[1] Duvick D N, Cassman K G.Post-green revolution trends in yield potential of temperate maize in the North Central United States. Crop Science, 1999, 39(6): 1622-1630. [2] Yang X J, Lu M, Zhang S H, et al. QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas, 2008, 30(11): 1477-1486. 杨晓军, 路明, 张世煌, 等. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30(11): 1477-1486. [3] Dong Y B, Zhang Z W, Shi Q L, et al. QTL consistency for agronomic traits across three generations and potential applications in popcorn. Journal of Integrative Agriculture, 2015, 14(12): 2547-2557. [4] Zheng Z P, Liu X H.QTL identification of ear leaf morphometric traits under nitrogen regimes in maize. Genetics and Molecular Research, 2013, 12(4): 4342-4351. [5] Zhang Z L, Jiang F, Liu P F, et al. QTL mapping of ear leaf area in sweet corn. Hubei Agricultural Sciences, 2014, 53(7): 1502-1505. 张资丽, 蒋锋, 刘鹏飞, 等. 甜玉米穗位叶面积QTL定位. 湖北农业科学, 2014, 53(7): 1502-1505. [6] Lambert R J, Johnson R R.Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Science, 1978, 18(3): 499-502. [7] Liu W H, Luo H B, Qiu B.Advances in maize tassel for developmental and QTL mapping of primary branch number. Crop Research, 2015, 29(6): 667-671. 刘伟华, 罗红兵, 邱博. 玉米雄穗发育及其分枝数的QTL定位研究进展. 作物研究, 2015, 29(6): 667-671. [8] Zhao X Q, Peng Y L, Zhang J W, et al. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations. Molecular Breeding, 2017, 37: 91. [9] Zhang Z M, Zhao M J, Ding H P, et al. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian Journal of Genetics, 2006, 42(3): 306-310. [10] Milena L, Souza C, Bento D, et al. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular Breeding, 2006, 17: 227-239. [11] Gao S B, Zhao M J, Lan H, et al. Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas, 2007, 29(8): 1013-1017. 高世斌, 赵茂俊, 兰海, 等. 玉米雄穗分枝数与主轴长的QTL鉴定. 遗传, 2007, 29(8): 1013-1017. [12] Li X T, Jun Q, Wang R X, et al. QTL mapping and analysis for the relevant traits of plant type in maize. Jiangsu Agricultural Sciences, 2011, 39(2): 21-25. 李贤唐, 俊强, 王瑞霞, 等. 玉米株型相关性状的QTL定位. 江苏农业科学, 2011, 39(2): 21-25. [13] Nikolic A, Andjelkovic V, Dodig D, et al. Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika, 2011, 43: 263-276. [14] Cai H G, Chu Q, Yuan L X, et al. Identification of quantitative trait loci for leaf area and chlorophy II content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 2012, 30: 251-266. [15] Xue Y D, Warburton M L, Sawkins M, et al. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and Applied Genetics, 2013, 126: 2587-2596. [16] Almeida G D, Nair S, BoremA, et al. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular Breeding, 2014, 34: 701-715. [17] Xu C, Wang B, Mao K J, et al. QTL mapping for plant-type related traits using single segment substitution lines in maize. Journal of Maize Sciences, 2014, 22(2): 28-34. 许诚, 王彬, 毛克举, 等. 利用单片段代换系群体定位玉米株型性状QTL. 玉米科学, 2014, 22(2): 28-34. [18] Chen X N, Xu D, Liu Z, et al. Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica, 2015, 204: 395-405. [19] An Y Q, Zhang J, Xi Z Y, et al. QTL mapping of leaf area for different leaf position in maize (Zea mays L.). Molecular Plant Breeding, 2016, 14: 2113-2120. 安允权, 张君, 席章营, 等. 玉米不同穗位叶面积的QTL定位. 分子植物育种, 2016, 14: 2113-2120. [20] Peng Y L, Zhao X Q, Ren X W, et al. Effect of drought stress on growth of different plant type maize (Zea mays) in the bell-mouthed period. Journal of Desert Research, 2013, 33(4): 1064-1070. 彭云玲, 赵小强, 任续伟, 等. 干旱胁迫对不同株型玉米大喇叭口期生长的影响. 中国沙漠, 2013, 33(4): 1064-1070. [21] Peng Y L, Zhao X Q, Ren X W, et al. Genotypic differences in response of physiological characteristics and grain yield of maize inbred lines to drought stress at flowering stage. Agricultural Research in the Arid Areas, 2014, 32(3): 9-14. 彭云玲, 赵小强, 任续伟, 等. 开花期干旱胁迫对不同基因型玉米生理特性和产量的影响. 