草业学报 ›› 2025, Vol. 34 ›› Issue (7): 41-53.DOI: 10.11686/cyxb2024312
王玉霞1,2,3(
), 杜灵通2,3(
), 易志远2,3, 罗霄2,3, 苏丽4, 乔成龙1,2,3, 薛斌2,3
收稿日期:2024-08-08
修回日期:2024-09-30
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
杜灵通
作者简介:E-mail: dult80@qq.com基金资助:
Yu-xia WANG1,2,3(
), Ling-tong DU2,3(
), Zhi-yuan YI2,3, Xiao LUO2,3, Li SU4, Cheng-long QIAO1,2,3, Bin XUE2,3
Received:2024-08-08
Revised:2024-09-30
Online:2025-07-20
Published:2025-05-12
Contact:
Ling-tong DU
摘要:
干旱荒漠草原区垦殖葡萄园不仅能推动经济发展,而且具有增加生态系统碳汇的潜在价值。本研究以宁夏贺兰山东麓葡萄产区为对象,基于2023年5-7月在0~100 cm土壤剖面每20 cm深度采集的土壤样品,不仅测定土壤有机碳(SOC)含量和总碳含量,还测定耕作干扰较强的表层土壤(0~40 cm)中SOC的活性、中性和惰性组分含量,采用地理空间插值和单因素方差分析,开展不同土壤类型区和典型葡萄园的SOC库特征研究及影响因素分析。结果表明:1)该产区0~100 cm剖面的SOC含量为3.0~11.1 g·kg-1,土壤养分缺乏,平均SOC密度为52.85 t·hm-2,具有中等变异程度;其中0~40 cm表层土壤的SOC富集系数大于1,即表层土壤碳固持能力更强;2)受葡萄垦殖活动的碳输入影响,整个葡萄产区表层0~40 cm的土壤总碳、SOC、活性SOC和惰性SOC含量呈西高东低的分布,具有较强的空间异质性特点;3)产区土壤碳库稳定性较强,不仅无机碳占总碳比例高达74.8%,而且SOC中的惰性组分含量达50%,土壤碳库活度较低;4)受制于土壤发育背景差异,不同土壤类型对SOC特征的影响较大,虽然风沙土的SOC密度高于灰钙土,但风沙土的SOC含量低于灰钙土,且风沙土的碳库活度也最大,其SOC的稳定性较差。以上认识可为宁夏贺兰山东麓葡萄园生态系统碳汇核算提供科学依据。
王玉霞, 杜灵通, 易志远, 罗霄, 苏丽, 乔成龙, 薛斌. 宁夏贺兰山东麓葡萄产区土壤有机碳库空间变异及影响因素[J]. 草业学报, 2025, 34(7): 41-53.
Yu-xia WANG, Ling-tong DU, Zhi-yuan YI, Xiao LUO, Li SU, Cheng-long QIAO, Bin XUE. Spatial variation and factors influencing the soil organic carbon pool in grape-producing areas at the eastern foothills of Helan Mountain in Ningxia[J]. Acta Prataculturae Sinica, 2025, 34(7): 41-53.
图1 研究区概况及采样葡萄园分布图基于自然资源部标准地图服务网站GS(2019)3266号标准地图制作,底图边界无修改。 Based on the standard map service website GS (2019) 3266 of the Ministry of Natural Resources, the boundary of the base map is not modified.
