[1] Ulker B, Somssich I E. WRKY transcription factor: from DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5): 491-498. [2] Jue D W, Sang X L, Shu B, et al . Expression analysis of maize WRKY transcription factor genes under abiotic stress. Guangdong Agricultural Sciences, 2017, 44(1): 15-22. 决登伟, 桑雪莲, 舒波, 等. 玉米WRKY转录因子非生物胁迫的表达分析. 广东农业科学, 2017, 44(1): 15-22. [3] Jue D W, Sang X L, Shu B, et al . Functional analysis for maize WRKY gene. Journal of Southern Agriculture, 2017, 48(6): 945-951. 决登伟, 桑雪莲, 舒波, 等. 玉米WRKY基因功能分析. 南方农业学报, 2017, 48(6): 945-951. [4] Jue D W, Sang X L, Shu B, et al . Expression of maize ZmWRKY 53 -like and ZmWRKY 67 -like gene under abiotic stresses. Guizhou Agricultural Sciences, 2017, 45(6): 15-20. 决登伟, 桑雪莲, 舒波, 等. 玉米 ZmWRKY 53 -like 与 ZmWRKY 67 -like 基因在非生物胁迫下的表达. 贵州农业科学, 2017, 45(6): 15-20. [5] Lü Q X, Gao S, He H, et al . Expression analysis of the maize ZmWRKY 45 gene under the saline-alkali adversity stress. Journal of Maize Sciences, 2017, 25(3): 28-32. 吕庆雪, 高嵩, 何欢, 等. 玉米 ZmWRKY 45基因克隆及盐碱逆境胁迫下的表达分析. 玉米科学, 2017, 25(3): 28-32. [6] Sun X C, Gao Y F, Li H R, et al . Over-expression of SlWRKY 39 leads to enhanced resistance to multiple stress factors in tomato. Journal of Plant Biology, 2015, 58(1): 52-60. [7] Su Y, Zhen J B, Zhang X, et al . Cloning and analysis of a salt stress responsive gene GhWRKY 41 in upland cotton ( Gossypium hirsutum L.). Journal of China Agricultural University, 2016, 21(12): 1-11. 苏莹, 甄军波, 张曦, 等. 陆地棉盐胁迫应答基因 GhWRKY 41的克隆与分析. 中国农业大学学报, 2016, 21(12): 1-11. [8] Shi W N, Hao L L, Li J, et al . The Gossypium hirsutum WRKY gene GhWRKY 39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicoti-ana benthamiana. Plant Cell Reports, 2014, 33(3): 483-498. [9] Dou L L, Li G L, Pang C Y, et al . Cloning and function analysis of GhWRKY 11 in cotton ( Gossypium hirsutum ). Journal of Agricultural Biotechnology, 2016, 24(5): 625-636. 窦玲玲, 李光雷, 庞朝友, 等. 棉花转录因子 GhWRKY 11的克隆及功能分析. 农业生物技术学报, 2016, 24(5): 625-636. [10] Chen X L, Yan D, Sun L N, et al . Cloning and expression analysis of HbWRKY 75 gene in leaf from Hevea brasiliensis . Plant Physiology Communications, 2016, 52(3): 250-258. 陈晓丽, 闫栋, 孙丽娜, 等. 橡胶树WRKY家族转录因子 HbWRKY 75基因的克隆及表达分析. 植物生理学报, 2016, 52(3): 250-258. [11] Yao H R, Zeng B S, Fan C J, et al . Cloning and expression analysis of EgrWRKY 70 in Eucalyptus grandis . Chinese Journal of Tropical Crops, 2016, 37(7): 1341-1348. 姚海荣, 曾炳山, 范春节, 等. 巨桉 EgrWRKY 70基因克隆和初步表达分析. 热带作物学报, 2016, 37(7): 1341-1348. [12] Wei X C, Yao Q J, Yuan Y X, et al . Cloning and expression analysis of CaWRKY 13 gene from Capsicum annuum L. under abiotic stress. Molecular Plant Breeding, 2016, 14(10): 2582-2588. 魏小春, 姚秋菊, 原玉香, 等. 辣椒 CaWRKY 13基因克隆及非生物胁迫下表达分析. 分子植物育种, 2016, 14(10): 2582-2588. [13] Guo J H, Wang W D, Gu X, et al . Cloning and expression analysis of WRKY transcription factor gene CsWRKY 57 in tea plant ( Camellia sinensis ). Journal of Tea Science, 2017, 37(4): 411-419. 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因 CsWRKY 57的克隆及表达分析. 茶叶科学, 2017, 37(4): 411-419. [14] Tang L L. Transformation of GsZFP 1 and GsWRKY 20 genes into Medicago sativa L. and salt and drought tolerance analysis in transgenic plants. Harbin: Northeast Agricultural University, 2013. 唐立郦. GsZFP 1和 GsWRKY 20基因转化苜蓿及耐盐耐旱性分析. 哈尔滨: 东北农业大学, 2013. [15] Zhu P H, Chen R R, Yu Y, et al . Cloning of gene GsWRKY 15 related to alkaline stress and alkaline tolerance of transgenic plants. Acta Agronomica Sinica, 2017, 43(9): 1319-1327. 朱娉慧, 陈冉冉, 于洋, 等. 