[1] Wang Z, Li H, Ke Q, et al . Transgenic alfalfa plants expressing AtNDPK 2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 2014, 84: 67-77. [2] Wang Z, Su G, Li M, et al . Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiology and Biochemistry, 2016, 109: 199-208. [3] Yang J Y, Zheng W, Tian Y, et al . Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284. [4] Lin J, Wang Y, Sun S, et al . Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576: 234-241. [5] Yang C W, Li C Y, Yin H J, et al . Physiological responses of Triticum aestivum - Agropyron intermedium to salt stress and alkaline stress. Journal of Crops, 2007, 33(8): 1255-1261. 杨春武, 李长有, 尹红娟, 等. 小冰麦对盐胁迫和碱胁迫的生理响应. 作物学报, 2007, 33(8): 1255-1261. [6] Yang C W, Xu H H, Wang L L, et al . Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47(1): 79-86. [7] Huang L H, Liang Z W, Ma H Y. Effects of soda saline alkali stress on photosynthesis, transpiration rate and water use efficiency of Leymus chinensis . Acta Prataculturae Sinica, 2009, 18(5): 25-30. 黄立华, 梁正伟, 马红媛. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响. 草业学报, 2009, 18(5): 25-30. [8] Guo R, Shi L X, Yan C, et al . Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize ( Zea mays L.) seedlings. BMC Plant Biology, 2017, 17(1): 41. [9] Yang C, Chong J, Kim C, et al . Osmotic adjustment and ion balance traits of an alkaline resistant halophyte Kochia sieversiana during adaptation to saline and alkaline conditions. Plant and Soil, 2007, 294: 263-276. [10] Zhou C, Zhu L, Xie Y, et al . Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Frontiers in Plant Science, 2017, 8: 1143. [11] Guo R, Yang Z, Li F, et al . Comparative metabolic responses and adaptive strategies of wheat ( Triticm aestivum ) to salt and alkali stress. BMC Plant Biology, 2015, 15: 170. [12] Barker D H, Marszalek J, Zimpfer J F, et al . Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum . Functional Plant Biology, 2004, 31: 781-787. [13] Gawronska K, Romanowska E, Miszalski Z, et al . Limitation of C 3 -CAM shift in the common ice plant under high irradiance. Journal of Plant Physiology, 2013, 170(2): 129-135. [14] Monreal J A, Arias-Baldrich C, Pérez-Montaño F, et al . Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. Planta, 2013, 237(5): 1401-1413. [15] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010, 61: 235-261. [16] Qi X, Xu W, Zhang J, et al . Physiological characteristics and metabolomics of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase ( PEPC ) gene under high temperature stress. Protoplasma, 2017, 254(2): 1017-1030. [17] Von Caemmerer S, Quick W P, Furbank R T. The development of C 4 rice: current progress and future challenges. American Association for the Advancement of Science, 2012, 336: 1671-1672. [18] Zhang H F, Xu W G, Wang H W, et al . Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvateorthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma, 2014, 251(5): 1163-1173. [19] Qin N, Xu W, Hu L, et al . Drought tolerance and proteomics studies of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase ( PEPC ) gene. Protoplasma, 2016, 253(6): 1503-1512. [20] Zhang C, Li X, He Y, et al . Physiological investigation of C 4 -phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiology and Biochemistry, 2017, 115: 328-342. [21] Sullivan S, Jenkins G I, Nimmo H G. Roots, cycles and leaves. Expression of the phosphoenol pyruvate carboxylase kinase gene family in soybean. Plant Physiology, 2004, 135(4): 2078-2087. [22] Xu W, Sato S J, Clemente T E, et al . The PEP-carboxylase kinase gene family in Glycine max ( GmPpcK 1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. The Plant Journal, 2007, 49(5): 910-923. [23] Wang N, Zhong X, Cong Y, et al . Genome-wide analysis of