Fig.1 Overview map of the study area and distribution of sampled vineyards
项目 Items | 土壤有机质含量Soil organic matter content | |||||
|---|---|---|---|---|---|---|
| ≤6 g·kg-1 | 6~10 g·kg-1 | 10~20 g·kg-1 | 20~30 g·kg-1 | 30~40 g·kg-1 | >40 g·kg-1 | |
| 土壤养分等级Soil nutrient level | Ⅵ | Ⅴ | Ⅳ | Ⅲ | Ⅱ | Ⅰ |
| 养分丰富情况Nutrient abundance situation | 极度缺乏 Extremely lacking | 缺乏 Lack | 较缺乏 Relatively lacking | 中等 Moderate | 较丰富 Relatively rich | 丰富 Rich |
表1 土壤养分等级划分
Table 1 Gradation of soil nutrient level
项目 Items | 土壤有机质含量Soil organic matter content | |||||
|---|---|---|---|---|---|---|
| ≤6 g·kg-1 | 6~10 g·kg-1 | 10~20 g·kg-1 | 20~30 g·kg-1 | 30~40 g·kg-1 | >40 g·kg-1 | |
| 土壤养分等级Soil nutrient level | Ⅵ | Ⅴ | Ⅳ | Ⅲ | Ⅱ | Ⅰ |
| 养分丰富情况Nutrient abundance situation | 极度缺乏 Extremely lacking | 缺乏 Lack | 较缺乏 Relatively lacking | 中等 Moderate | 较丰富 Relatively rich | 丰富 Rich |
葡萄园 Vineyards | SOC含量 SOC content (g·kg-1) | 养分等级 Nutrient level | SOC最大值 Maximum SOC content (g·kg-1) | 最大养分等级 Maximum nutrient level | SOC最小值 Minimum SOC content (g·kg-1) | 最小养分等级 Minimum nutrient level | 变异系数 CV (%) |
|---|---|---|---|---|---|---|---|
| 金山Jinshan | 10.54±0.68a | Ⅳ | 14.69 | Ⅲ | 6.74 | Ⅳ | 22.3 |
| 美贺Meihe | 11.11±0.71a | Ⅳ | 16.55 | Ⅲ | 7.38 | Ⅳ | 25.4 |
| 长城Changcheng | 7.28±0.60b | Ⅳ | 11.05 | Ⅳ | 4.93 | Ⅴ | 24.8 |
| 新慧彬Xinhuibin | 4.65±0.27c | Ⅴ | 6.38 | Ⅳ | 2.92 | Ⅵ | 21.6 |
| 立兰Lilan | 7.33±0.60b | Ⅳ | 10.26 | Ⅳ | 5.49 | Ⅴ | 24.5 |
| 西鸽Xige | 3.50±0.28cd | Ⅴ | 5.75 | Ⅳ | 1.98 | Ⅵ | 32.4 |
| 红寺堡Hongsibao | 3.00±0.20d | Ⅵ | 4.98 | Ⅴ | 1.83 | Ⅵ | 27.1 |
| 全产区Whole area | 6.54 | Ⅳ | 9.95 | Ⅳ | 4.47 | Ⅴ | 55.8 |
表2 宁夏贺兰山东麓葡萄产区土壤有机碳含量状况
Table 2 Soil organic carbon content status in grape vineyards at the eastern foothills of the Helan Mountains in Ningxia
葡萄园 Vineyards | SOC含量 SOC content (g·kg-1) | 养分等级 Nutrient level | SOC最大值 Maximum SOC content (g·kg-1) | 最大养分等级 Maximum nutrient level | SOC最小值 Minimum SOC content (g·kg-1) | 最小养分等级 Minimum nutrient level | 变异系数 CV (%) |
|---|---|---|---|---|---|---|---|
| 金山Jinshan | 10.54±0.68a | Ⅳ | 14.69 | Ⅲ | 6.74 | Ⅳ | 22.3 |
| 美贺Meihe | 11.11±0.71a | Ⅳ | 16.55 | Ⅲ | 7.38 | Ⅳ | 25.4 |
| 长城Changcheng | 7.28±0.60b | Ⅳ | 11.05 | Ⅳ | 4.93 | Ⅴ | 24.8 |
| 新慧彬Xinhuibin | 4.65±0.27c | Ⅴ | 6.38 | Ⅳ | 2.92 | Ⅵ | 21.6 |
| 立兰Lilan | 7.33±0.60b | Ⅳ | 10.26 | Ⅳ | 5.49 | Ⅴ | 24.5 |
| 西鸽Xige | 3.50±0.28cd | Ⅴ | 5.75 | Ⅳ | 1.98 | Ⅵ | 32.4 |
| 红寺堡Hongsibao | 3.00±0.20d | Ⅵ | 4.98 | Ⅴ | 1.83 | Ⅵ | 27.1 |
| 全产区Whole area | 6.54 | Ⅳ | 9.95 | Ⅳ | 4.47 | Ⅴ | 55.8 |
图2 贺兰山东麓葡萄产区土壤有机碳及组分含量的空间分布
Fig.2 Spatial distribution of soil organic carbon and its components in grape producing areas at the eastern foot of Helan Mountain
图3 不同葡萄园的土壤总碳及碳组分总SOC指活性、中性与惰性SOC的总和;无机碳指总碳含量减去总SOC含量;不同小写字母表示不同处理间差异显著(P<0.05),下同。Total organic carbon refers to the sum of active organic carbon, neutral organic carbon and inert organic carbon. Inorganic carbon is the total carbon content minus the total organic carbon content. Different lowercase letters indicate significant differences among different treatments at the 0.05 level. The same below.
