[1] Butterbach-Bahl K, Kögel-Knabner I, Han X.Steppe ecosystems and climate and land-use changes-vulnerability, feedbacks and possibilities for adaptation. Plant & Soil, 2011, 340(1/2): 1-6. [2] Spence L A, Liancourt P, Boldgiv B, et al. Climate change and grazing interact to alter flowering patterns in the Mongolian steppe. Oecologia, 2014, 175(1): 251-60. [3] Wang D, Wu G L, Zhu Y J, et al. Grazing exclusion effects on above-and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 2014, 123: 113-120. [4] Wu G L, Du G Z, Liu Z H, et al. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant & Soil, 2009, 319: 115-126. [5] Han G, Hao X, Zhao M, et al. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture Ecosystems & Environment, 2008, 125(1/2/3/4): 21-32. [6] He N, Zhang Y, Dai J, et al. Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 2012, 22(5): 859-873. [7] Mavromihalis J A, Dorrough J, Clark S G, et al. Manipulating livestock grazing to enhance native plant diversity and cover in native grasslands. Rangeland Journal, 2013, 35(1): 95-108. [8] Xue Y L, Yin G M, Zhang Y J, et al. Responses strategy of morphology of Artemisia frigida to grazing intensity. Chinese Journal of Grassland, 2014, 36(6): 18-22. 薛艳林, 殷国梅, 张英俊, 等. 冷蒿形态对放牧强度的响应策略. 中国草地学报, 2014, 36(6): 18-22. [9] Li X L, Hou X Y, Wu X H, et al. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 2014, 38(5): 440-451. 李西良, 侯向阳, 吴新宏, 等. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 2014, 38(5): 440-451. [10] Schiborra A, Gierus M, Wan H W, et al. Short-term responses of a Stipa grandis/Leymus chinensis community to frequent defoliation in the semi-arid grasslands of Inner Mongolia, China. Agriculture Ecosystems & Environment, 2009, 132(1/2): 82-90. [11] Bullock J M, Franklin J, Stevenson M J, et al. A plant trait analysis of responses to grazing in a long-term experiment. Journal of Applied Ecology, 2001, 38(2): 253-267. [12] Jetter R, Kunst L, Samuels A L.Composition of plant cuticular waxes. Annual Plant Reviews, Biology of the Plant Cuticle, 2007, 23: 145-181. [13] Yeats T H, Rose J K C. The formation and function of plant cuticles. Plant Physiology, 2013, 163(1): 5. [14] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 2009, 151(4): 1918-1929. [15] González A, Ayerbe L.Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica, 2010, 172(3): 341-349. [16] Jenks M A, Gaston C H, Goodwin M S, et al. Seasonal variation in cuticular waxes on hosta genotypes differing in leaf surface glaucousness. Hortscience A Publication of the American Society for Horticultural Science, 2002, 37(4): 673-677. [17] Shepherd T, Robertson G W, Griffiths D W, et al. Effects of environment on the composition of epicuticular wax from kale and swede. Phytochemistry, 1995, 40(2): 407-417. [18] Gao J H, He Y J, Guo N, et al. Seasonal variations of leaf cuticular wax in herbs widely distributed in Chongqing. Acta Prataculturae Sinica, 2016, 25(1): 134-143. 高建花, 和玉吉, 郭娜, 等. 重庆地区野生草本植物叶表皮蜡质的季节性变化. 草业学报, 2016, 25(1): 134-143. [19] Bush R T, Mcinerney F A.Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica Et Cosmochimica Acta, 2013, 117(117): 161-179. [20] Nikoli B, Tesevic V, Bojovi S, et al. Chemotaxonomic implications of the n-alkane composition and the nonacosan-10-ol content in Picea omorika, Pinus heldreichii, and Pinus peuce. Chemistry & Biodiversity, 2013, 10(4): 677-686. [21] Dodd R S, Poveda M M.Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics & Ecology, 2003, 31(11): 1257-1270. [22] Yao L H, Ni Y, Guo N, et al. Leaf cuticular waxes in Poa pratensis and their responses to altitudes. Acta Prataculturae Sinica, 2018, 27(1): 97-105. 姚露花, 倪郁, 郭娜, 等. 草地早熟禾叶表皮蜡质及其对海拔变化的响应. 草业学报, 2018, 27(1): 97-105. [23] Reszkowska A, Krümmelbein J, Gan L, et al. Influence of grazing on soil water and gas fluxes of two Inner Mongolia steppe ecosystems. Soil & Tillage Research, 2011, 111(2): 180-189. [24] Sun J, Wang X, Cheng G, et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, Northern Tibetan Plateau. Plos One, 2014, 9(9): e108821. [25] Jing Z, Cheng J, Su J, et al. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engineering, 2014, 64(3): 171-178. [26] Wang X T, Hou Y L, Liu F, et al. Point pattern analysis of dominant populations in a degraded community in Leymus chinensis+Stipa grandis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2011, 35(12): 1281-1289. 王鑫厅, 侯亚丽, 刘芳, 等. 羊草+大针茅草原退化群落优势种群空间点格局分析. 植物生态学报, 2011, 35(12): 1281-1289. [27] Kim K S, Park S H, Kim D K, et al. Influence of water deficit on leaf cuticular waxes of soybean (Glycine max[L.] Merr.). International Journal of Plant Sciences, 2007, 168(3): 307-316. [28] Wei Z, Chen S P, Han X G, et al. Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 2009, 24(1): 99-108. [29] Wang S P, Wang Y F.Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia steppe. Acta Botanica Sinica, 2001, 43(4): 413-418. 汪诗平, 王艳芬. 不同放牧率下糙隐子草种群补偿性生长的研究. 植物学报, 2001, 43(4): 413-418. [30] Tong C, Wu J, Yong S, et al. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 2004, 59(1): 133-149. [31] Li J J, Huang J H, Xie S C.Plant wax and its response to environmental conditions: an overview. Acta Ecologica Sinica, 2011, 31(2): 565-574. 李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系. 生态学报, 2011, 31(2): 565-574. [32] Dai S, Guo J, Xu W, et al. Biosynthesis and regulation of cuticular wax and its effects on drought resistance of wheat. Plant Physiology Journal, 2016, 52(7): 979-988. 戴双, 郭军, 徐文, 等. 蜡质组成形态及其合成调控对小麦抗旱性的影响. 植物生理学报, 2016, 52(7): 979-988. [33] Zhu S Y, Qi J C, Lin L H, et al. Responses of epicuticular wax components in barley seedling leaves to PEG6000 stress and its impacts on epidermal permeability. Journal of Triticeae Crops, 2015, 35(3): 436-442. 朱双艳, 齐军仓, 林立昊, 等. PEG6000胁迫对大麦幼苗叶片表皮蜡质组分及其透性的影响. 麦类作物学报, 2015, 35(3): 436-442. [34] Yang H H, Shi X, Xia L F, et al. Analysis on composition and content of cuticular waxes on spikes of different wheat varieties (Lines). Journal of Triticeae Crops, 2017, 37(3): 403-408. 杨昊虹, 史雪, 夏凌峰, 等. 不同小麦品种(系)穗部表皮蜡质的成分及含量分析. 麦类作物学报, 2017, 37(3): 403-408. [35] Cameron K D, Teece M A, Bevilacqua E, et al. Diversity of cuticular wax among Salix species and Populus species hybrids. Phytochemistry, 2002, 60(7): 715-725. [36] Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. Anais Da Academia Brasileira De Ciencias, 2003, 75(4): 431-439. [37] Li Y.Effects of long-term fencing closure an soil and vegetation in mountain pasture of Bayanbullak. Xinjiang Agricultural Sciences, 2009. 李赟. 长期围封对亚高山草地土壤和植被的影响. 新疆农业科学, 2009. [38] Zhao J X, Qi B, Duojidunzhu, et al. Effects of short-term enclose on the community characteristics of three types of degraded alpine grasslands in the north Tibet. Pratacultural Science, 2011, 28(1): 59-62. 赵景学, 祁彪, 多吉顿珠, 等. 短期围栏封育对藏北3类退化高寒草地群落特征的影响. 草业科学, 2011, 28(1): 59-62. [39] Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe. Acta Prataculturae Sinica, 2009, 18(3): 12-19. 左万庆, 王玉辉, 王风玉, 等. 围栏封育措施对退化羊草草原植物群落特征影响研究. 草业学报, 2009, 18(3): 12-19. [40] Riederer M.Introduction: biology of the plant cuticle//annual plant reviews (volume 23): biology of the plant cuticle. Blackwell Publishing Ltd, 2007: 674-678. [41] Fukuda S, Satoh A, Kasahara H, et al. Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. Journal of Plant Research, 2008, 121(2): 179-189. [42] Bengtson C, Larsson S, Liljenberg C.Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiologia Plantarum, 1978, 44(4): 319-324. [43] Hatterman-Valenti H, Pitty A, Owen M.Environmental effects on velvetleaf (Abutilon theophrasti) epicuticular wax deposition and herbicide absorption. Weed Science, 2011, 59(1): 14-21. [44] Chachalis D, Reddy K N, Elmore C D.Characterization of leaf surface, wax composition, and control of redvine and trumpetcreeper with glyphosate. Weed Science, 2001, 49(2): 156-163. [45] Li J, Huang J, Ge J, et al. Chemotaxonomic significance of n-alkane distributions from leaf wax in genus of Sinojackia species (Styracaceae). Biochemical Systematics & Ecology, 2013, 49(49): 30-36. [46] Dodd R S, Rafii Z A, Power A B.Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytologist, 1998, 138(4): 699-708. |