草业学报 ›› 2014, Vol. 23 ›› Issue (5): 241-248.DOI: 10.11686/cyxb20140528
马文彬,姚拓*,王国基,张玉霞,荣良燕
收稿日期:
2014-04-03
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
Email:yaotuo@gsau.edu.cn
作者简介:
马文彬(1989-),女,甘肃会宁人,在读硕士。 E-mail:843606723@qq.com
基金资助:
国家自然基金(31360584),现代农业产业技术体系(CARS-35)和甘肃省农业科技创新项目(GNCX-2012-45)资助
MA Wen-bin,YAO Tuo,WANG Guo-ji,ZHANG Yu-xia,RONG Liang-yan
Received:
2014-04-03
Online:
2014-10-20
Published:
2014-10-20
摘要:
通过测定分离自箭筈豌豆和玉米根际4株细菌的固氮酶活性、溶磷量及分泌生长素能力,将其制成植物根际接种剂,并结合半固体培养试验测定接种剂对箭筈豌豆生长的影响。结果表明,菌株J3-1、J1-15和Y16具备溶磷和分泌生长素能力,J1-15的溶磷能力最强,为548.9 mg/L,Y16分泌生长素能力最好,达17.8 μg/mL,且菌株Y16具较强固氮能力,J3固氮酶活性为366.51 C2H4 nmol/(mL·h)。与对照组相比,单一菌株制备的接种剂处理(Y16)可使箭筈豌豆地上生物量、地下生物量分别显著增加104.5%和254.1%(P<0.05),复合接种剂处理F(J3-1+J1-15+Y16+J3)使箭筈豌豆地上和地下生物量分别增加76.1%和192.3%。综合各指标,复合接种剂处理效果明显优于单一接种剂,处理F(J3-1+J1-15+Y16+J3)可使箭筈豌豆株高、根长、根表面积、根体积、根系活力,分别较对照增加29.4%,70.0%,174.0%,194.6%,38.3%。这主要是由于菌种间的互作效应造成的。
中图分类号:
马文彬,姚拓,王国基,张玉霞,荣良燕. 根际促生菌筛选及其接种剂对箭筈豌豆生长影响的研究[J]. 草业学报, 2014, 23(5): 241-248.
MA Wen-bin,YAO Tuo,WANG Guo-ji,ZHANG Yu-xia,RONG Liang-yan. Assessment of rhizobacteria strains for Vicia sativa[J]. Acta Prataculturae Sinica, 2014, 23(5): 241-248.
Reference:[1] Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system[J]. Canadian Journal of Microbiology, 2008, 54(10): 876-886.[2] Oliveira C A, Alves V M C, Marriel I E. Phosphate-solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry, 2009, 41(9): 1782-1787.[3] Chen Z X, Ma S W, Liu L. Studies on phosphorus solubilizing activity of a strain of phosphor bacteria isolated from chestnut type soil in China[J]. Bioresource Technology, 2008, 99(14): 6702-6707.[4] Hafeez F Y, Yasmin S, Ariani D, et al. Plant growth-promotingbacteria as biofertilizer[J]. Agronomy for Sustainable Development, 2006, 26: 143-150.[5] Suneja P, Dudeja S S, Narula N. Development of multiple coinoculants of different biofertilizers and their interaction with plants[J]. Archives of Agronomy and Soil Science, 2007, 53(2): 221-230.[6] Chen Z Z, Zhou S S. 333 / A spring vetch Breeding and Popularization[M]. Lanzhou: Gansu Ethnic Publishing House, 1991.[7] Wang D, Ren J Z. Pasture science monographs[M]. Nanjing: Jiangsu Science and Technology Publishing House, 1989.[8] Li Q. Alpine pastoral Arrow peas and oats mixed experiment[J]. China grassland and forage, 1984, 1(1): 38-41.[9] Zhao Q. Northern low-yielding green manure crop cultivation and use of soil practical[M]. Tianjin: Tianjin Science and Technology Translation and Publishing Corporation, 2010.[10] Zeng X C, Wang W M, Luo M N, et al. Effects of different element deficiencies on soybean growth and root morphology[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 1032-1036.[11] Wang S Q, Han X Z, Yan J, et al. Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean[J]. Chinese Journal of Soil Science, 2010, 41(3): 644-649.[12] Ding H, Zhang Z M, Dai L X, et al. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress[J]. Acta Ecologica Sinica, 2013, 33(17): 5169-5176.[13] Liu S, Li T X, Ji L, et al. Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments[J]. Acta Prataculturae Sinica, 2013, 22(3): 211-217.[14] Hafeez F Y, Malik K A.Manual on Biofertilizer Technology[M]. Pakistan: NIBGE, 2000.