Fig.3 Soil total carbon and carbon components in different vineyards
图8 土壤有机碳密度1:金山 Jinshan;2:美贺 Meihe;3:长城 Changcheng;4:新慧彬 Xinhuibin;5:立兰 Lilan;6:西鸽 Xige;7:红寺堡 Hongsibao;8:砾石土 Gravelly soil;9:灰钙土 Sierozem;10:风沙土 Sandy soil;11:全产区均值 Average across whole area.
Fig.8 Soil organic carbon density
项目 Items | 敏感性指标 Sensitivity index | SOC及其组分敏感值 SOC and its component sensitive values | SOC组分分配比例 Distribution ratio of SOC components (%) | |||||
|---|---|---|---|---|---|---|---|---|
| SOC | 活性SOC Active SOC | 中性SOC Neutral SOC | 惰性SOC Inert SOC | 活性SOC Active SOC | 中性SOC Neutral SOC | 惰性SOC Inert SOC | ||
葡萄园 Vineyards | 金山Jinshan | 1.14 | 5.12 | 10.60 | 1.81 | 38.4 | 10.8 | 50.8 |
| 美贺Meihe | 0.92 | 2.56 | 47.09 | 0.45 | 25.0 | 8.1 | 66.9 | |
| 长城Changcheng | 1.55 | 1.52 | 16.89 | 0.56 | 28.3 | 3.7 | 68.0 | |
| 新慧彬Xinhuibin | 0.57 | 16.81 | 49.84 | 0.87 | 21.5 | 19.6 | 58.9 | |
| 立兰Lilan | 1.10 | 1.20 | 2.36 | 0.28 | 12.1 | 25.9 | 62.0 | |
| 西鸽Xige | 0.76 | 12.59 | 25.14 | 9.11 | 21.4 | 29.6 | 49.1 | |
| 红寺堡Hongsibao | 0.66 | 6.80 | 5.21 | 5.05 | 29.6 | 16.4 | 53.9 | |
| 均值Average value | 0.96 | 6.66 | 22.45 | 2.59 | 25.2 | 14.0 | 60.8 | |
土壤类型 Soil types | 砾石土Gravelly soil | 1.21 | 3.06 | 24.86 | 0.94 | 29.0 | 6.5 | 64.5 |
| 灰钙土Sierozem | 0.93 | 6.89 | 13.75 | 4.69 | 21.4 | 22.1 | 56.5 | |
| 风沙土Aeolian sandy soil | 0.61 | 11.81 | 27.52 | 2.96 | 21.3 | 20.9 | 57.8 | |
| 均值Average value | 0.92 | 7.25 | 22.04 | 2.86 | 24.4 | 15.5 | 60.1 | |
表3 贺兰山东麓葡萄产区有机碳敏感性及分配比例
Table 3 Soil organic carbon sensitivity and distribution ratio in grape producing areas at the eastern foothills of Helan Mountain
项目 Items | 敏感性指标 Sensitivity index | SOC及其组分敏感值 SOC and its component sensitive values | SOC组分分配比例 Distribution ratio of SOC components (%) | |||||
|---|---|---|---|---|---|---|---|---|
| SOC | 活性SOC Active SOC | 中性SOC Neutral SOC | 惰性SOC Inert SOC | 活性SOC Active SOC | 中性SOC Neutral SOC | 惰性SOC Inert SOC | ||
葡萄园 Vineyards | 金山Jinshan | 1.14 | 5.12 | 10.60 | 1.81 | 38.4 | 10.8 | 50.8 |
| 美贺Meihe | 0.92 | 2.56 | 47.09 | 0.45 | 25.0 | 8.1 | 66.9 | |
| 长城Changcheng | 1.55 | 1.52 | 16.89 | 0.56 | 28.3 | 3.7 | 68.0 | |
| 新慧彬Xinhuibin | 0.57 | 16.81 | 49.84 | 0.87 | 21.5 | 19.6 | 58.9 | |
| 立兰Lilan | 1.10 | 1.20 | 2.36 | 0.28 | 12.1 | 25.9 | 62.0 | |
| 西鸽Xige | 0.76 | 12.59 | 25.14 | 9.11 | 21.4 | 29.6 | 49.1 | |
| 红寺堡Hongsibao | 0.66 | 6.80 | 5.21 | 5.05 | 29.6 | 16.4 | 53.9 | |
| 均值Average value | 0.96 | 6.66 | 22.45 | 2.59 | 25.2 | 14.0 | 60.8 | |
土壤类型 Soil types | 砾石土Gravelly soil | 1.21 | 3.06 | 24.86 | 0.94 | 29.0 | 6.5 | 64.5 |
| 灰钙土Sierozem | 0.93 | 6.89 | 13.75 | 4.69 | 21.4 | 22.1 | 56.5 | |
| 风沙土Aeolian sandy soil | 0.61 | 11.81 | 27.52 | 2.96 | 21.3 | 20.9 | 57.8 | |
