草业学报 ›› 2012, Vol. 21 ›› Issue (2): 123-132.
董洁,王学敏*,王赞,高洪文,孙桂枝
收稿日期:
2011-11-25
出版日期:
2012-02-25
发布日期:
2012-04-20
通讯作者:
E-mail: wangxm@iascaas.net.cn
作者简介:
董洁(1982-),女,山西太原人,在读博士。E-mail: dongjie1980@126.com
基金资助:
DONG Jie, WANG Xue-min, WANG Zan, GAO Hong-wen, SUN Gui-zhi
Received:
2011-11-25
Online:
2012-02-25
Published:
2012-04-20
摘要: 二氢黄酮醇还原酶(dihydroflavonol reductase,DFR)是缩合单宁生物合成途径中的关键酶,在单宁的合成中起着重要的作用。根据同源克隆的原理,利用RACE技术,从“中苜一号”苜蓿中克隆得到DFR基因(MsDFR),并对其进行了序列分析及不同胁迫条件下的表达模式分析。结果表明,MsDFR基因cDNA全长1 402 bp,包括开放阅读框1 023 bp,编码340个氨基酸,在N端存在1个NADP结合位点“VTGASGFIGSWLVMRLMERGY”,中部存在1个底物特异性结合的氨基酸基序“TLNVTEDQKPLWDESCWSDVEFCRRV”。实时荧光定量PCR结果表明,该基因在荚果中表达量较高,根中较弱;在NaCl和GA3诱导下,MsDFR基因表达受到抑制;在黑暗条件下,该基因被诱导表达。由此推测“中苜一号”苜蓿中可能存在不依赖于GA3信号的单宁合成途径。
中图分类号:
董洁,王学敏,王赞,高洪文,孙桂枝. 紫花苜蓿二氢黄酮醇还原酶基因(MsDFR)的克隆与分析[J]. 草业学报, 2012, 21(2): 123-132.
DONG Jie, WANG Xue-min, WANG Zan, GAO Hong-wen, SUN Gui-zhi. Cloning and analysis of dihydroflavonol reductase (DFR) gene from Medicago sativa[J]. Acta Prataculturae Sinica, 2012, 21(2): 123-132.
[1] 韩明鹏, 王颜华, 高永革, 等. 高温胁迫下紫花苜蓿抑制消减文库的构建[J]. 草业学报, 2011, 20(5): 126-132. [2] 姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种植资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125. [3] Clark R T, Reid C S. Foamy bloat of cattle. A review[J]. Dairy Science, 1974, 57: 753-785. [4] 戎郁萍, 王堃. 苜蓿与放牧家畜臌涨病研究概况[J]. 草业科学, 2004, 21(12): 103-107. [5] Pierre P, Thierry G, Béatrice L E, et al. Crystal structure of grape dihydroflavonol 4-Reductase, a key enzyme in flavonoid Biosynthesis[J]. Journal of Molecular Biology, 2007, 368: 1345-1357. [6] 刘娟, 冯群芳, 张杰. 二氢黄酮醇4-还原酶基因(DFR)与花色的修饰[J]. 植物生理学通讯, 2005, 41(6): 715-716. [7] 宋艳波, 吴国良, 牛洪斌. 改良CTAB法在核桃叶片基因组DNA提取中的应用研究[J]. 山西农业大学学报(自然科学版), 2011, (2): 109-112. [8] Kenneth J, Thomas D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. [9] Baker M E, Blasco R. Expansion of the mammalian 3β-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus[J]. Federation of European Biochemical Societies Letters, 1992, 301: 89-93. [10] Deborah G, Jan V D, Nabila Y, et al. A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression[J]. Plant Molecular Biology, 1998, 36: 755-765. [11] Jordi B, Sílvia A, Roser G D, et al. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 resolution[J]. Journal of Molecular Biology, 1998, 282(2): 383-399. [12] Benach J, Filling C, Oppermann C T, et al. Structure of bacterial 3β/17β-hydroxysteroid dehydrogenase at 1.2 resolution: a model for multiple steroid recognition[J]. Biochemistry, 2002, 41(50): 14659-14668. [13] Johnson E T, Ryu S, Yi H, et al. Alteration of a single amino acid changes the substrate specificity of dihydrofavonol 4-reductase[J]. The Plant Journal, 2001, 25(3): 325-333. [14] Robbins M P, Bavage A D, Allison G, et al. A comparison of two strategies to modify the hydroxylation of condensed tannin polymers in Lotus corniculatus L.[J]. Phytochemistry, 2005, 66: 991-999. [15] Forkmann G. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering[J]. Plant Breeding, 1991, 106(1): 1-26. [16] Forkmann G, Stefan M. Metabolic engineering and applications of flavonoids[J]. Current Opinion Biotechnology, 2001, 2(2): 155-160. [17] Charrier B, Coronado C, Kondorosi A, et al. Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes[J]. Plant Molecular Biology, 1995, 29: 773-786. [18] Johnson E T, Yi H, Shin B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin- type anthocyanins[J]. The Plant Journal, 1999, 19(3): 81-85. [19] Thoden J B, Frey P A,Holden H M. Crystal structures of the oxidized and reduced forms of UDP-galactose 4-epimerase isolated from Escherichia coil[J]. Biochemistry, 1996, 35(8): 2557-2566. [20] Thoden J B, Frey P A, Holden H M. High-resolution X-ray structure of UDP-galactose 4-epimerase complexed with UDP-phenol[J]. Protein Science, 1996, 5(11): 2149-2161. [21] Thoden J B, Hegeman A D, Wesenberg G, et al. Structure analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry, 1997, 36(21): 6294-6304. [22] Inagaki Y, Johzuka H Y, Mori T, et al. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories[J]. Gene, 1999, 226(2): 181-188. [23] Tunen A J, Koes R E, Spelt C E, et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes[J]. The European Molecular Biology Organization Journal, 1988, 7(5): 1257-1263. [24] Helariutta Y, Elomaa P, Kotilainen M, et al. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae)[J]. Plant Molecular Biology, 1993, 22(2): 183-193. [25] Helariutta Y, Kotilainen M, Elomaa P, et al. Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17): 9033-9038. [26] Helariutta Y, Kotilainen M, Elomaa P, et al. Gerbera hybrida (Asteraceae) imposes regulation at several anatomical levels during inflorescence development on the gene for dihydroflavonol-4-reductase[J]. Plant Molecular Biology, 1995, 28(5): 935-941. [27] Helariutta Y, Elomaa P, Kotilainen M, et al. Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae)[J]. Plant Molecular Biology, 1995, 8(1): 47-60. [28] Xie D Y, Jackson L A, Cooper J D, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J]. Plant Physiology, 2004, 134(3): 979-994. [29] Singh K, Kumar S, Yadav S K, et al. Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis(L.) O. Kuntze][J]. Plant Biotechnology Reports, 2009, 3: 95-101. [30] Jeyaramraja P R, Pius P K, Kumar R R, et al. Soil moisyure stress-induced alteration in bioconstituents determining tea quality[J]. Journal of the Science of Food and Agriculture, 2003, 230: 1187-1191. [31] 廖祥儒, 张蕾, 徐景智, 等. 光在植物生长发育中的作用[J]. 河北大学学报(自然科学版), 2001, 21(3): 341-346. [32] 李平, 杨玲玲, 陈其新, 等. 两种策略分别克隆紫花苜蓿光敏色素A、B基因[J]. 草业学报, 2011, 20(6): 85-92. [33] 赵德修, 李茂寅, 邢建民, 等. 光质、光强和光期对水母莲愈伤组织生长和黄酮生物合成的影响[J]. 植物生理学报, 1999, 25(2): 27-132. [34] 王曼, 王小菁. 蓝光、紫外光的受体及其对CHS表达诱导的研究[J]. 植物学通报, 2002, 19(3): 265-271. [35] 王曼, 王小菁. 蓝光和蔗糖对拟南芥花色素苷积累和CHS基因表达的影响[J]. 热带亚热带植物学报, 2004, 12(3): 252-256. [36] Rabino I, Mancinelli A L. Light, temperature, and anthocyanin produetion[J]. Plant Physiology, 1986, 81(3): 922-924. [37] Dong Y H, Beuning L, Davies K, et al. Expression of pigmentation genes and Photo-regulation of anthocyanin biosynthesis in developing Royal Gala apple flowers[J]. Australian Journal of Plant Physiology, 1998, 25(2): 245-252. [38] 文樵夫, 沈红香, 姚允聪, 等. 苹果属观赏海棠McDFR的克隆及不同叶色品种间的表达差异[J]. 林业科学, 2010, 46(11): 16-24. [39] Joseph M, Erich G, Ronald K. How genes paint flowers and seeds[J]. Trends Plant Science, 1998, 3(6): 212-218. [40] Shirley B W, Hanley S, Goodman H M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations[J]. Plant Cell, 1992, 4(3): 333-347. [41] Katz A, Weiss D. Photocontrol of chs gene expression in petunia flowers[J]. Physiologia Plantarum, 1998, 102(2): 210-216. [42] 张艳, 柴岩, 冯佰利, 等. 苦荞和甜荞查尔酮合成酶基因的克隆及序列分析[J]. 西北植物学报, 2008, 28(3): 447-45. [43] 徐纪尊, 王丽辉, 潘庆玉. 观赏植物花色基因转化的研究进展[J]. 中国农业科技导报, 2006, 8(5): 56-60. [44] Kaneko M, Itoh H, Inukai Y, et al. Where to gibberellin biosynthesis and gibberellin signaling occur in rice plants[J]. The Plant Journal, 2003, 35(1): 104-115. [45] Stoddart J L, Thomas H, Grierson D. Genetic and hormonal regulation of stature[A]. Developmental Mutants in Plants[M]. Cambridge University Press, 1987: 155-180. [46] 孟祥春, 彭建宗, 王小菁. 光和糖对非洲菊花色素苷积累及CHS、DFR基因表达的影响[J]. 园艺学报, 2007, 34(1): 227-230. [47] Hosokawa K, Fukunaga Y, Fukushi E, et al. Production of acylated anthocyanins by blue flowers of Hyacinthus orient alis regenerated in vitro[J]. Phytochemistry, 1996, 41(6): 1531-1533. [48] Silverstone A L, Chang C, Krol E, et al. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana[J]. The Plant Journal, 1997, 12(1): 9-19. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||