[15] Malik K A, Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphere and Quantification of N2-Fixation[A]. In: Nitrogen Fixation with Nonlegumes[C]. Skinner F A, Bodderand R M, Fendrik I, (Eds). The Netherlands: Kluwer Academic Publishers, 1989: 301-310.[16] Yao T, Zhang D G, Hu Z Z. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region Ⅰ Isolation and identification[J]. Acta Prataculturae Sinica, 2004, 13(2): 106-111.[17] Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region ⅡPhosphate-solubilizing power and auxin production[J]. Acta Prataculturae Sinica, 2004, 13(3): 85-90.[18] Ren D M, Zhang X X, Dong D, et al. Studies on taxonomy and microbiostatic activity of antagonistic strain Kc-t99[J]. Biotechnology Bulletin, 2011, 4(4): 153-157.[19] Whiting S N, Neumann P M, Baker J M. Applying a solute transfer model to phytoextraction; Zinc acquisition by Thaspi caerulescens[J]. Plant Soil, 2003, 249: 45-56.[20] Hamdali H, Ouhdouch Y. Rock phosphate solubilizing Actinomycetes Screening for plant growth-promoting activities[J]. World Journal of Microbiology and Biotechnology, 2008, 24: 2565-2575.[21] Mirz M S, Rasul G, Mehnaz S. Beneficial effects of inoculated nitrogen-fixing bacteria on rice[J]. Biology and Fertility of Soils, 2000, 31: 191-204.[22] Oliveira A M, Urquiaga S, Dobereiner J, et al. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants[J]. Plant Soil, 2002, 242: 205-215.[23] Hu J C, Xue D L, Ma C X. Research advances in plant growth-promoting rhizobacteria and its application prospects[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966.[24] Kang Y J, Shen M, Wang H L, et al. Effects of two plant growth-promoting rhizobacteria(PGPR) on yardlong bean early seedlings growth and indigenous soil bacterial community[J]. Journal of Agro-Environment Science, 2012, 31(8): 1537-1543.[25] Liu J L, Fang F, Shi X H, et al. Isolation and characterization of PGPR from the rhizosphere of the Avena sativa in saline-alkali soil[J]. Acta Prataculturae Sinica, 2013, 22(2): 132-139.[26] Yao T, Pu X P, Zhang D G, et al. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region Ⅲ Effect on Avena sativa growth and quantification of nitrogen fixed[J]. Acta Prataculturae Sinica, 2004, 13(5): 101-105.[27] Zhang Y, Zhu Y, Yao T, et al. Interactions of four PGPRs isolated from pasture rhizosphere[J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37.[28] Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa[J]. Acta Prataculturae Sinica, 2013, 22(5): 104-112.[29] Wang N, Qin Y. Effects of AM fungus on root morphology of host plant bidens pilosa L.[J]. Journal of Anhui Agricultural Sciences, 2012, 40(1): 13-14.[30] Feng L, Zhang L H, Tian X S. Effect of pseudomonas flurosecens on rhizosphere microorganisms and root activity of tobacco[J]. Journal of Agro-Environment Science, 2007, 26(Supplement): 537-539.[31] Bonser A, Lynchj P, Snapp S. Effect of Phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132: 281-288.[32] Zhao H, Xu F S, Shi L. Advances in plant root morphology adaptability to phosphorus deficiency stress[J]. Chinese Bulletin of Botany, 2006, 23(4): 409-417. 参考文献:[1] Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system[J]. Canadian Journal of Microbiology, 2008, 54(10): 876-886.