| 均值Average value | 0.92 | 7.25 | 22.04 | 2.86 | 24.4 | 15.5 | 60.1 | |
| 1 | Zeng N, Jiang K, Han P F, et al. The Chinese carbon-neutral goal: challenges and prospects. Advances in Atmospheric Sciences, 2022, 39(8): 1229-1238. |
| 2 | Zhou G S, Zhou M Z, Zhou L, et al. Prospect of research on the sink enhancement potential of terrestrial ecosystems in China. Chinese Science Bulletin, 2022, 67(31): 3625-3632. |
| 周广胜, 周梦子, 周莉, 等. 中国陆地生态系统增汇潜力研究展望. 科学通报, 2022, 67(31): 3625-3632. | |
| 3 | Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436. |
| 4 | Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. |
| 5 | Guillaume T, Bragazza L, Levasseur C, et al. Long-term soil organic carbon dynamics in temperate cropland-grassland systems. Agriculture, Ecosystems & Environment, 2021, 305: 107184. |
| 6 | Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Scientia Sinica (Vitae), 2022, 52(4): 534-574. |
| 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学: 生命科学, 2022, 52(4): 534-574. | |
| 7 | Zhang L, Xue T T, Gao F F, et al. Carbon storage distribution characteristics of vineyard ecosystems in Hongsibu, Ningxia. Plants, 2021, 10(6): 1199. |
| 8 | Williams J N, Morandé J A, Vaghti M G, et al. Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance and Management, 2020, 15(1): 1-10. |
| 9 | Callesen T O, Gonzalez C V, Bastos Campos F, et al. Understanding carbon sequestration, allocation, and ecosystem storage in a grassed vineyard. Geoderma Regional, 2023, 34: e00674. |
| 10 | Brunori E, Farina R, Biasi R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems & Environment, 2016, 223: 10-21. |
| 11 | Tezza L, Vendrame N, Pitacco A. Disentangling the carbon budget of a vineyard: the role of soil management. Agriculture, Ecosystems & Environment, 2019, 272: 52-62. |
| 12 | Hu B, Lin L, Fang Y J, et al. Application of chitosan-lignosulfonate composite coating film in grape preservation and study on the difference in metabolites in fruit wine. Coatings, 2022, 12(4): 494. |
| 13 | Du H J, Zhao S W, Wei Y E, et al. Evaluation of the suitability of meteorological conditions for wine grapes at the eastern foot of Helan Mountains during the whole reproductive period. Journal of Ningxia University (Natural Science Edition), (2024-09-11)[2024-11-16]. https://doi.org/10.20176/j.cnki.nxdz.000038. |
| 杜宏娟, 赵斯文, 魏月娥, 等. 贺兰山东麓酿酒葡萄全生育期气象条件适宜度评价. 宁夏大学学报(自然科学版), (2024-09-11) [2024-11-16]. https://doi.org/10.20176/j.cnki.nxdz.000038. | |
| 14 | Ma L W, Li J P, Han Y J, et al. Meteorological conditions and rating method of quality formation of ‘Cabernet Sauvignon’ grape in eastern foothills of Helan Mountain. Chinese Journal of Eco-Agriculture, 2018, 26(3): 453-466. |
