巧娟. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J]. 草业学报, 2019, 28(2): 156-167. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||