干旱地区农业研究, 2014, 32(3): 9-14. [22] Zhao X Q, Peng Y L, Li J Y, et al. Comprehensive evaluation of salt tolerance in 16 maize inbred lines. Agricultural Research in the Arid Areas, 2014, 32(5): 40-45, 51. 赵小强, 彭云玲, 李建英, 等. 16份玉米自交系的耐盐性评价. 干旱地区农业研究, 2014, 32(5): 40-45, 51. [23] Zhao X Q, Fang P, Peng Y L, et al. QTL mapping for six ear-related traits based on two maize (Zea mays) related populations. Journal of Agricultural Biotechnology, 2018, 26(5): 729-742. 赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米6个穗部性状QTL定位. 农业生物技术学报, 2018, 26(5): 729-742. [24] Yang D L, Liu Y, Cheng H B, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genetics, 2016, 17: 94. [25] Wu X, Li Y X, Shi Y S, et al. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size inmaize. Plant Biotechnology, 2016, 14: 1551-1562. [26] Yang G Y, Zheng H Y, Han C F.A preliminary analysis on genetic parameters of major agronomic characters of progenies from crosses between cultivated (G. max) and semi-wild soybean (G. gracilis). Acta Agronomica Sinica, 1992, 18(6): 439-446. 杨光宇, 郑惠玉, 韩春凤. 栽培大豆(G.max)×半野生大豆(G.gracilis)后代主要农艺性状遗传参数的初步分析. 作物学报, 1992, 18(6): 439-446. [27] Fu F L, Feng Z L, Gao S B, et al. Evaluation and quantitative inheritance of several drought-relative traits in maize. Scientia Agricultura Sinica, 2008, 7(3): 280-290. [28] Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphisms I barley: Mendelian inheritance, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(24): 8014-8018. [29] Peng Y L, Zhao X Q, Yan H P, et al. Deep-sowing tolerance and genetic diversity of maize inbred lines. Acta Prataculturae Sinica, 2016, 25(7): 73-86. 彭云玲, 赵小强, 闫慧萍, 等. 不同玉米自交系耐深播性评价及遗传多样性分析. 草业学报, 2016, 25(7): 73-86. [30] Churchill G A, Doerge R W.Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3): 963-971. [31] Stuber C W, Edwards M D, Wendel J.F1 molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Science, 1987, 27: 639-648. [32] McCouch S R, Cho Y G, Yano P E, et al. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13. [33] Tuberosa R, Salvi S, Sanguineti M C, et al. Mapping QTL regulating morpho-physiological traits and yields: case studies, shortcomings and perspectives in drought-stress maize. Annals of Botany, 2002, 89: 941-963. [34] Si S L, Hao X J, Wei C, et al. The correlation and heterosis of plant-type traits in maize. Journal of Maize Sciences, 2009, 17(1): 51-53. 司书丽, 郝学景, 魏春, 等. 玉米株型性状的亲子相关与杂种优势. 玉米科学, 2009, 17(1): 51-53. [35] Wei F, Hong D F, Ma Y, et al. Heterosis of plant-type traits in maize. Journal of Henan Agricultural Sciences, 2013, 42(11): 11-13. 魏锋, 洪德峰, 马毅, 等. 玉米株型性状的杂种优势研究. 河南农业科学, 2013, 42(11): 11-13. [36] Wang Y P.Studies on plant shape and yield character relation with maize inbred lines. Journal of Maize Sciences, 2004, 12(3): 47-49. 王雅萍. 玉米自交系株型和产量性状的关系及其利用研究. 玉米科学, 2004, 12(3): 47-49. [37] Zhang Z M, Zhao M J, Rong T Z, et al. SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agronomica Sinica, 2007, 33(2): 341-344. 张志明, 赵茂俊, 荣廷昭, 等. 玉米SSR连锁图谱构建与株高及穗位高QTL定位. 作物学报, 2007, 33(2): 341-344. [38] Wei X Y, Wang B, Peng Q, et al. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Molecular Breeding, 2015, 35: 94. [39] Tang J H, Teng W T, Yan J B, et al. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117-124. [40] Melchinger A E, Utz H F, Schon C C.Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383-403. [41] Lubberstedt T, Melchinger A E, Schon C C, et al. QTL mapping in testcrosses of European flint lines of maizeI. Comparison of different testers for forage yield traits. Crop Science, 1997, 37: 921-931. [42] Ramirez J, Bolduc N, Lisch D, et al. Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiology, 2009, 151: 1878-1888. [43] Zhang J M, Liu C, Shi Y S, et al. QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. Journal of Plant Genetics Resources, 2004, 5(2): 161-165. 张吉民, 刘成, 石云素, 等. 干旱胁迫和正常灌溉条件下玉米开花相关性状的QTL分析. 植物遗传资源学报, 2004, 5(2): 161-165. |