| 马力文, 李剑萍, 韩颖娟, 等. 贺兰山东麓‘赤霞珠’品质形成气象条件与评级方法研究. 中国生态农业学报, 2018, 26(3): 453-466. | |
| 15 | Geng K Q, Zhang Y X, LYU D, et al. Effects of water stress on the sugar accumulation and organic acid changes in Cabernet Sauvignon grape berries. Horticultural Science, 2022, 49(3): 164-178. |
| 16 | Li Y S, Xiao J N, Yan Y F, et al. Multivariate analysis and optimization of the relationship between soil nutrients and berry quality of Vitis vinifera cv. cabernet franc vineyards in the eastern foothills of the Helan Mountains, China. Horticulturae, 2024, 10(1): 61. |
| 17 | Ren J Z. Research methods in pratacultural science. Beijing: China Agriculture Press, 1998. |
| 任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998. | |
| 18 | Liu S Y, Zhan X H, Lin K F. Procedural regulations regarding the enviroment quality monitoring of soil, NY/T 395-2012. Beijing: China Agriculture Press, 2012. |
| 刘素云, 战新华, 林匡飞. 农田土壤环境质量监测技术规范, NY/T 395-2012. 北京: 中国农业出版社, 2012. | |
| 19 | Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. | |
| 20 | LYU J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in an oak forest and a black locust plantation in the Loess hilly region. Acta Ecologica Sinica, 2017, 37(10): 3385-3393. |
| 吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征. 生态学报, 2017, 37(10): 3385-3393. | |
| 21 | Rovira P, Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 2002, 107(1/2): 109-141. |
| 22 | Guo L J, Li Y, Li M, et al. Spatial variability of soil water repellency and soil physical-chemical properties in saline-alkaline field. Acta Pedologica Sinica, 2011, 48(2): 277-285. |
| 郭丽俊, 李毅, 李敏, 等. 盐渍化农田土壤斥水性与理化性质的空间变异性. 土壤学报, 2011, 48(2): 277-285. | |
| 23 | Liu X M, Rao H L, Ding X X, et al. Effects of different mixed forest types on soil organic carbon and soil respiration in Phyllostachys edulis J. Houz forest. Chinese Journal of Applied & Environmental Biology, 2021, 27(1): 71-80. |
| 刘鑫铭, 饶惠玲, 丁新新, 等. 不同混交类型对毛竹林土壤有机碳和土壤呼吸的影响. 应用与环境生物学报, 2021, 27(1): 71-80. | |
| 24 | Xie X, Lu Y H, Liao Y L, et al. Effects of returning Astragalus sinicus and rice straw to replace partial fertilizers on double season rice yield and soil labile organic carbon. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598. |
| 谢雪, 鲁艳红, 廖育林, 等. 紫云英与稻草还田替代部分化肥对双季稻产量和土壤活性有机碳的影响. 中国农业科学, 2023, 56(18): 3585-3598. | |
| 25 | Bremer E, Janzen H H, Johnston A M. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science, 1994, 74(2): 131-138. |
| 26 | National Soil Census Office. Provisional technical regulations for the second national soil census. Beijing: Agriculture Press, 1979. |
| 全国土壤普查办公室. 全国第二次土壤普查暂行技术规程. 北京: 农业出版社, 1979. | |
