草业学报 ›› 2014, Vol. 23 ›› Issue (3): 144-151.DOI: 10.11686/cyxb20140316
季杨1,2,张新全1,*,彭燕1,梁小玉1,2,黄琳凯1,马啸1,马迎梅1
收稿日期:
2013-04-28
出版日期:
2014-06-20
发布日期:
2014-06-20
通讯作者:
E-mail:zhangxq@sicau.edu.cn
作者简介:
季杨(1983-),男,四川崇州人,博士。E-mail:jiyang221@163.com
基金资助:
JI Yang1,2,ZHANG Xin-quan1,PENG Yan1,LIANG Xiao-yu2,HUANG Lin-kai1,MA Xiao1,MA Ying-mei1
Received:
2013-04-28
Online:
2014-06-20
Published:
2014-06-20
摘要: 以2种不同耐旱性的鸭茅基因型(敏感型“01998”和耐旱型“宝兴”) 为研究对象,研究干旱胁迫下鸭茅根、叶膜质过氧化作用,渗透调节和保护酶活性的生理变化,探讨鸭茅耐旱机制。结果表明, 随着干旱胁迫时间的延长,2种基因型鸭茅根系及叶片电导率,丙二醛含量逐渐增加,渗透调节物质可溶性糖和游离脯氨酸不断积累,而可溶性蛋白含量、超氧化物歧化酶、过氧化氢酶、过氧化物酶和抗坏血酸过氧化物酶活性呈先上升后下降趋势。其中,叶片脂膜过氧化产物MDA累积和膜透性增幅较大,说明在持续的干旱胁迫下叶片所受伤害重于根系。而渗透物质积累方面,叶片中可溶性糖和可溶性蛋白的含量高于根系,而根系中的游离氨基酸的相对增加量则大于叶片,这可能与叶片是糖的主要产生部位,而根系则可以合成氨基酸有关。研究还表明,干旱胁迫第24天,耐旱型品种“宝兴”根系及叶片APX、POD活性显著高于“01998” 表明重度干旱胁迫并没有降低APX和POD酶清除H2O2和单态氧的能力,说明“宝兴”鸭茅在干旱条件下抗氧化清除系统响应更积极、更持久。
中图分类号:
季杨,张新全,彭燕,梁小玉,黄琳凯,马啸,马迎梅. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响[J]. 草业学报, 2014, 23(3): 144-151.
JI Yang,ZHANG Xin-quan,PENG Yan,LIANG Xiao-yu,HUANG Lin-kai,MA Xiao,MA Ying-mei. Effects of drought stress on lipid peroxidation,osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass[J]. Acta Prataculturae Sinica, 2014, 23(3): 144-151.
Reference: [1]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448. [2]Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. [3]Gao M, Li Y, Zhong P F, et al. Physiological responses of Nitraria tangutorum from different geographic provenances under osmotic stress[J]. Acta Prataculturae Sinica, 2011, 20(3): 99-107. [4]Sairam R K, Vasanthan B, Ajay A. Calcium regulates gladiolus flower senescence by influencing antioxidative enzymes activity[J]. Acta Physiologiae Plantarum, 2011, 33: 1897-1904. [5]Sun C X, Liu Z G, Jing Y D. Effect of water stress on activity and isozyme of the major defense-enzyme in Maize leaves[J]. Journal of Maize Sciences, 2003, 11(1): 63-66. [6]Mustapha E, Ahmadou M V, Hahib K. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit[J]. Acta Physiologiae Plantarum, 2009, 31: 711-721. [7]Wang Z, Gao H W, Sun G Z, et al. Study on germination characteristics and drought-resistance evaluation of Dactylis glomerata L. under Osmotic Stress[J]. Chinese Journal of Grassland, 2008, 30(1): 50-55. [8]Gao Y, Zhang X Q, Xie W Z. Study on the drought tolerance of Dactylis glomerata lines[J]. Hubei Agricultural Sciences, 2007, 46(6): 981-984. [9]Li Y, Shi S L, Sun G Z, et al. Physiological study on drought resistance of Dactylis glomerata under drought stress at seedling stage[J]. Chinese Journal of Grassland, 2007, 29(2): 35-40. [10]Chen T H H, Gusta L V. Abscisic acid-induced freezing resistance in cultured plant cells[J]. Plant Physiology, 1983, 73: 71-75. [11]Barrs H D, Weatherley P E. A re examination of the relative turgidity techniques for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15: 413-428. [12]Dhindsa R S, Dhindsa P P, Thorpe TA. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32: 93-101. [13]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science, 1981, 21: 43-47. [14]Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59: 309-314. [15]Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods in Enzymology, 1955, 2: 764-775. [16]Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants[J]. Plant Cell Physiology, 1994, 35(3): 497-504. [17]Li H S. Experimental principles and techniques of plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2002. [18]Gao J F. Experimental techniques of plant physiology[M]. Beijing: World Book Press, 2000: 137-138. [19]Chen S Y. Membrane-lipid peroxidation and plant stress[J]. Chinese Bulletin of Botany, 1989, 6(4): 211-217. [20]Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation of Lespedeza davurica to drought stress and re-watering[J]. Acta Prataculturae Sinica, 2012, 21(2): 51-61. [21]Song J Z, Li P P, Fu W G. Effect of water stress and rewatering on the physiological and biochemical characteristics of Phalaris arundinacea[J]. Acta Prataculturae Sinica, 2012, 21(2): 62-69. [22]Fan R P, Zhou Q, Zhou B, et al. Effects of salinization stress on growth and the antioxidant system of tall fescue[J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117. [23]Sharma P, Dubey R S. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J]. Plant growth regulation, 2005, 46(3): 209-221. [24]Li Z, Peng Y, Ma X. Different response on drought tolerance and post drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism[J]. Acta Physiologiae Plantarum, 2013, 35(1): 213-222. [25]Morgan J M, Hare R A, Fletcher R J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments[J]. Crop and Pasture Science, 1986, 37(5): 449-457. [26]Shao S G, Yan B L, Xu Y H, et al. Cd2+ effect of Cd2+ stress on Porphyra Yezoensis[J]. Journal of Henan Normal University (Natural Science), 2006, 34(2): 113-116. [27]Kang J M, Yang Q C, Fan F C. Effects of drought stress on induced protein in the different drought resistance Alfalfa leaf[J]. Acta Agrestia Sinica, 2005, 13(3): 199-202. [28]Chen M T, Zhao Z, Quan J E. Variation of soluble protein components and contents in seedling root tips of four trees under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(6): 1157-1165. [29]Han R L, Li L X, Liang Z S. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 23-27. [30]Wang Z. Plant physiology[M]. Beijing: China Agriculture Press, 2010: 422-439. [31]Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell & Environment, 2005, 28(8): 1056-1071. [32]Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology, 1992, 43(1): 83-116. [33]Asada K. The water water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Biology, 1999, 50(1): 601-639. 参考文献: [1]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448. [2]Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. [3]高暝, 李毅, 种培芳, 等. 渗透胁迫下不同地理种源白刺的生理响应[J]. 草业学报, 2011, 20(3): 99-107. [4]Sairam R K, Vasanthan B, Ajay A. Calcium regulates gladiolus flower senescence by influencing antioxidative enzymes activity[J]. Acta Physiologiae Plantarum, 2011, 33: 1897-1904. [5]孙彩霞, 刘志刚, 荆艳东. 水分胁迫对玉米叶片关键防御酶系活性及其同工酶的影响[J]. 玉米科学, 2003, 11(1): 63-66. [6]Mustapha E, Ahmadou M V, Hahib K. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit[J]. Acta Physiologiae Plantarum, 2009, 31: 711-721. [7]王赞, 高洪文, 孙桂芝, 等. PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定[J]. 中国草地学报, 2008, 30(1): 50-55. [8]高杨, 张新全, 谢文刚. 干旱胁迫下鸭茅新品系抗旱性研究[J]. 湖北农业科学, 2007, 46(6): 981-984. [9]李源, 师尚礼, 孙桂芝, 等. 干旱胁迫下鸭茅苗期抗旱性生理研究[J]. 中国草地学报, 2007, 29(2): 35-40. [10]Chen T H H, Gusta L V. Abscisic acid-induced freezing resistance in cultured plant cells[J]. Plant Physiology, 1983, 73: 71-75. [11]Barrs H D, Weatherley P E. A re-examination of the relative turgidity techniques for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15: 413-428. [12]Dhindsa R S, Dhindsa P P, Thorpe TA. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32: 93-101. [13]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science, 1981, 21: 43-47. [14]Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59: 309-314. [15]Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods in Enzymology, 1955, 2: 764-775. [16]Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants[J]. Plant Cell Physiology, 1994, 35(3): 497-504. [17]李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2002. [18]高俊风. 植物生理学实验技术[M]. 北京: 世界图书出版社, 2000: 137-138. [19]陈少裕. 膜脂过氧化与植物逆境胁迫[J]. 植物学通报, 1989, 6(4): 211-217. [20]杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J]. 草业学报, 2012, 21(2): 51-61. [21]宋家壮, 李萍萍, 付为国. 水分胁迫及复水对虉草生理生化特性的影响[J]. 草业学报, 2012, 21(2): 62-69. [22]樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响[J]. 草业学报, 2012, 21(1): 112-117. [23]Sharma P, Dubey R S. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J]. Plant growth regulation, 2005, 46(3): 209-221. [24]Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism[J]. Acta Physiologiae Plantarum, 2013, 35(1): 213-222. [25]Morgan J M, Hare R A, Fletcher R J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments[J]. Crop and Pasture Science, 1986, 37(5): 449-457. [26]邵世光, 阎斌伦, 许云华, 等. Cd2+ 对条斑紫菜的胁迫作用[J]. 河南师范大学学报: 自然科学版, 2006, 34(2): 113-116. [27]康俊梅, 杨青川, 樊奋成. 干旱对苜蓿叶片可溶性蛋白的影响[J]. 草地学报, 2005, 13(3): 199-202. [28]陈明涛, 赵忠, 权金娥. 干旱对4种苗木根尖可溶性蛋白组分和含量的影响[J]. 西北植物学报, 2010, 30(6): 1157-1165. [29]韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1): 23-27. [30]王忠. 植物生理学[M]. 北京: 中国农业出版社, 2010: 422-439. [31]Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell & Environment, 2005, 28(8): 1056-1071. [32]Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology, 1992,43(1); 83-116. [33]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Biology, 1999, 50(1): 601-639. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 293
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||