[2] Oliveira C A, Alves V M C, Marriel I E. Phosphate-solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry, 2009, 41(9): 1782-1787.[3] Chen Z X, Ma S W, Liu L. Studies on phosphorus solubilizing activity of a strain of phosphor-bacteria isolated from chestnut type soil in China[J]. Bioresource Technology, 2008, 99(14): 6702-6707.[4] Hafeez F Y, Yasmin S, Ariani D, et al. Plant growth-promotingbacteria as biofertilizer[J]. Agronomy for Sustainable Development, 2006, 26: 143-150.[5] Suneja P, Dudeja S S, Narula N. Development of multiple co-inoculants of different biofertilizers and their interaction with plants[J]. Archives of Agronomy and Soil Science, 2007, 53(2): 221-230.[6] 陈哲忠, 周省善. 333/A 春箭筈豌豆的选育与推广[M]. 兰州: 甘肃民族出版社, 1991.[7] 王栋, 任继周. 牧草学各论[M]. 南京: 江苏科学技术出版社, 1989.[8] 李琪. 高寒牧区箭豌豆与燕麦混播实验[J]. 中国草原与牧草, 1984, 1(1): 38-41.[9] 赵秋. 北方低产土壤实用绿肥作物栽培与利用[M]. 天津: 天津科技翻译出版公司, 2010.[10] 曾秀成, 王文明, 罗敏娜, 等. 缺素培养对大豆营养生长和根系形态的影响[J]. 植物营养与肥料学报, 2010, 16(4): 1032-1036.[11] 王树起, 韩晓增, 严君, 等. 缺磷胁迫对大豆根系形态和氮磷吸收积累的影响[J]. 土壤通报, 2010, 41(3): 644-649.[12] 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应[J]. 生态学报, 2013, 33(17): 5169-5176.[13] 刘霜, 李廷轩, 戢林, 等. 不同磷处理下两种生态型粗齿冷水花的富磷特征及根系形态差异[J]. 草业学报, 2013, 22(3): 211-217.[14] Hafeez F Y, Malik K A.Manual on Biofertilizer Technology[M]. Pakistan: NIBGE, 2000.[15] Malik K A, Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphere and Quantification of N2-Fixation[A]. In: Nitrogen Fixation with Nonlegumes[C]. Skinner F A, Bodderand R M, Fendrik I, (Eds). The Netherlands: Kluwer Academic Publishers, 1989: 301-310.[16] 姚拓, 张德罡, 胡自治. 高寒地区燕麦根际联合固氮菌研究Ⅰ固氮菌分离及鉴定[J]. 草业学报, 2004, 13(2): 106-111.[17] 姚拓. 高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报, 2004, 13(3): 85-90.[18] 任大明, 张晓轩, 董丹, 等. 拮抗菌株Kc-t99的鉴定及其抑菌活性研究[J]. 生物技术, 2011, 4(4): 153-157.[19] Whiting S N, Neumann P M, Baker J M. Applying a solute transfer model to phytoextraction; Zinc acquisition by Thaspi caerulescens[J]. Plant Soil, 2003, 249: 45-56.[20] Hamdali H, Ouhdouch Y. Rock phosphate-solubilizing Actinomycetes Screening for plant growth-promoting activities[J]. World Journal of Microbiology and Biotechnology, 2008, 24: 2565-2575.[21] Mirz M S, Rasul G, Mehnaz S. Beneficial effects of inoculated nitrogen-fixing bacteria on rice[J]. Biology and Fertility of Soils, 2000, 31: 191-204.[22] Oliveira A M, Urquiaga S, Dobereiner J, et al. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants[J]. Plant Soil, 2002, 242: 205-215.[23] 胡江春, 薛德林, 马成新. 植物根际促生菌(PGPR)的研究与应用前景[J]. 应用生态学报, 2004, 15(10): 1963-1966.[24] 康贻军, 沈敏, 王欢莉, 等. 两株PGPR对豇豆苗期生长及土著细菌群落的影响[J]. 农业环境科学学报, 2012, 31(8): 1537-1543.[25] 刘佳莉, 方芳, 史煦涵, 等. 2株盐碱地燕麦根际促生菌的筛选及其促生作用研究[J]. 草业学报, 2013, 22(2): 132-139.[26] 姚拓, 蒲小鹏, 张德罡, 等. 高寒地区燕麦根际联合固氮菌研究Ⅲ. 固氮菌对燕麦生长的影响及其固氮量测定[J]. 草业学报, 2004, 13(5): 101-105.[27] 张英, 朱颖, 姚拓, 等. 分离自牧草根际四株促生菌株PGPR互作效应研究[J]. 草业学报, 2013, 22(1): 29-37.[28] 韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响[J]. 草业学报, 2013, 22(5): 104-112.[29] 王宁, 秦艳. AM 真菌对宿主植物三叶鬼针草根系形态的影响[J]. 安徽农业科学, 2012, 40(1): 13-14.[30] 冯莉, 张玲华, 田兴山. 荧光假单胞菌对烟草根际微生物种群数量及根系活力的影响[J]. 农业环境科学学报, 2007, 26(增刊): 537-539.[31] Bonser A, Lynchj P, Snapp S. Effect of Phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132: 281-288.[32] 赵华, 徐芳森, 石磊. 植物根系形态对低磷胁迫应答的研究进展[J]. 植物学通报, 2006, 23(4): 409-417. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||