| 27 | Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedologica Sinica, 2017, 54(5): 1047-1056. |
| 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017, 54(5): 1047-1056. | |
| 28 | Zhang Z R, Zhao Z M, Deng Z W, et al. Soil organic carbon stocks and spatial distribution characteristics of forest land in Meizhou city. Forestry and Environmental Science, 2022, 38(2): 153-158. |
| 张中瑞, 赵志明, 邓智文, 等. 梅州市林地土壤有机碳储量及空间分布特征. 林业与环境科学, 2022, 38(2): 153-158. | |
| 29 | Zhao M Y, Liu Y X, Zhang X Y. A review of research advances on carbon sinks in farmland ecosystems. Acta Ecologica Sinica, 2022, 42(23): 9405-9416. |
| 赵明月, 刘源鑫, 张雪艳. 农田生态系统碳汇研究进展. 生态学报, 2022, 42(23): 9405-9416. | |
| 30 | Wang Z X. Characteristics of soil organic carbon of grape land in different years in eastern piedmont of Helan Mountains. Yinchuan: Ningxia University, 2020. |
| 王志秀. 贺兰山东麓不同年限葡萄地土壤有机碳变化特征研究. 银川: 宁夏大学, 2020. | |
| 31 | Liang Q, Chen H Q, Gong Y S, et al. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the north China Plain. Nutrient Cycling in Agroecosystems, 2012, 92(1): 21-33. |
| 32 | Li J, Wen Y C, Li X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the north China Plain. Soil and Tillage Research, 2018, 175: 281-290. |
| 33 | Brar B S, Singh K, Dheri G S. Carbon sequestration and soil carbon pools in a rice-wheat cropping system: effect of long-term use of inorganic fertilizers and organic manure. Soil and Tillage Research, 2013, 128: 30-36. |
| 34 | Poirier V, Angers D A, Rochette P, et al. Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil. Biology and Fertility of Soils, 2013, 49(5): 527-535. |
| 35 | Whalen J K, Gul S, Poirier V, et al. Transforming plant carbon into soil carbon: process-level controls on carbon sequestration. Canadian Journal of Plant Science, 2014, 94(6): 1065-1073. |
| 36 | Zhang S, Wang L C, Huang Z C, et al. Effects of conservation tillage on active soil organic carbon composition. Journal of Soil and Water Conservation, 2015, 29(2): 226-231, 252. |
| 张赛, 王龙昌, 黄召存, 等. 土壤活性有机碳不同组分对保护性耕作的响应. 水土保持学报, 2015, 29(2): 226-231, 252. | |
| 37 | Zhang M M, Liu T X, Duan L M, et al. Carbon isotope characteristics of atmosphere-leaf-litter-soil continuum in typical vegetation types of semi-arid sand dune and meadow. Acta Ecologica Sinica, 2022, 42(18): 7663-7675. |
| 张苗苗, 刘廷玺, 段利民, 等. 半干旱沙丘与草甸典型植被类型区大气-叶片-凋落物-土壤连续体碳同位素特征. 生态学报, 2022, 42(18): 7663-7675. | |
| 38 | Gross C D, Harrison Z B. The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, 2019, 3(2): 28. |
| 39 | Zhang Y A, Gao M, Yu C Y, et al. Soil nutrients, enzyme activities, and microbial communities differ among biocrust types and soil layers in a degraded Karst ecosystem. Catena, 2022, 212: 106057. |