phosphoenolpyruvate carboxylase gene family and their response to abiotic stresses in soybean. Scientific Reports, 2016, 6: 38448. [24] Izui K, Matsumura H, Furumoto T, et al . Phospshoe-nolpyruvate carboxylase: a new era of structural biology. Annual Reviews of Plant Biology, 2004, 55: 69-84. [25] Chen Z H, Jenkins G I, Nimmo H G. pH and carbon supply control the expression of phosphoenolpyruvate carboxylase kinase genes in Arabidopsis thaliana . Plant, Cell and Environment, 2008, 31(12): 1844-1850. [26] Doubnerová V, Ryslavá H. What can enzymes of C 4 photosynthesis do for C 3 plants under stress. Plant Science, 2011, 180:575-583. [27] O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011, 436(1): 15-34. [28] Chen M, Tang Y, Zhang J, et al . RNA interference-based suppression of phosphoenolpyruvate carboxylase results in susceptibility of canola to osmotic stress. Journal of Integrative Plant Biology, 2010, 52(6): 585-592. [29] Liu X, Li X, Zhang C, et al . Phosphoenolpyruvate carboxylase regulation in C 4 -PEPC-expressing transgenic rice during early responses to drought stress. Physiologia Plantarum, 2017, 159(2): 178-200. [30] Wang J J, Zhang L L, Qian X, et al . GsPPCK 1 and GsPPCK 3 gene transformed alfalfa and its alkaline analysis. Journal of Tarim University, 2014, 26(2): 20-31. 王家佳, 张利莉, 钱雪, 等. GsPPCK 1和 GsPPCK 3基因转化苜蓿及其耐碱性分析. 塔里木大学学报, 2014, 26(2): 20-31. [31] Sarwat M, Das S, Srivastava P S. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris , a medicinal herb. Plant Cell Reports, 2008, 27(3): 519-528. [32] Johnson H S, Hatch M D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and ‘malic’enzyme in plants with the C 4 -dicarboxylic acid pathway of photosynthesis. Biochemical Journal, 1970, 119(2): 273-280. [33] Sadka A, Dahan E, Cohen L, et al . Aconitase activity and expression during the development of lemon fruit. Physiologia Plantarum, 2000, 108(3): 255-262. [34] Gerard V A, Driscoll T. A spectrophotometric assay for RuBisco activity: Application to the kelp Laminaria saccharina and implications for radiometric assays. Journal of Phycology, 1996, 32: 880-884. [35] Sayre R T, Kennedy R A, Pringnitz D J. Photosynthetic enzyme activities and localization in Mollugo verticillata population differing on the leaves of C 3 and C 4 cycle operations. Plant Physiology, 1979, 64: 293-299. [36] Luo Z X, Zhang S Z, Yang B P. The key gene in C 4 -photosynthetic pathway transfer into C 3 plant. Plant Physiology Communications, 2008, 4(2): 187-193. 罗遵喜, 张树珍, 杨本鹏. C 4 光合关键酶基因转化C 3 植物. 植物生理学通讯, 2008, 4(2): 187-193. [37] Suzuki S, Murai N, Burnell J N, et al . Changes in photosynthetic carbon flow in transgenic rice plants that express C 4 -type phosphoenolpyruvate carboxlkinase from Urochloa panicoides . Plant Physiology, 2000, 124(1): 163-172. [38] Guo R, Yang Z Z, Li F, et al . Comparative metabolic responses and adaptive strategies of wheat ( Triticum aestivum ) to salt and alkali stress. BMC Plant Biology, 2015, (15): 170-183. [39] Yang G H. Study on organic acids accumulation and secretion of alkali stress induced in wheat-wheatgrass. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(7): 77-84. 杨国会. 碱胁迫诱导小冰麦有机酸积累和分泌的研究. 西北农林科技大学学报(自然科学版), 2010, 38(7): 77-84. [40] Guo L Q, Chen J X, Cui J J, et al . Comparative studies of metabolic regulation of organic acids in Puccinellia tenuiflora under salt and alkali stresses. Journal of Northeast Normal University (Natural Science Edition), 2009, 41(4): 123-128. 郭立泉, 陈建欣, 崔景军, 等. 盐、碱胁迫下星星草有机酸代谢调节的比较研究. 东北师范大学学报(自然科学版), 2009, 41(4): 123-128. [41] Yang C W, Li C Y, Zhang M L, et al . pH and ion balance in wheat-wheatgrass under salt or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5): 1000-1005. 杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005. |