碱胁迫相关基因 GsWRKY 15的克隆及其转基因苜蓿的耐碱性分析. 作物学报, 2017, 43(9): 1319-1327. [16] Ke D X, Li X Y, Han Y P, et al . ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus . Plant Physiology and Biochemistry, 2016, 108: 488-498. [17] Ke D X, Fang Q, Chen C F, et al . The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus . Plant Physiology, 2012, 159(1): 131-143. [18] Ke D X, Zhang W, Li X Y, et al . Polyclonal antibody preparation and application of Lotus japonicus Rac1 protein. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(4): 655-660. 柯丹霞, 张伟, 李祥永, 等. 百脉根Rac1蛋白多克隆抗体的制备与应用. 西北植物学报, 2016, 36(4): 655-660. [19] Ke D X, Li X Y, Wang J J, et al . Functions of small GTPase Rac 1 in nodulation process in Lotus japonicus . Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2365-2372. 柯丹霞, 李祥永, 王静静, 等. 百脉根小G蛋白 Rac 1基因的克隆与功能分析. 西北植物学报, 2015, 35(12): 2365-2372. [20] Ke D X, Li X Y, Peng K P, et al . Cloning and expression analysis of the promoter region of Rac 1 gene of Lotus japonicus . Journal of Xinyang Normal University (Natural Science Edition), 2018, (1): 1-5. 柯丹霞, 李祥永, 彭昆鹏, 等. 百脉根 Rac 1基因启动子的克隆与表达分析. 信阳师范学院学报(自然科学版), 2018, (1): 1-5. [21] Ke D X, Li X Y. Research progress of key regulatory proteins in nodulation pathway. Journal of Xinyang Normal University (Natural Science Edition), 2015, (4): 621-626. 柯丹霞, 李祥永. 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报, 2015, (4): 621-626. [22] Ke D X, Li X Y, Wang L, et al . Isolation of GmHAT 5 from Glycine max and analysis of saline tolerance for transgenic Lotus japonicus . Scientia Agricultura Sinica, 2017, 50(9): 1559-1570. 柯丹霞, 李祥永, 王磊, 等. 大豆 GmHAT 5的克隆及其转基因百脉根的抗盐分析. 中国农业科学, 2017, 50(9): 1559-1570. [23] Ke D X, Xiong W Z, Peng K P, et al . Study on genetic transformation of salt resistant gene Gm 01 g 04890 in soybean. Journal of Xinyang Normal University (Natural Science Edition), 2017, (1): 46-51. 柯丹霞, 熊文真, 彭昆鹏, 等. 抗盐基因 Gm 01 g 04890大豆子叶节遗传转化研究. 信阳师范学院学报(自然科学版), 2017, (1): 46-51. [24] Song H, Wang P F, Hou L, et al . Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. Frontiers in Plant Science, 2016, 7: 9. [25] Yu Y C, Wang N, Hu R B, et al . Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springer Plus, 2016, 5: 920. [26] Marquez A J. Lotus japonicus handbook. The Netherlands: Springer, 2005: 279-284. [27] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporam in and β-amylase from sweet potato. Molecular and General Genetics MGG, 1994, 244(6): 563-571. [28] Rushton P J, Somssich I E, Ringler P, et al . WRKY transcription factors. Trends in Plant Science, 2010, 15(5): 247-258. [29] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10: 366-371. [30] Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009, 150(4): 1648-1655. [31] Eulgem T, Rushton P J, Robatzek S, et al . The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 199-206. [32] Zhou Q Y, Tian A G, Zou H F, et al . Soybean WRKY-type transcription factor genes, GmWRKY 13, GmWRKY 21, and GmWRKY 54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 2008, 6(5): 486-503. [33] Wang T T, Cong Y H, Liu J G, et al . Cloning and functional analysis of a WRKY 28 -like gene in soybean. Acta Agronomica Sinica, 2016, 42(4): 469-481. 王婷婷, 丛亚辉, 柳聚阁, 等. 大豆中一个 WRKY 28 -like 基因的克隆与功能分析. 作物学报, 2016, 42(4): 469-481. [34] Li D H, Wang C H, Liu X P, et al . Expression of GmWRKY 35, a soybean WRKY gene, in transgenic tobacco confers drought stress tolerances. Soybean Science, 2017, 36(5): 685-691. 李大红, 王春弘, 刘喜平, 等. 大豆 GmWRKY 35基因的克隆及其增强烟草耐旱能力研究. 大豆科学, 2017, 36(5): 685-691. |