| 40 | Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 2003, 35(1): 167-176. |
| 41 | von Lützow M, Kögel-Knabner I, Ekschmitt K, et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39(9): 2183-2207. |
| 42 | Cressey E L, Dungait J A J, Jones D L, et al. Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biology and Biochemistry, 2018, 122: 60-70. |
| 43 | Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12(1): 1-10. |
| 44 | Yang S Q, Tang F, Yang H, et al. Effects of peach tree planting patters on soil organic carbon fractions and carbon pool management index in southern Yunnan. Acta Ecologica Sinica, 2023, 43(1): 290-303. |
| 杨淑琪, 唐芬, 杨桦, 等. 滇南地区桃树种植模式对土壤有机碳组分及碳库管理指数的影响. 生态学报, 2023, 43(1): 290-303. | |
| 45 | Pang D, Cui M, Liu Y, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecological Engineering, 2019, 138: 391-402. |
| 46 | Zhang F, Wang X J, Guo T W, et al. Soil organic and inorganic carbon in the loess profiles of Lanzhou area: implications of deep soils. Catena, 2015, 126: 68-74. |
| 47 | Huang Y, Song X, Wang Y, et al. Size distribution and vulnerability of the global soil inorganic carbon. Science, 2024, 384(6692): 233-239. |
| 48 | Zhang P, Chen X L, Wei T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil and Tillage Research, 2016, 160: 65-72. |
| 49 | Ding X L, Han X Z, Liang Y, et al. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil and Tillage Research, 2012, 122: 36-41. |
| [1] | 秦文利, 张静, 肖广敏, 崔素倩, 叶建勋, 智健飞, 张立锋, 谢楠, 冯伟, 刘振宇, 潘璇, 代云霞, 刘忠宽. 绿肥部分替代化肥氮对土壤物理性状的影响[J]. 草业学报, 2025, 34(6): 27-45. |
| [2] | 魏孔钦, 赵俊威, 张前兵. 施磷对紫花苜蓿土壤呼吸速率及活性有机碳组分的影响[J]. 草业学报, 2024, 33(2): 80-92. |
| [3] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
| [4] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
| [5] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
| [6] | 王星, 于双, 许冬梅, 宋珂辰. 不同恢复措施对退化荒漠草原土壤碳氮及其组分特征的影响[J]. 草业学报, 2022, 31(1): 26-35. |
| [7] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
| [8] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
| [9] | 王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响[J]. 草业学报, 2020, 29(10): 58-69. |
| [10] | 程瑞希, 字洪标, 罗雪萍, 杨有芳, 代迪, 王艳丽, 所尔阿芝, 王长庭. 青海省森林林下草本层化学计量特征及其碳储量[J]. 草业学报, 2019, 28(7): 26-37. |
| [11] | 李琳, 赵威. 豫西北地区暖性灌草丛类草地生态系统固碳特征[J]. 草业学报, 2019, 28(5): 26-35. |
| [12] | 于双, 许冬梅, 许爱云, 刘金龙, 陶利波. 不同恢复措施对宁夏荒漠草原土壤碳氮储量的影响[J]. 草业学报, 2019, 28(3): 12-19. |
| [13] | 张苗苗, 陈伟, 林丽, 张德罡, 吴玉鑫, 肖海龙. 青海省不同高寒草地土壤主要养分及可溶性有机碳特性研究[J]. 草业学报, 2019, 28(3): 20-28. |
| [14] | 王旭洋, 李玉强, 连杰, 罗永清, 牛亚毅, 龚相文. CENTURY模型在不同生态系统的土壤有机碳动态预测研究进展[J]. 草业学报, 2019, 28(2): 179-189. |
| [15] | 于双, 陶利波, 许冬梅, 许爱云, 刘金龙. 封育对荒漠草原土壤有机碳及其活性组分的影响[J]. 草业学报, 2019, 28(2): 190-196. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||